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Abstract:
With the ease of gene sequencing and the technology available to study and manipulate
non-model organisms, the need to translate our understanding of model organisms to
non-model organisms has become an urgent problem. For example, mining of large coral and
their symbiont sequence data is a challenge, but also provides an opportunity for understanding
functionality and evolution of these and other non-model organisms. Much more information
than for any other eukaryotic species is available for humans, especially related to signal
transduction and diseases. However, the coral cnidarian host and human have diverged over
700 million years ago and homologies between proteins are therefore often in the gray zone or
undetectable with traditional BLAST searches. We introduce a two-stage approach to identifying
putative coral homologues of human proteins. First, through remote homology detection using
Hidden Markov Models, we identify candidate human homologues in the cnidarian genome.
However, for many proteins, the human genome alone contains multiple family members with
similar or even more divergence in sequence. In the second stage, therefore, we filter the
remote homology results based on the functional and structural plausibility of each coral
candidate, shortlisting the coral proteins likely to be true human homologues. We demonstrate
our approach with a pipeline for mapping membrane receptors in humans to membrane
receptors in corals, with specific focus on the stony coral, P. damicornis. More than 1000 human
membrane receptors mapped to 335 coral receptors, including 151 G protein coupled receptors
(GPCRs). To validate specific sub-families, we chose opsin proteins, representative GPCRs that
confer light sensitivity, and Toll-like receptors, representative non-GPCRs, which function in the
immune response, and their ability to communicate with microorganisms. Through detailed
structure-function analysis of their ligand-binding pockets and downstream signaling cascades,
we selected those candidate remote homologues likely to carry out related functions in the
corals. This pipeline may prove generally useful for other non-model organisms, such as to
support the growing field of synthetic biology.

Keywords: remote homology, vision, immune system, opsin, Toll-like receptors, G protein
coupled receptors
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INTRODUCTION

A bioinformatics functional genomics/proteomics pipeline for a newly sequenced
non-model eukaryotic organism can (and should) seek to leverage the wealth of known
information and annotation available for model species that are evolutionarily related. Due to the
urgency of tackling species loss through environmental damage, many new non-model
organisms are currently being sequenced, especially corals. Once the likely constituent genes
have been identified (Ekblom & Wolf, 2014)(Campbell et al., 2014), predicting if the relevant
evolutionary functions of the non-model species genes are conserved or have diverged from
their orthologous counterparts in the model species becomes directly relevant. Of course, there
may be genes in the non-model organism that have no homologues, also referred to as the dark
genome (Oprea, 2019). However, the goal of this paper is to maximally exploit existing
knowledge from model organisms for the mining of non-model organisms for function.This is
because this step is often quite difficult for organisms such as corals, where the host is 700
million years distant from the closest well-annotated model organism, even for many of the
genes in closely related species to the model organism (Copper, 2001). It is particularly
interesting that coral animals contain a surprising number of human homologs missing from fly
and C. elegans (Kortschak et al., 2003).

Corals are complex organisms consisting of an animal host (cnidarian) and a
microbiome with more than 20,000 species consisting of symbiotic algae, as well as bacteria,
bacteriophages, fungi and viruses, collectively referred to as holobiont (Thompson et al., 2014).
We consider here, as a case study, the membrane receptor proteins in corals. These are
important families of proteins to study in corals because they have large potential to mediate the
coral animal’s interactions with its symbiont, microbiome and environment. Understanding these
mechanisms in corals has become urgent. As a result of anthropogenic activities, both local
and global, coral holobionts are declining rapidly. Mass coral bleaching, or the expulsion of the
symbiotic algae due primarily to thermal stress driven by marine heatwaves, is resulting in
substantial coral mortality (Hughes et al., 2018). A recent study assessed 100 worldwide
locations and found that the annual risk of coral bleaching has increased from an expected 8%
of locations in the early 1980s to 31% in 2016 (Hughes et al., 2018). Thus understanding the
relevant parts of the coral animal genome that are relevant to interactions with their environment
has become an urgent bioinformatics task, made possible by the recent availability of coral
genomes for multiple species of both animal and symbiont. Fortunately, large classes of
membrane receptor proteins have been preserved over time (de Mendoza et al., 2014), so there
is a large body of prior knowledge that we can extrapolate from.

Given a protein of interest that has not been studied before, how much can be learnt
from better studied proteins is a common question in biology. The answer lies in the
sequence-structure-function paradigm, namely that a similar sequence usually maps to a similar
structure and conserved function. This is the premise for the use of sequence alignments, for
which many methods of analysis exist, the choice of which typically depends on how similar the
sequences to be compared are. The problem with the sequence-structure-function paradigm is
that relatively small changes in sequence can have dramatic effects on function, which is the
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basis for the evolution of protein families, where the overall fold is highly conserved, yet different
members of the family can have different functions.

For many years, BLAST (Altschul et al., 1997) was the de facto standard homology
search tool, as it provided comparable sensitivity to exact alignment methods such as
Smith-Waterman (Smith & Waterman, 1981) and early heuristics such as FASTA (Pearson,
1991) with much faster runtime performance. However, these methods, and even iterative
methods such as PSI-BLAST, are unable to detect homologs in the “twilight zone” of homology,
between 10 and 30% sequence identity (Rost, 1999; Yona & Levitt, 2002). The development of
profile hidden Markov models (HMMs) such as HMMER (Eddy, 1998) and SAM (Karplus et al.,
1998) improved remote homology detection performance, but as they still attempt to score a
single query sequence against a profile-based HMM, they may miss homologs deep into the
“twilight zone.” A more recent advancement came in the form of HMM-HMM alignment (Söding
et al., 2005) with HHpred in 2005, with further improvements resulting in HHblits (Remmert et
al., 2011). These methods build a library of HMMs (or use an existing library) from families of
nucleotide or protein sequences, and next build a query HMM from a multiple sequence
alignment based on a BLAST-like search for similar sequences to the query, and use a variant
of the Viterbi algorithm (Viterbi, 2009) to align the two HMMs according to maximum likelihood.
HHblits was our choice for remote homology detection in this pipeline, as it combines
state-of-the-art sensitivity to remote homologs with fast runtime performance, and is able to
detect homologs in the range of 10-30% sequence identity. Given the roughly 700 million years
of evolutionary divergence between cnidarians and humans, we could not assume that
homologs would be of higher sequence identity. In order to avoid confusion with other
organisms, we built a custom HHblits database for P. damicornis, and one of its symbiotic algae,
Cladocopium goreaui (C1), formerly known as Symbiodinium (S.) goreaui (Clade C, type C1)
(LaJeunesse et al., 2018) which we were able to query with human sequences of known
function.

