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Abstract

Motivation: Large-scale multiple perturbation experiments have the potential to reveal a more detailed
understanding of the molecular pathways that respond to genetic and environmental changes. A key
question in these studies is which gene expression changes are important for the response to the
perturbation.
Results: We present here a method based on the model-X knockoffs framework to identify significant
gene expression changes in multiple perturbation experiments. This approach makes no assumptions
on the functional form of the dependence between the responses and the perturbations and provides
finite sample false discovery rate control for the set of important gene expression responses. In a large-
scale multiple perturbation gene expression data set from the Library of Integrated Network-Based Cellular
Signature (LINCS) NIH program, we identified important genes whose expression is modulated in response
to perturbation with anthracycline, vorinostat, trichostatin-a, geldanamycin, and sirolimus. Furthermore,
we compared the set of important genes that respond to these small molecules to identify co-responsive
pathways.
Availability and Implementation: https://github.com/flahertylab/deepYknockoff
Contact: pflaherty@umass.edu and zhaott0416@gmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The elucidation of the mechanisms underlying cellular function requires
perturbation of the system [Subramanian et al., 2017]. Perturbation
approaches have been successful in understanding fundamental pathways
in yeast [Hillenmeyer et al., 2008], humans [Shim et al., 2017], and other
organisms [Skerker et al., 2013]. Perturbation experiments also provide
a deeper understanding of the mechanism of action of small molecule
compounds and guide opportunities for drug repurposing [Stathias et al.,
2018].

A key bioinformatic step in the analysis of multiple perturbation
experiments is to identify which genes are required for the adaptation
to the perturbations. In a statistical modeling framework, the perturbation
is the explanatory variable and the transcriptional changes of each gene

are the response variables. Our objective is to identify those genes
whose transcriptional response is associated with perturbations even after
accounting for all the other genes. Solving this problem enables us to
better understand the mechanisms of adaptation to environmental changes
which in turn improves our understanding of human disease and helps us
develop novel therapies [Keenan et al., 2018]. To address these questions,
we formulate the following response selection problem.

Problem Statement. Let Xi encode the i-th perturbation and let Yi
encode the gene expression measurement vector in response to the i-th
perturbation. Assume we have n i.i.d. random variables (Xi, Yi), where
Xi ∈ Rp, Yi ∈ Rr assembled into two data matrices X ∈ Rn×p

and Y ∈ Rn×r such that the i-th row of X is Xi and the i-th row
of Y is Yi. For example, in multiple perturbation experiments, Xi is
an indicator vector for the perturbation over p possible perturbations,
and Yi is the r-dimensional transcriptional profile. A response variable
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2 Zhao et al.

Yj for j ∈ {1, . . . , r} is said to be unimportant if and only if Yj
is independent of X conditionally on the other responses Y−j , where
Y−j = {Y1, . . . , Yr}\{Yj}. The set of unimportant variable indices is
denoted byH0 and we call a variableYj important if j 6∈ H0. The set of the
important variable indices is denoted as S. The unimportant responses are
conditionally independent of the covariates given the important responses
{Yj}j∈H0

X | {Yj}j∈S . Our goal is to identify as many important
responses as possible while keeping the false discovery rate (FDR) under
control, where FDR = E

[
|Ŝ ∩ H0|/(|Ŝ| ∨ 1)

]
and Ŝ denotes a

selected subset of the important response variable indices.
Despite the prevalence and importance of response selection problems,

the literature on response selection methods is limited. The few methods
that exist are restricted to the linear regression setting [An and Zhang, 2017,
Su et al., 2016]. Moreover, these methods do not provide guarantees on the
accuracy of the selected set with a finite sample size. Thus, the current field
lacks both a general framework and concrete techniques to perform high
quality response selection. To ensure selection quality, it motivates the need
to control the expected fraction of false discoveries in response selection
problems [Benjamini and Hochberg, 1995]. Furthermore, response
selection methods should handle both linear models and complex nonlinear
relationships between the responses and the features. To fill this gap, we
take inspirations from a recent novel controlled feature selection method
model-X knockoffs [Candes et al., 2018].

1.1 Review of Model-X Knockoffs.

Model-X knockoffs generate knockoff features that act as negative
controls in feature selection problems. These knockoff features mimic the
dependence structure among the original features, but are independent of
the response so that if a knockoff feature is selected by a feature selection
procedure, it is known to be a false positive. The proportion of knockoffs
selected by a feature selection procedure can be used as an estimate of
FDR among the original features.