We know that corals adjust their behavior in response to external and internal cues, as
illustrated by the following examples. Corals contract or extend their tentacles in response to
light intensity (Levy et al., 2003). Coral larvae are known to prefer red over white surfaces for
settling (Mason et al., 2011). Corals can fight, so they must be able to sense and attack the
enemy or competitor (Yosef et al., 2020). Corals can distinguish organisms to tolerate
(symbiosis) versus subjecting them to an immune attack to prevent disease (Mansfield &
Gilmore, 2019). Corals prefer to eat plastic over copepods which may relate to a sense of taste
(Allen et al., 2017). Since corals manage 90% of their energy from symbiotic algae (Allen et al.,
2017; Wooldridge, 2010), they must also be able to measure and regulate nutrient balance. The
key question that arises from these observations is: what are the molecular mechanisms
underlying these behaviors?

Generally, signal sensing and response reactions in biological systems depend on
membrane receptor signaling systems. Receptor activation involves the detection of the
signaling molecule (ligand) outside the cell when the ligand binds to the receptor protein present
on the surface of the cell (Fig.1). The signal transduction stage involves the activation of the
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receptor (conformational change) leading to the chain reaction of the activation of intracellular
proteins. These signal transduction cascades trigger specific cellular responses. Thus,
membrane receptors most generally are proteins that are coupled to intracellular signal
transduction cascades. There are two types of membrane receptors, sometimes referred to as
type I and type II receptors (Fig.1). Type I membrane receptors usually contain one or two
transmembrane (TM) helices, and often carry enzymatic activity in their cytoplasmic domains,
such as tyrosine kinase receptors like the epidermal growth factor receptor. Type II membrane
receptors are G-protein coupled receptors (GPCR) which exclusively contain a seven-TM helical
bundle. There are also ion channels which change their permeability in response to external
signals, but are usually not classified as receptors (Nemecz et al., 2016). Membrane receptors
have three major structural domains: extracellular (EC), transmembrane (TM), and cytoplasmic
(CP). We will discuss one example in depth for each of the two types of membrane receptor
proteins. For the type II membrane receptor family, we have chosen the GPCR sub-family of
opsins. As an example for type I membrane receptors, we will discuss Toll-like receptors (TLRs).

GPCRs respond to a large diversity of signals, from light in the opsin family to binding of
hormones, neurotransmitters and even other proteins (Sakmar, 2010). Correspondingly, in
humans, these receptors take a premier role as pharmaceutical targets and have thus been
extensively studied (Sriram & Insel, 2018). Signal transduction by GPCRs is via binding and
activation of heterotrimeric G proteins composed of alpha, beta and gamma subunits
(Wettschureck & Offermanns, 2005). GPCRs are responsible for the majority of cellular
responses to external stimuli. Upon activation by a ligand, the receptor promotes the exchange
of GTP for GDP in its partner heterotrimeric G protein complex, leading to the dissociation of the
alpha and beta gamma complexes from the receptor and each other. The G proteins then
interact with other downstream effector proteins to mediate a cell response. In this study, we
have used our remote homology detection pipeline to find human GPCR as well as G protein
homologs in P. damicornis and Cladocopium goreaui (C1).

TLRs play a crucial role in innate immunity (Akira & Takeda, 2004). These membrane
glycoprotein receptors recognize and respond to a variety of microbial (viral, fungal, and
bacterial) components such as lipopeptides (Kang et al., 2009), peptidoglycans and
lipopolysaccharides (Park et al., 2009), flagellin (Park et al., 2009; W. S. Song et al., 2017),
DNA (Ohto et al., 2018), and RNA (W. Song et al., 2015). TLRs consist of leucine-rich repeats
(LRR), and the Toll/interleukin-1 receptor (TIR) domain (Narayanan & Park, 2015). TLRs initiate
signal transduction through interactions with TIR-domain containing adapters such as MyD88
(Dunne & O’Neill, 2005), that in turn recruits interleukin-1 receptor-associated kinase (IRAK) via
interactions through death domains (Chen & Jiang, 2013). After phosphorylation, IRAK family
proteins interact with the TRAF6 adapter. TRAF6 activates TAK1, a member of the
mitogen-activated protein (MAP) kinase family (Dong et al., 2006), leading to the activation of
NF-kB via kinase dependent signaling cascade involving IkB kinase complex (IKK-⍺,- , and -γ)
and MAP kinases (ERK, p38, JNK), resulting in the expression of target genes (Tang et al.,
2021). Viruses and bacteria are abundant in seawater and live in close association with corals
(van Oppen & Blackall, 2019). The chemical crosstalk between corals and microbes plays an
important role in coral growth and development. Corals need TLRs to communicate with
microbes and it has been proposed that TLR signaling is conserved in corals (Williams et al.,
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2018). In the present study, we used our remote homology detection pipeline to find human TLR
protein homologs in P. damicornis and C. goreaui (C1) to advance our understanding of coral
innate immunity.

Using these two representative membrane receptor families, we will demonstrate that
the stated problem of identifying remote homologues in non-model organisms is not just a
remote sequence detection problem, but highlights the need for functional investigation of the
putative proteins, which involves both systems and structural aspects of these proteins and their
interaction partners. To this end, we focus on those positions in the alignments between model
and non-model organism homologues that determine specificity of the respective protein’s
functions. We will discuss below first the common elements of the pipeline, how we determine
the pool of all membrane receptors in P. damicornis, how we subdivide this broad group into
type I and type II membrane receptors, and how we refined these two multi-subfamily groups
into functional classes by analysis of two of them, TLRs and opsins, by way of identifying the
specificity determination positions, followed by analysis of the downstream signaling proteins.
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MATERIALS AND METHODS

(a) Protein sequence retrieval. All non-P. damicornis and C. goreaui sequences were retrieved
from the UniProt - Swiss-Prot Protein Knowledgebase, SIB Swiss Institute of Bioinformatics;
Geneva, Switzerland (https://www.uniprot.org/). P. damicornis sequences (Cunning et al., 2018)
were downloaded from http://pdam.reefgenomics.org/download/. C. goreaui sequences (Liu et
al., 2018) were obtained from http://symbs.reefgenomics.org/download/.

Specific subgroups of sequences were identified and retrieved as follows and subjected to
HHblits analysis as described in section (b).
(i) Human membrane receptor list. We have utilized two human membrane protein lists. The
first one was published as the human membrane receptome in 2003 (Ben-Shlomo et al., 2003).
We subjected the original list to an updated search in UniProt and retrieved 978 current UniProt
entries, including GPCRs, provided in supplementary file-S1. The second was generated by
using three alpha helix prediction tools followed by filtering of splice variants and clustering of
the remaining genes (Almén et al., 2009). This list contains a total of 3,399 genes, including
GPCRs, and is available from their supplement. The mapped P. damicornis entries (see below)
are available in supplementary file-S2.
(ii) Human GPCR list. A comprehensive list of human GPCRs was extracted from an updated
UniProt list of multi-species GPCRs (release: 2020_03 of 17-Jun-2020: 825 proteins
(https://www.uniprot.org/docs/7tmrlist.txt). This list contained a total of 3093 GPCR sequences
including 825 human GPCRs. See supplementary file-S3 for the extracted human GPCRs.
The mapped P. damicornis entries (see below) are provided in supplementary file-S4.
(iii) G protein list. Sequences of human G proteins were obtained from UniProt using keyword
search, resulting in 16 alpha chains, 5 beta chains, and 12 gamma chains (Wettschureck &
Offermanns, 2005). The complete list of these human proteins and their candidate P. damicornis
homologues is provided in supplementary file-S5.
(iv) Toll-like receptor list. Protein sequences of TLRs of human (Akira & Takeda, 2004) and
other organisms, namely Drosophila (Imler & Hoffmann, 2002), chicken (Nawab et al., 2019),
frog (Ishii et al., 2007), and zebrafish (Kanwal et al., 2014), were retrieved from UniProt. TLR
downstream signaling molecules (MyD88, TIRAM, TIRAP and TRIF) were also acquired from
UniProt. The complete list with all the protein sequences used is provided as supplementary
file-S6. The extracted P. damicornis TLR list is provided as supplementary file-S7 (note there
is a separate sheet for each organism).

(b) Remote homology detection using HHblits: To enable organism specific searches, we
created an online HHblits coral protein remote homology search tool
(https://hhblits.cs.tufts.edu/), an installation of HHblits (Remmert et al., 2011) with genomic
databases built for P. damicornis and C. Goreaui. Individual FASTA sequences were imported to
this search tool and queries were run with an E-value cutoff of 10-3, single iteration, minimum
probability of 20 (default), and with the minimum number of lines to show in the hit list expanded
from 10 to 250. The jobID, email information, database information (e.g. P. damicornis) were
submitted and the result output file was received by email or as batch predictions. Individual
predictions contained the HHblits results of the submitted proteins in text format including
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protein sequence alignment, E-value, P-value, probability, column matched and score. In the
case of GPCR, the result output was analyzed in a bidirectional fashion as follows. First, the top
ranked P. damicornis hit was retrieved for each GPCR. Then a list of unique P. damicornis
proteins were created from that, and the corresponding human GPCRs for which they appeared
as top hits, provided as supplementary file-S4. For membrane receptors, the non-redundant
lists of top ranked P. damicornis hits retrieved in the same way as for GPCRs are provided for
both lists (supplementary file-S2). In the case of TLRs and G proteins, HHblits results were
analyzed manually (see Results). For TLRs, top hits with 100% probability score were selected
and analyzed separately for each model organism, i.e. human (Akira & Takeda, 2004),
Drosophila (Imler & Hoffmann, 2002), chicken (Nawab et al., 2019), frog (Ishii et al., 2007), and
zebrafish (Kanwal et al., 2014), before comparing them across organisms (Table 1). The list of
P. damicornis hits for TLRs are provided as supplementary file-S7. A summary based on the
frequency of occurrence of P. damicornis hits is provided in Table 1.

(c) PROSITE analysis: The most highly ranked P. damicornis sequences retrieved through
HHblits were subjected to PROSITE analysis (de Castro et al., 2006) to identify the presence of
conserved domains (https://prosite.expasy.org/). Protein sequences were submitted to the
PROSITE user interface and the results were analyzed and grouped by combining the domain
schematic provided by PROSITE.

(d) Transmembrane helix detection: In some cases, we verified the presence of a
transmembrane region using TMHMM Server v. 2.0 (DTU bioinformatics, Department of Bio and
Health Informatics) for the prediction of transmembrane helices
(https://services.healthtech.dtu.dk/service.php?TMHMM-2.0).

(d) Homology-modeling: Homology models were generated using Swiss Model
(https://swissmodel.expasy.org/), an integrated web-based service dedicated to homology
modelling of proteins (Waterhouse et al., 2018). We used the target-template alignment function
of Swiss Model and provided the reconstruction of the full TLR5 (3J0A) combining
crystallographic and cryo-electron microscopy data created by (Zhou et al., 2012) as a template
to model P. damicornis 9200. We have also modelled our potential matches for opsins (629,
2270, 12246, and 19775) using squid rhodopsin as a template (2ZIY) (Shimamura et al., 2008).
The models were evaluated for their global quality estimate and local quality score as per Swiss
Model guidelines. The models were downloaded and analyzed using PyMOL (version-2.3.4,
Schrodinger, LLC). These proteins were further structurally analyzed for ligand binding pocket
and Ballesteros-Weinstein numbering system. Ligand binding pocket residues in GPCRs were
extracted from previous chemogenomic analysis (Surgand et al., 2006).

(e) Molecular docking studies of retinal with coral opsin homologs: Molecular docking was
performed using retinal as the ligand with AutodockTools 1.5.6 (Harris et al., 2008). We
standardized our docking experiments using squid rhodopsin with the following parameters:
center_x=43.171, center_t=6.216, center_z=17.019, size_x=16, size_y=22, and size_x=26.
Docking was performed by extraction after aligning the homology model with the squid
rhodopsin space coordinates. The ‘exhaustiveness’ option was set as 32.0. The binding pocket
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was analysed using the Biovia discovery suite 2019 v19.1.0.18287 (Dassault Systemes Biovia
Corp). Residues involved in the interactions for each model are listed in supplementary
Table-S1.

(f) Multiple Sequence Alignment of P. damicornis. Potential P. damicornis members of
respective protein families were aligned to each other using MUSCLE (Edgar, 2004)
(https://www.ebi.ac.uk/Tools/msa/muscle/) to examine if structurally relevant amino acids were
conserved across family members. As an example, the alignment of opsin homologues in P.
damicornis is shown in supplementary Figure-S2.