Definition 1 (Model-X Knockoffs [Candes et al., 2018]). Model-X
knockoffs for the family of random variables X = (X1, ..., Xp) are a
new family of random variables X̃ = (X̃1, X̃2, . . . , X̃p) constructed
with the following two properties:

1.For any subset S ⊂ {1, 2, . . . , p}, (X, X̃)swap(S)
d
= (X, X̃):

swapping the entries Xj and X̃j for each j ∈ S leaves the joint
distribution invariant,

2.X̃ Y | X: X̃ is independent of responses Y given the feature X .

Knockoff features constructed in this way have the following three
properties for an explanatory variable Xj , normalized to have zero mean
and unit variance:
1.E[X̃jX̃

>
k ] = E[XjX

>
k ] for j 6= k,

2.E[XjX̃
>
k ] = E[XjX

>
k ] for j 6= k, and

3.X̃j Y | X , for all j.
These properties ensure that the knockoffs have the same correlation
structure as the original variables, but are unrelated to the response by
construction.

In general, constructing knockoff features that have these properties
is challenging. One algorithm for generating knockoffs from an exactly
known FX , sequentially from conditional distributions, has been
suggested for a Gaussian distribution [Candes et al., 2018], a hidden
Markov model [Sesia et al., 2019]. A Metropolis-Hastings formulation
is applicable to all possible (but exactly known) FX [Bates et al., 2020].
To address situations where the marginal distribution is unknown, some
works have proposed using deep generative models to learn a knockoff
generating distribution [Jordon et al., 2018, Romano et al., 2020].

The general algorithm to perform controlled feature selection under
the model-X knockoff framework has three steps. We first summarize the
three key steps and provide more details about each step.

1.Step 1: Generate knockoff features X̃ that satisfy Definition 1.
2.Step 2: Define the feature importance measure and the knockoff statistics

for each Xj , j ∈ [p], where [p] = {1, 2, . . . , r}.
3.Step 3: Decide the filtering threshold to guarantee the controlled FDR

level.

Step 1: Knockoff Generation for Gaussian Features Under the
model-X knockoffs framework, it is assumed that the original features
X come from a Gaussian distribution and the joint distribution for X and
its knockoffs X̃ also follows a multivariate Gaussian distribution. If FX

is a Gaussian distribution, properties of the multivariate Gaussian can be
used to find the exact sampling distribution for knockoff generation. If
X ∼ N (0,Σ), where Σ ∈ Rr×r , then a joint distribution obeying
the pairwise exchangeability and conditional independence properties
(Definition 1) is

(X̃,X) ∼ N (0,G), where G =

(
Σ Σ− diag{s}

Σ− diag{s} Σ

)
.

Since the conditional distribution of a multivariate Gaussian has a closed
form, model-X knockoffs X̃ can be sampled from

X̃ |X ∼ N (X−diag{s}Σ−1X, 2 diag{s}−diag{s}Σ−1 diag{s}).
(1)

The value of diag{s} needs to be selected such that the joint covariance
matrix G is positive definite and to ensure high power, larger values of s

are preferred since Cov(X, X̃) = Σ− diag{s}. A detailed description
of the procedure to select s is provided in Candes et al. [2018].

Step 2: Model-X Knockoff Statistic Given X, Y, and X̃ the
generated knockoff features, the next step is to define and compute a
feature knockoff statistic Wj = wj([X, X̃],Y) for each Xj , j ∈ [p].
The response knockoff statistic wj must satisfy the following flip-sign
property:

wj

(
[X, X̃]swap(S),Y

)
=

{
wj([X, X̃],Y), j /∈ S,
−wj([X, X̃],Y), j ∈ S.

(2)

Constructing the knockoff statistics (W1, . . . ,Wr) has two steps.
First, define the feature importance measures

T ,
(
Z1, . . . , Zr, Z̃1, . . . , Z̃r

)
= t([X, X̃],Y),

withZj (resp. Z̃j ) measuring the importance ofXj (resp. X̃j ). The feature
importance measure must have the property that switching Xj with X̃j

simply switches the component of T in the same way:

(
Z1, . . . , Zr, Z̃1, . . . , Z̃r

)
swap(S)

= t
(

[X, X̃]swap(S),Y
)
.