(g) D-SCRIPT Analysis. We initially identified candidate homologs in P. damicornis for the
human alpha, beta, and gamma G proteins using HHBlits (Remmert et al., 2011)
(hhblits.cs.tufts.edu). We took the union of top hits to identify 124 candidate alpha proteins, 207
candidate beta proteins, and 5 candidate gamma proteins. We used the human pre-trained
D-SCRIPT (Sledzieski et al., 2021) model to predict interaction between all pairs of alpha-beta,
beta-gamma, and alpha-gamma subunits. We performed the same analysis in Montipora
capitata (Shumaker et al., 2019), where we identified 184 candidate alpha proteins, 253
candidate beta proteins, and 4 candidate gamma proteins. We created a mapping between P.
damicornis and M. capitata proteins using BLAST (Altschul et al., 1997) and identified
best-bidirectional-hits, i.e. a pair (P,M) map to each other if M is the best BLAST hit in M.
capitata for P and vice versa. We overlay the P. damicornis and M. capitata networks with each
other using the mapping and identify as network-evidence candidate proteins where pairwise
interaction is predicted between an alpha, beta, and gamma subunit forming a triangle in the
network.
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RESULTS

(a) Development of a pipeline: addressing the challenges with existing methods: An
overview of the pipeline we developed to address the goal of identifying the repertoire of
membrane receptors in the non-model organism, the coral P. damicornis, using known
information from the model organism, human, is shown in Figure 2. The first step is to create a
list of human proteins representing the function of interest, here membrane receptors. A list of
membrane receptors in human had been published previously (Ben-Shlomo et al., 2003), but
when retrieving the sequences from the UniProt database, several entries were no longer valid.
We manually retrieved the updated UniProt ID’s by searching the database through protein
names. The list of human membrane receptors obtained is available as supplementary file-S1.
This list contains 978 human proteins. We also used another published list of membrane
receptors (Almén et al., 2009), which contained 1352 human proteins reported using an
outdated identifier format. Finally, a list of human GPCRs was extracted from a GPCR list in any
organism from the UniProt database available at (https://www.uniprot.org/docs/7tmrlist.txt).

Initially, we used BLAST, as well as several multiple sequence alignment (MSA) based tools to
retrieve P. damicornis homologues, but after inspection of the results we concluded that the
alignments between human and P. damicornis sequences were poor as judged by the number
of gaps and the fractions of sequences aligned (data not shown). We concluded that due to the
low sequence similarity between human and P. damicornis, we required a remote homology
detection tool. HHblits is the accepted gold standard for remote homology detection (Remmert
et al., 2011). Thus, all three human membrane receptor lists were searched against P.
damicornis using our implementation of HHblits, available at https://hhblits.cs.tufts.edu/, where
our implementation of HHblits contains genome-wide template libraries of HMM models of all
the genes in several coral animal and symbiont genomes (principally P. damicornis, M. capitata,
plus the clade C1 symbioint).

When mapping these three sets of lists to the P. damicornis sequences using HHblits, it became
clear that the same genes mapped to multiple human query sequences. This is because there
are many members of membrane receptor superfamilies, e.g. receptor tyrosine kinases or
GPCRs in each organism itself already. We therefore created non-redundant lists of the top
ranked P. damicornis sequences. We obtained 374 unique P. damicornis sequences from the
978 human plasma membrane receptome (older list), 329 from the 1352 human membrane
proteome (newer list) and 151 from the 825 human GPCRs. These lists and their respective
overlap is provided in supplementary file-S2. Combining the three lists and eliminating
duplicates appearing in more than one of the lists yielded a total of 446 unique P. damicornis
sequences. While all 151 GPCRs were found in both membrane receptor lists, there were 111
and 50 non-GPCR receptors missed if we considered only the older human receptor list as
compared to the newer one. Thus, we conclude that there are 295 non-GPCR and 151 GPCR
candidates in the P. damicornis membrane receptome.

It is important to note that, in the majority of cases, none of the quantitative parameters of the
sequence alignment was able to differentiate between the hits. In other words, it was not
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possible to automatically assign a best human homologue for any given P. damicornis
sequence. This is because different members of protein families have diverged in humans, and
are more similar to each other, than they are to any P. damicornis sequence, which is
evolutionarily most distant to all of them.

Given the fact that many more human sequences map to a smaller set of sequences in P.
damicornis raises the question which functional sub-categories of these superfamilies are
present in P. damicornis. Clearly, sequence alone is not sufficient to answer this question, and
therefore identifying which of the functionalities of a given sub-family of membrane receptors is
present in corals requires an analysis of known functional properties. This requires domain
expertise and can no longer be fully automated in contrast to all previous steps (Figure 2). This
final step of the pipeline is demonstrated for two examples below and necessarily branches
according to the functions of the proteins of interest. The opsin subfamily was chosen as a
representative example for the type II membrane receptor, the GPCR pipeline (section (b)
below). The TLRs were chosen to represent the type I membrane receptors (section (c), below).

(b) GPCR (type II receptor) pipeline branch

(i) Global analysis of GPCR families: The large GPCR family has been divided into
subclasses based on a combination of pharmacological and sequence considerations, a
classification which has been revised a number of times over the years (Surgand et al., 2006).
Here, we use the clusters obtained with a chemogenomics approach based on the alignment of
30 critical GPCR positions supposed to face the ligand binding cavity (Surgand et al., 2006).
Major classes besides olfactory receptors are Frizzled, Glutamate, Secretin and Adhesion
families with the Class A rhodopsin family being split into 18 different clusters. When analyzing
the human receptors for which P. damicornis sequences were found, these included chemokine,
taste, glutamate, adrenergic, lipids, peptides, adenosine, amines, melanocortins, acids,
chemoattractants, purines, frizzled, adhesion, prostanoids, and MAS-related receptors. Likely
missing are melatonin receptors (with 2 low ranked options), vasopeptides, brain-gut peptides,
SREB, secretin, opioid and glycoproteins. In all cases there are multiple human sequences that
map to multiple (but less than humans) P. damicornis sequences. Detailed below is the
evidence suggesting that P. damicornis can smell, taste and see light in sections (ii), (iii) and
(iv), respectively.

(ii) Odorant receptors in P. damicornis: We found 105 human olfactory receptors that map to
pdam_00017423-RA, 27 that map to pdam_00020860-RA, 17 that map to pdam_00017300-RA,
while pdam_0005244-RA, pdam_0005376-RA and pdam_00016463-RA had one hit each. This
suggests that there are at least 6 olfactory receptors in P. damicornis.

(iii) Taste receptors in P. damicornis: HHblits suggests that there are 15 remote homologs for
the human taste receptors in the P. damicornis proteome: pdam_00004028-RA,
pdam_00009436-RA, pdam_00000629-RA, pdam_00002659-RA, pdam_00013619-RA,
pdam_00021435-RA, pdam_00022798-RA, pdam_00017219-RA, pdam_00001145-RA,
pdam_00013621-RA, pdam_00010275-RA, pdam_00004281-RA, pdam_00002512-RA,
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pdam_00020500-RA, and pdam_00016973-RA. Transmembrane helix prediction using TMHMM
confirmed the presence of 7 transmembrane helices in 13 out of 15 proteins.
pdam_00002512-RA, and pdam_00009436-RA have more than 7 predicted transmembrane
helices.

(iv) Vision receptors (opsins) in P. damicornis: The HHblits result showed that the 11
members of the human opsin family mapped to 7 P. damicornis sequences. However, there
were other members of the Class A GPCR family that also mapped to the same P. damicornis
sequences. To find out which of the HHblits remote homology predictions were likely true
representations of visual functions, we analyzed the ligand binding pockets of these proteins.
Light detection is the main function of rhodopsin. Therefore, the homologous proteins must have
an ability to bind with a light sensitive retinal ligand and should possess a conserved ligand
binding pocket. This pocket should show sequence similarity with human opsin protein.
Considering this hypothesis, we analyzed the human opsin ligand binding pocket and compared
our analysis with P. damicornis opsin homologues. We obtained the profiles of 30 cavity-facing
amino acids used for clustering of the human GPCRs including opsin (Surgand et al., 2006).
Thus, the approach outlined here for opsins can be extended to other GPCRs. The first step
was to verify the presence or absence of these amino acids important for ligand binding in the P.
damicornis sequences for the opsin family. The 30 residues are spread out throughout the
sequence, and the Ballesteros-Weinstein numbering scheme used to identify aligned positions
in GPCRs clearly showed that these residues are located across the 7 transmembrane helices.
We compared these 30 residues against the top hit for OPSD and OPN5, and the result showed
that only 11 out of 30 residues are the same between OPSD and their P. damicornis homologue.

Further, we had previously determined the minimal ligand binding pocket that is capable of
exerting the function of a GPCR: transmission of the ligand binding signal to the downstream
signaling proteins (Moitra et al., 2012). The approach used GREMLIN, Generative Regularized
Models of Proteins, to identify long-range interactions from co-varying amino acid positions in
multiple sequence alignments (Balakrishnan et al., 2011). GREMLIN learns an undirected
probabilistic graphical model known as a Markov Random Field (MRF). Unlike HMMs, which are
also graphical models, MRFs can model long-range couplings (non-sequential residues). We
performed GREMLIN analysis on GPCRs, statistically evaluated different sizes of ligand binding
pockets and found that a pocket as small as 4 residues still shows significant enrichment of
edges over null. This means that four residues connect maximally to the rest of the protein
orchestrating the global conformational change inherent to GPCR function and are required for
signal transduction. Our analysis showed that 3 of these 4 residues are conserved across
human opsin and the P. damicornis homologue. This is strong evidence that this protein is a
functional GPCR.

Finally, GPCRs involved in vision require a lysine in a specific location of the ligand binding
pocket to covalently attach via a Schiff base. The Schiff base is stabilized by another residue in
the sequence, that is glutamic acid (E113), forming a counter ion to lysine K296, (highlighted by
red arrows in Figure 5). We can see that the P. damicornis homologue contains the lysine
required for retinal binding, but has a tyrosine instead of glutamic acid in the counter ion
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position. This substitution is expected to cause a shift in the absorbance maximum but not a
loss of function. Thus, we can conclude that this P. damicornis sequence indeed represents a
functional opsin protein, likely with an absorbance maximum different from that of rhodopsin and
more like the OPN5 protein, which also has a tyrosine at this crucial position. Repeating this
process for all of the P. damicornis homologues allowed us to eliminate proteins that did not fit
the requirements of GPCR action or retinal binding function and narrow down the most closely
related opsin protein. We predict that there are 4 P. damicornis opsin proteins (in contrast to 11
human opsin proteins) and these are most similar to OPN5, OPSG, OPSX and OPSR. We
conclude that P. damicornis can likely sense and respond to light and even distinguish colors.
Previous research showed that the larvae preferentially settle on red as opposed to white
surfaces (Foster & Gilmour, 2016). Consistent with this behavioral finding, is the inclusion of the
red opsin protein (OPSR) in our list.

(v) Homology modeling and molecular docking studies with opsin homologs: To confirm
the structure and functional relationship of rhodopsin with putative coral rhodoposin homologs,
we have performed structural modeling of the top coral rhodopsin hits using the squid rhodopsin
structure as a template (Figure 6). We carried out molecular docking to these homology models
that suggested that the retinal was indeed able to bind with the putative ligand binding pocket in
the coral rhodopsin homologous structures. This suggests that these are strong candidates to
be considered as coral rhodopsin homologs and may play an important role in light sensing
mechanisms. We have summarized the details of the retinal interactions with squid rhodopsin
and coral rhodopsin homologs in Supplementary Table 1.

(c) GPCR binding partner: G Proteins

To gather further evidence that the proteins identified were functional opsins, we investigated
their function, namely binding and activation of the G proteins upon ligand binding (or light
activation of the retinal ligand in the case of opsins). G proteins are heterotrimeric proteins
consisting of alpha-, beta- and gamma-domains. There are 16 different alpha chains, 5 beta
chains, and 12 gamma chains in humans (Wettschureck & Offermanns, 2005), and their UniProt
ID’s are provided in Supplementary File S5, tab 1. HHblits search of the alpha and gamma
chains yielded six potential P. damicornis alpha chains and five potential gamma chains, see
Supplementary File S5, tab 2. We were unable to retrieve potential beta chains reliably, due to
the beta propeller structure of the beta chains being a very common structural motif found
across multiple protein families.

(i) Multiple Sequence Alignment of P. damicornis alpha chains: The potential P. damicornis
alpha chains were aligned with the human G-alpha subunit that binds to rhodopsin, called
transducin, with gene symbol GNAT1 using MUSCLE (see Methods) to examine if structurally
relevant amino acids were conserved. Amino acids of GNAT1 which interact with rhodopsin,
GNB1, and GTP were identified from co-crystal structures (PDB ID: 6OY9, 1TAD) by selecting
residues within 5 Å of the relevant structure in PyMOL. These residues are highlighted in
Figure 6A using boxes colored orange, blue, and green, respectively. The alignment shows that
the GTP binding pocket residues are the most conserved, the receptor binding residues are the
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least conserved, and the beta chain binding residues are more conserved than the receptor
binding residues but less conserved than the GTP binding residues. This is to be expected, as
the GTP pocket will need to bind to the same structure in corals as it does in humans, whereas
the receptor and beta chain binding residues will need to bind to coral receptor and beta chain
homologues, which will be structurally different. Because the conservation patterns are similar
across all 5 P. damicornis G-alpha candidates, we are not able to select a top candidate from
this pool that is most likely representative of the rhodopsin-binding G-alpha subunit, transducin
(GNAT1).