Second, the knockoff statistics constructed as Wj = fj(Zj , Z̃j) obeys
the flip-sign condition (2), where fj is any anti-symmetric function.

Step 3: Filter with FDR control The final step selects a set of
important features Ŝ = {j : Wj ≥ τ}. Model-X knockoffs have
provided guidance on how to choose the threshold τ to ensure finite-sample
controlled FDR. Let q ∈ [0, 1]. Given knockoffs statistics, W1, . . . ,Wr
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Gene Expression Knockoffs 3

satisfying (2), let

τ = min

{
t > 0 :

1 + | {j : Wj ≤ −t} |
| {j : Wj ≥ t} |

≤ q
}
. (3)

An appropriate procedure that selects the features Ŝ = {j : Wj ≥ τ}
controls the FDR such that

FDR = E
[
|Ŝ ∩ H0|/(|Ŝ| ∨ 1)

]
≤ q,

where H0 is the set of unimportant indices, S is the set of the important
indices, and Ŝ denotes a selected subset of the important indices. Since
the procedures may seem abstract at first glance, we provide two concrete
examples using Lasso and deep neural networks (DNNs) to illustrate the
knockoff statistics construction in the context of response selection in
Section 2.3 and 2.4.

1.2 Other Related Work

Many related methods have been proposed for identifying associations
between an experimental perturbation and the transcriptional response of
a single gene or a set of genes. But, these methods largely test different
hypotheses than model-X knockoffs.

Traditional methods for variable selection, such as permutation testing
or T-tests, focus on marginal testing. The hypothesis under consideration
for these tests is H0j : Xj Y . While marginal tests are a powerful
exploratory data analysis tool, they may select variables that are not
causally related to the response, but are instead only correlated with another
explanatory variable. It is possible that conditioning other variables renders
the features independent of the response.

Conditional tests seek to reject the null hypothesis H0j :

Xj Y |XS\j , where S denotes the set of features that are included in
the model. But the form of the relationship between the response Y and all
the explanatory variablesXS must be specified in the model; this includes
all of the interactions between explanatory variables and the functional
form of the relationship between those variables and the response.

In contrast, knockoffs seek to to test the hypothesis: H0j :

Xj Y | X−j . That is whether the explanatory variable is conditionally
independent of all of the other explanatory variables, not just the set
included in a generalized linear model. Furthermore, model-X knockoffs
do not assume a functional form for the relationship between Y and X
making them an appropriate tool for multiple perturbation experiments
where the functional relationship between the dose of a perturbation and the
transcriptional response is typically unknown and better left unspecified a
priori. Finally, there has been a vast amount of research on feature selection
in different settings [Fan and Lv, 2008, Tibshirani, 1996]. However, these
methods, in general, do not control the FDR with finite-sample guarantees.

Summary and Contributions. This paper develops a methodology to
identify important transcriptional changes in response to chemical and
genetic perturbations by performing controlled response variable selection
inspired by model-X knockoffs with theoretically guaranteed FDR control.
We prove that the same properties that model-X knockoffs enjoy for feature
variable selection hold for response variable selection problems due to a
symmetry in the proof of the validity of the framework. We demonstrate
a way to employ knockoffs for response variable selection in a linear
model (Lasso) and we develop a way to employ knockoffs in a nonlinear
model (DNNs) using a competing hidden layer. We analyze the L1000
phase I dataset from the NIH LINCS Consortium and identify important
genes whose expression is modulated in response to perturbation with
multiple small molecules including vorinostat, geldanamycin, sirolimus,
trichostatin-a, wortmannin, and anthracycline.

2 Methods and Materials
In this section, we describe a method for response variable selection based
on model-X knockoffs which we denote model-Y knockoffs. Section 2.1
provides a proof that model-Y knockoffs provide finite sample false
discovery rate control for response variable selection. Section 2.2 presents
an algorithm for generating and using model-Y knockoffs in a manner
analogous to model-X knockoffs. Section 2.4 gives a non-trivial method
for employing model-Y knockoffs for response variable selection in DNNs.

2.1 Model-Y Knockoffs

The key idea to adapting model-X knockoffs for response variable selection
is the observation that the generation and use of model-X knockoffs only
depends on the joint distribution between the explanatory variables and the
response FXY . Model-X knockoffs assume that the marginal distribution
FX is known exactly and this allows the conditional distribution FY |X to
be unspecified. In response variable selection problems, we have abundant
information about the marginal distribution FY , so we use the fact that
the joint distribution, can be factorized as FXY = FX|Y FY . This
leads to a symmetry that carries through the theory that we exploit in
our development of model-Y knockoffs.

Definition 2 (Model-Y Knockoffs). A random vector Ỹ = (Ỹ1, . . . , Ỹr)

is the model-Y knockoffs of a random vector Y = (Y1, . . . , Yr) if it
satisfies two properties: (1) Pairwise exchangeability: for any subsetD ⊂
[r], (Y, Ỹ )swap(D)

d
= (Y, Ỹ ), i.e. swapping the entries Yj and Ỹj for

each j ∈ D leaves the joint distribution invariant; and (2) Conditional
independence: Ỹ X | Y , i.e., Ỹ is independent of featuresX given the
response Y , which can be guaranteed by constructing Ỹ without looking
at X .

Using this definition, we can prove the following theorem establishing
the finite sample false discovery rate control for response variables.

Theorem 1. Define the joint distribution of X and Y as FXY , the
marginal distribution ofY asFY and the conditional distribution asFX|Y .
We assume that FY is specified and FX|Y is unconstrained . If Ỹ is the
model-Y knockoffs of a random vector Y = (Y1, Y2, . . . , Yr) satisfying
Definition 2 and X is the features such that Ỹ X | Y , by swapping
X and Y , the swapped X̃ (which is original Ỹ before swapping) is the
model-X knockoffs of X (which is original Y before swapping).

Proof. We observe that the joint distribution of X and Y can be
factorized as

FXY = FXFY |X = FY FX|Y .

According to Definition 1, we have that for any subset D ⊂ [r],

(Y, Ỹ )swap(D)
d
= (Y, Ỹ ), i.e. swapping the entries Yj and Ỹj for each

j ∈ D. Once we swapX andY , we have that (X, X̃)swap(S)
d
= (X, X̃),

where S ⊂ {1, 2, . . . , p} and we set p = r such that S = D. We also
have that Ỹ X | Y , which indicates that Ỹ is independent of the
featuresX given the response Y . Once we swapX and Y , the conditional
independence still holds such that X̃ Y | X . Thus, by swappingX and
Y , model-Y knockoffs satisfy model-X knockoffs in Definition 1.

2.2 Algorithm

The proof of Theorem 1 shows that swapping the roles ofX and Y yields
valid knockoffs for response variable selection. This fact means that we
can switch the roles ofX andY while fitting a model and perform response
selection. In the causal inference context, it is not generally appropriate to
swap the features with the responses. However, in the context of response
selection, we can swap X and Y while using model-X knockoffs. Once
we swapX and Y , the original response variables Y becomes the features
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4 Zhao et al.

in the swapped model and we follow the three-step procedure of model-X
knockoffs described in Section 1.1 to perform the selection. We summarize
the key steps in Algorithm 1.

Algorithm 1 Response Selection using Knockoffs

1: Generate the knockoffs of the original response variable such that

(Ỹ , Y ) ∼ N (0,G), whereG =

(
Σ Σ− diag{s}

Σ− diag{s} Σ

)
.

2: if A linear relationship is assumed between X and Y then
3: Construct the response importance measure and knockoff statistics

using Lasso with Model-Y Knockoffs (Lasso-MYK) described in
Section 2.3.

4: else
5: Construct the response importance measure and knockoff statistics

using DNNs with Model-Y Knockoffs (DNN-MYK) described in
Section 2.4.

6: end if
7: Filter the important response using the threshold τ in Equation 3 with

the target FDR level q.

2.3 Generalized Linear Model-Y Knockoffs

To perform response selection under a generalized linear model setting
we fit a regularized multinomial logistic regression model using Lasso
[Tibshirani, 1996] with the original response Y augmented with its
knockoffs Ỹ in the role of the covariate variables and the perturbation
indicators X in the role of the response variable. The optimal Lasso
solution is

β̂(λ) ∈ arg min
β∈R2r×p

{1

2
‖Y − [X, X̃]β‖22 + λ‖β‖1

}
. (4)

We define Zj = sup
{
λ : β̂j(λ) 6= 0

}
to be the point, λ, on the Lasso

path at which the response Yj first enters the model. Then we compute the
standard knockoff statistics Wj = Zj − Z̃j , which is likely to be large
for positive important responses and negative for null responses. The set
of important responses, Ŝ, is be selected with controlled FDR using Step
3 as described previously. This Lasso-based procedure can be extended to
other generalized linear models.