(ii) Network analysis of putative P. damicornis G protein subunits: To overcome the
challenge that sequence alignment alone was not sufficient to narrow down the choices of P.
damicornis sequences related to G proteins, we leveraged computational prediction of
protein-protein interactions (PPI) to characterize the relative likelihood of the top P. damicornis
hits being truly involved in GPCR binding activity. Applying D-SCRIPT (Sledzieski et al., 2021), a
recently introduced sequence-based deep learning model for PPI prediction, we performed two
complementary PPI analyses. In the first, we performed an all-vs-all computational screen of
interaction between all the candidate G-alpha, beta and gamma proteins in P. damicornis,
reasoning that the true positive hits will display the expected interaction patterns of alpha-beta
and beta-gamma binding. Our predicted PPIs broadly conformed to this expectation, with
pdam_00017900-RA, pdam_00011071-RA, pdam_00023984-RA, pdam_00007710-RA,
pdam_00014456-RA, pdam_00011840-RA being the strongest candidates for alpha subunits,
pdam_00000168-RA the strongest candidate for a beta subunit, and pdam_00000526-RA the
strongest candidate for a gamma protein. To gain further confidence in our estimates, we also
performed a similar screen of G protein subunits in M. capitata (Figure 6C) and assessed if
homologous pairs across the two coral species (estimated by a bidirectional best hit analysis)
had similar PPI patterns (see Methods). These results further supported our estimate, as the
same connectivity patterns observed in P. damicornis are also observed between homologues in
M. capitata.

(iii) Conservation of structural interfaces in G protein complexes: To further confirm the
predicted G protein complex compositions, D-SCRIPT was then used to assess the structural
plausibility of individual G-alpha candidates in P. damicornis. We performed an in silico
mutagenesis study of each G-alpha candidate, evaluating these mutations by how they changed
the D-SCRIPT score for interaction with candidate G-beta proteins pdam_00000168-RA and
pdam_00014586-RA (Figure 7). Reasoning that a conservative test would be to require the
same binding mechanism as seen in human G-alpha-beta interaction, we first aligned candidate
G-alpha protein sequences in P. damicornis against human G-alpha proteins GNAT1, and used
the multiple sequence alignment to identify the residues in coral G-alpha where the
corresponding location in GNAT1 is known to play a role in binding to G-beta proteins. We
tested if random in silico mutations at these locations had a particularly deleterious effect on the
likelihood of PPIs with coral G-beta candidates (average of 50 trials). We compared these
likelihoods to the original predicted probability of interaction, and the predicted probability of
interaction after in silico mutations at random sites (average of 50 trials). Two candidates,
pdam_00014456-RA and pdam_00011071-RA, showed sharply decreased likelihood of a PPI
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occurring specifically when the sequences were mutated at putative binding locations --
suggesting a binding mechanism similar to human G-alpha-beta interaction is conserved in
determining the interaction likelihood of coral G-alpha-betas.

(d) Toll-like receptor (TLR, type I receptor) pipeline branch

(i) TLRs in P. damicornis: After having demonstrated that there are functional GPCR (aka type
II receptor) proteins and pathways in P. damicornis, we next investigated a representative of the
type I receptors, namely TLRs. Because there are large differences in the numbers of TLRs in
different organisms, we retrieved TLR sequences not only from humans (Akira & Takeda, 2004),
but also zebrafish (Akira & Takeda, 2004; Kanwal et al., 2014), frog (Ishii et al., 2007), chicken
(Nawab et al., 2019) and Drosophila (Toll proteins) (Valanne et al., 2011). After subjecting these
sequences to HHblits prediction, we extracted all coral proteins that showed a minimum of
100% probability, and grouped them by their homology to a given organism. The results are
summarized in Table 1. P. damicornis proteins 22934, 22930, 11599, 9200, 14109, 17966, and
13021 were observed as homologues to at least one TLR from each of the five model
organisms studied. Because many type I receptors are often composed of multiple domains, we
then subjected these proteins to PROSITE analysis in addition to homology modeling.

(ii) PROSITE analysis showed similar domain signatures in P. damicornis proteins:
PROSITE analysis was used to identify domain structures within putative TLRs. Figure 3A
illustrates that in human TLRs, there are multiple copies of leucine rich repeat (LRR) domains
present on the extracellular side of the receptor and a Toll/interleukin-1 (IL-1) receptor (TIR)
domain in the intracellular side in human TLRs. In contrast, P. damicornis 22934, 22930, 15883,
15877, 11734, and 11599 were devoid of LRRs and only displayed the TIR domain. This
suggests that these proteins may not belong to the typical TLR family. On the other hand,
PROSITE analysis of P. damicornis 14109 and 17966 homologues showed a large number of
LRRs, plus a cadherin domain, EGF_CA (Calcium-binding EGF domain), Thrombospondin, type
3 repeat (TSP3), Thrombospondin C-terminal domain profile (TSP_CTER) domains on the
extracellular side and the TIR domain on the intracellular side. Because of these additional
domains, it is possible that these are TLRs but with different or additional functions as compared
to their endosomal human counterparts. A third domain composition was revealed by PROSITE
analysis of P. damicornis 737 which only had LRRs and no TIR domain. Therefore, this
homologue was rejected as a TLR candidate. The only domain composition similar to that of
human TLRs was observed for P. damicornis homologue 9200, which included multiple LRRs in
the extracellular domain and a TIR domain in the cytoplasmic domain. For further analysis, we
selected 9200 for homology modeling due to its matching profile with human TLRs.

(iii) Structural similarities between human TLR5 and P. damicornis TLR: Swiss Model
matching for query P. damicornis protein 9200 retrieved human TLR5 (3j0a) as the top hit. We
refined the model by removing several missing regions from the coral TLR model (Figure 4).
Using TMHMM with 9200, we identified a transmembrane helix region (649 -671) between the
extracellular and the intracellular region, supporting the organization as a typical type I receptor.
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(iv) MyD88 homologue as the possible downstream partner: TLRs utilize multiple adapter
proteins to transmit the signal to the inside of the cell, namely MyD88, TIRAM, TIRAP and TRIF
adaptor proteins. Our HHblits results of these proteins showed presence of a coral homologue
only for MyD88.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.18.464760doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464760
http://creativecommons.org/licenses/by/4.0/


Discussion

We present a general pipeline applicable to any non-model organism to explore
functions based on detectable homology to critical proteins in humans or other model
organisms. The strategy involves the following steps (Figure 2). The first step is to create a list
of related proteins representing a function of interest such as membrane receptors, or ion
channels, or proteins involved in wound healing etc. Often, we can use computational
expansion of proteins we know represent this function, but depending on the complexity and
relatedness of the group of proteins, it may require manual selection. Once a suitable group of
proteins has been established, we subject this list of sequences to remote homology detection,
using HHblits. This usually yields a large collection of putative distant homologs. Traditionally,
you would choose the top ranked hit and assume that this hit represents the best match to the
query’s function. In the case of evolutionarily distant species, this approach fails because a
protein family may have already diversified within each individual organism. There can be a
smaller or a larger number of family members in one organism as compared to the other
organism, and this may represent presence/absence of a particular function or sub-function.
This creates the challenge that we need to distinguish which remote homologues in fact will
have conserved the function of interest of the original query. The next step is therefore to
identify the best bidirectional match from the candidate protein pairs to create a shortlist. So far,
these steps can all be fully automated. Next, however, we need to assess the structural
plausibility of each possible match, and this requires manual investigation that depends on the
availability of structures and expert knowledge on the function of interest. We can think of this as
casting a very wide initial net based on recovering a weak signal of sequence similarity, and
then using 3D structural models to focus attention on a particular small number of functionally
important residues that can provide a signature for function conservation. This sequence
signature is based on a protein-protein interaction or a protein-ligand interface. We have
presented several tailor-made approaches to this challenge. In the case of GPCRs, we looked
at specificity determining positions (Capra & Singh, 2007; Kalinina et al., 2004), which can then
be confirmed by doing 3D structural modeling, to check that the active sites and binding pockets
that are expected, should the functional role of the protein be conserved, are indeed present. In
the case of G proteins, we derived function based on protein-protein interactions, where we
have used our recent deep learning method (Sledzieski et al., 2021) to perform in silico
mutagenesis studies to further help us distinguish sequences which are likely to allow us to
correctly transfer functional annotation from their human homologs from those that may have
other functions. In the case of TLRs, we have used PROSITE to identify presence or absence of
entire domains within the sequences, and used expert knowledge to evaluate if the location of
these domains matches the functional expectation (e.g. if the domain faces the inside or outside
of the cell). To this end, we compared PROSITE domain family predictions for the human query
proteins and the putative coral homologues. All human TLR showed the presence of LRRs in
the extracellular domain, and TIR domain in the cytoplasmic region. In contrast, in the 13
putative coral homologues, only one coral sequence of these candidates shows the expected
(see Figure 1, type I receptor organization) extracellular LRR and intracellular TIR domain,
separated by a transmembrane helix. This finding allows us to narrow down the candidate list to
a single sequence.
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The availability of three-dimensional structures for one or more members of the protein family of
interest opens the possibility for in-depth structure modeling using homology. Although the
quality of homology models depends on the degree of sequence conservation, structurally
aligning remote sequences goes a long way in interpretation of their structure conservation as
long as we can have confidence in the alignment. For example, despite near negligible
sequence conservation between rhodopsin and metabotropic glutamate receptors, the most
distant members of the GPCR family, we were able to predict the pharmacological outcome of
ligand binding based on structural alignment (Yanamala et al., 2008). With the continuous
improvements in de novo structure prediction (Jumper et al., 2021), this task will become more
and more feasible even for proteins that do not have any homologous structures available, i.e.
for which no structural template can be found.

One challenge not currently addressed by our pipeline is the identification of de novo proteins
with de novo functions. While homology modeling allows us to detect proteins that are present
(with mutations) in both species, we acknowledge that just as some proteins novelly evolved in
vertebrates and are not present in cnidarians, there is the possibility of complexes that novelly
evolved in corals, which this approach cannot detect.

The results of our study have several biological implications. Cnidarians as evolutionarily early
animals offer great opportunities to study the evolution of important biological functions, such as
sensing and signaling, and understanding host-microbe communication. TLRs are used for
molecular communication with microbes. These receptors interact with specific microbial
antigens and play a major role in innate immunity. We obtained strong evidence for TLR
presence in P. damicornis, in line with several previous reports suggesting the presence of TLR
mediated signaling in corals. Analysis of a cnidarian genome indicated the presence of immune
related genes and the presence of Toll/TLR pathways, membrane attack proteins, and
complement pathway associated signaling molecules (Miller et al., 2007; Nyholm & Graf, 2012).
RNA-Seq data also supports the ability for immune responses in corals (Anderson et al., 2016;
Cunning et al., 2018). One study showed that the muramyl dipeptide (MDP), a bacterial cell wall
component, was found to trigger the up-regulation of GTPases of immunity-associated proteins
in Acropora millepora (Weiss et al., 2013). Finally, the transcriptomic expression during thermal
stress and pathogen challenge with Vibrio coralliilyticus in P. damicornis also supports the
regulation of Toll/TLR and prophenoloxidase and complement pathways (Vidal-Dupiol et al.,
2011). We now add detailed protein structural analysis to these reports, and also provide
evidence that P. damicornis carries the gene for the TLR adapter protein, MyD88 (P. damicornis
id 15711).

Of particular note is that our results suggest a much smaller number of proteins involved in TLR
signaling than in the model organisms human, chicken, zebrafish, frog, and Drosophila. We
predict that there may only be a single, unique TLR homolog in the coral P. damicornis that
exhibits all the features expected for TLRs, and is most similar to TLR5 in human (Figures 7,8).
For comparison, Table 1 shows the frequency of each P. damicornis protein for a specific TLR
protein in various model organisms. Furthermore, we have found only one (MyD88) of the four

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.18.464760doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464760
http://creativecommons.org/licenses/by/4.0/


known adapter proteins MyD88, TIRAM, TIRAP and TRIF. This suggests the presence of a less
diversified and simpler TLR signaling pathway in coral as compared to higher eukaryotes.

A similar conclusion was reached in the analysis of the large and diverse GPCR family. The
human genome alone encodes 825 GPCRs, while we only found 151 GPCRs in P. damicornis.
This is also reflected in the analysis of the opsin subfamily which has 11 members in human and
we predict 4 in P. damicornis. Looking at reports of GPCR family size in evolutionarily early
organisms suggest that there is a dramatic expansion in the numbers of GPCR when
transitioning from unicellular to multicellular organisms. For example, choanoflaggelata have
only 10 GPCR (Hake, 2019), while the Placozoan Trichoplax adhaerens has 420 (Srivastava et
al., 2008), while sponges have 330 (Krishnan et al., 2014), Nematostella vectensis corals have
890 (Schiöth et al., 2010) and hydra has 1200 (!) (Chapman et al., 2010). Evolutionary analysis
of the sub-families suggests that the doubling that takes place between Trchoplax adhaerens
and Nematostella vectensis is roughly maintained and most sub-families remain relatively
constant in their size distributions, with the Class A rhodopsin-like family being the largest in all
species (Jékely, 2013; Nordström et al., 2011).

Taken together, both TLR and GPCR analysis suggest that P. damicornis represents a transition
species that carries the minimal number of essential components for signaling and innate
immunity, while additional functionality and fine tuning is achieved through diversification of this
small pool of proteins in higher evolved organisms. Thus, being able to differentiate between
early basic versions of a given function and finding the reasons for the need to diverge
emphasizes the utility of this method assuming the best hit is the most functionally relevant hit.
This may help to identify possible functions for currently not conclusively annotated proteins in
P. damicornis and other non-model organisms.
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Figures and Tables

Figure 1. Schematic representation of type I and type II membrane receptors in signal
transduction.
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Figure 2. In silico protein prediction methodology.
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Figure 3. Sequence alignment and active site analysis of rhodopsin. (A) Alignment of rhodopsin
and coral proteins and scoring based on Ballesteros-Weinstein (colored according to the degree
of similarity: white foreground/black background, 100%; white foreground/grey background, >
80%, black foreground/grey background, > 60%). (B) Active site of bovine rhodopsin showing
the residues involved in active site. (C) Active site showing the interaction of retinal with Lys296
and Glu113.
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Figure 4. Homology modeling and molecular docking of rhodopsin receptors. (A) Crystal
structure of squid rhodopsin (2ZIY). (B) Retinal in crystal structure and the docked conformation.
(C, D) Molecular interactions of retinal in crystal structure vs. docked confirmation. (E, F, G, H)
Homology modeling and docking studies with 629, 2270, and 19775, (i) homology model, (ii)
retinal confirmations: natural (green) vs. docking pose (magenta), (iii) molecular interaction of
docking pose (details of interactions and the docking scores are provided in supplementary
table 2).
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Figure 5. (A) MSA of GNAT1 with coral homologues and crystal structures of GNAT1. Amino
acids of GNAT1 which interact with rhodopsin, GNB1 (beta chain), and GTP are boxed in blue,
red, and green, respectively. The same amino acids are also listed in the table. In the crystal
structures, GNAT1 (cyan) binding interfaces with rhodopsin (orange) and the beta chain (blue)
are shown in (B) and the GTP binding pocket (green) is shown in (C). (D) Predicted interactions
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in P. damicornis between alpha (cyan), beta (blue), gamma (orange) chains and rhodopsin
(orange). (E) Predicted candidate G protein interactions in P. damicornis, and the predicted
interactions of the corresponding candidates in M. capitata (solid line: predicted interaction;
dashed line: best-bidirectional BLAST hit).

A

B

Figure 6. Predicted interaction of candidate alpha proteins with beta candidate proteins
pdam_00000168-RA (A), pdam_00014586-RA (B). Original: Original predicted probability.
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Permuted: Average predicted probability of 50 samples with 25 beta-binding residues randomly
perturbed. Random: Average predicted probability of 50 samples with 25 randomly chosen
residues randomly perturbed.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.18.464760doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464760
http://creativecommons.org/licenses/by/4.0/


Figure 7. PROSITE analysis of human and coral TLRs. (A) PROSITE domain mapping of
human TLRs  (B) domain mapping of possible P. damicornis TLRs homologues.
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Figure 8. Coral TLR model construction using full-length TLR5 homology model structure.
(LRR: leucine rich repeats). (A) homology model of full-length human TLR5 protein (3j0a) (B)
model of P. damicornis 9200 protein using human TLR5 homology model as a template.
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Table 1. Number of times a model organism shows homology to a given P. damicornis protein with 100% probability. Columns
highlighted in green show at least one representation in each model organism studied.

Organisms P. damicornis proteins

22934 22930 11599 9200 14109 17966 13021 15883 11734 21819 737 15877 9057

Human 5 5 10 7 4 3 3 2 2 2 1 1 -

Zebrafish 8 7 11 9 6 6 2 - - 2 1 - -

Frog 6 5 10 10 4 4 3 - - - - - 1

Chicken 7 7 9 9 2 2 1 - - - - 1 -

Drosophila 9 9 7 9 2 3 2 - - 1 - 1 -
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Supplementary Figures and Tables:

Figure S1. Clustal omega multiple sequence alignment of opsin homologs.Residues involved in
active site formation are highlighted in blue.
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Supplementary Table S1. The details of residues and their molecular interactions with the
retinal active site in squid rhodopsin and coral putative rhodopsin proteins.

Protein Ligand Covalent
bond

Pi-Sigma Alkyl and Pi-Alkyl Van der
Waals

Score
kcal/mol

Squid
Rhodopsi
n (2ziy)

Retinal Lys 305 Phe205,
Trp274

Tyr 111, Val 301,
Met204, Phe188,
Phe120, Ala278,

Phe209

_

Squid
Rhodopsi

n
(2ziy)

Retinal -- Phe205,
Trp274

Lys305, Tyr111,
Met204, Phe188,
Phe120, Ala278,

Phe209

_ -10.9

629
Model

Retinal -- -- Ala84, Trp223,
Cys169, Phe170,

Ala227, Ile166, Trp152,
Tyr226, Phe83, Leu85

_ -7.6

Model
2270

Retinal -- Trp248 Phe241, Val191,
Phe245, Ala252,

Ile244, Ile102, Leu187,
Phe99, His94

_ -8.4

Model
12246

Retinal -- Phe190 Phe251, Phe194,
Ile189, Ala259, Tyr258,

Ala285, Lys286,
Ala282, Ile173, Trp255,

Phe107

_ -8.8

Model
19775

Retinal -- Trp253 Phe249, Ile110,
Ala283, Lys284,
Met73, Tyr256,
Pro177, Trp179,
Cys257, Leu194,
Phe198, Leu193

Gly197,
Ile113,

Asn156,
Gly109,
Glu280,
Gly106,
Asn105,
Ala176

-7.0
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