2.4 Nonlinear Model-Y Knockoffs

If a nonlinear relationship between Y and X is more appropriate for the
data set of interest, DNNs can be used to construct the knockoff statistics
and perform response selection. But, it is non-trivial to construct a knockoff
statistic that satisfies the flip-sign property within a DNN. We introduce
a pairwise-competing layer as the first layer of a DNN where the inputs
are both the response Y and its knockoffs Ỹ . In the pairwise-competing
layer, there are r nodes and the jth node connects only response Yj and
its knockoff Ỹj to encourage competition between the two corresponding
weightsψj and ψ̃j . This technique is inspired by Lu et al. [2018] who used
it for the purpose of increasing the interpretability and reproducibility of
DNNs. We denote the weights from the competing layer to the next layer
as θ0, the weights for the last layer to the outputX as θL, and the weights
for each pair of connected intermediate layers as θ1, θ2, . . . , θL−1. We
define Θj = θ0� (θ1 · θ2 · · · θL), where� represents entry-wise matrix
multiplication. Here, (θ1 · θ2 · · · θL) represents the matrix multiplication
for the weights of all connected layers and can be interpreted as the
importance of the Yj in the multilayer perceptron (MLP). Thus, we define
the response importance Zj as ψj × Θj , its knockoff importance Z̃j as

ψ̃j ×Θj and we obtain the model-Y knockoff statisticsWj = Zj − Z̃j ,
where j ∈ [r]. As in the case of the Lasso, these definitions are sufficient
to employ Theorem 1.

3 Synthetic Data Experiments
These synthetic data experiments test whether our theoretical proofs
regarding finite-sample fDR control hold empirically. We characterize
the response variable selection performance for both linear and nonlinear
models by exploring the effects of the key data set properties including:
total number of response variables r, sample size n, correlation ρ between
features, sparsity level s in features.

Data Generation. We generated synthetic data sets using four mechanisms
varying the model (linear and nonlinear) and the features X (continuous or
binary) shown in supplementary Table 1. We examined the performance
of the model-Y knockoff approach with only binary features in a high-
dimensional response selection setting to mimic the setup of our real large-
scale genomic data application in Section 4. Table 1 and Table 2 in the
Supplementary Information show the overall design of these synthetic
data experiments. In the models, Σ = CS(ρ) is a compound symmetric
matrix, with all the diagonal elements being one and all the off diagonal
entries being ρ. The errors are distributed as εij ∼ N (0, 1). We use
(β1,β2, . . . ,βr) to denote the coefficients vector. The nonlinear model,
g(x) = 2 sin(x), is a single-index nonlinear model which has previously
been used for benchmark purposes in feature selection procedures using
knockoffs [Lu et al., 2018, Zhu and Zhao, 2021]. We denote m as the
number of important response variables (the number ofβi that are nonzero)
and define the feature sparsity level t as the proportion of the features that
do not affect the response in the original (not the swapped) model. For
example, if t = 0.9, the response variable only depends on 10% of all the
features.

For all synthetic experiments, we set n = 400, r = 2000,m =

10% × r, ρ = 0.5, t = 0. The nonzero coefficients of β1,β2, . . . ,βr

are randomly chosen from {+0.25,−0.25}. To investigate the sensitivity
of the power and FDR to key data parameters, we vary one parameter and
keep the others at their default level. We summarize the values of each
data set parameter in supplementary Table 2.

Evaluation of FDR and Power A common approach for variable selection
in genomic data applications is to use random forests to identify
consistently selected features. Recall, our method for incorporating model-
Y knockoffs into a DNN model made use of a pairwise-competing layer. To
examine if the pairwise-competing layer is helpful, we adapted the MLP to
perform response selection and measured the response importance by the
product of the weights for each layer without the pairwise competing layer;
we call this method MLP with Model-Y Knockoffs (MLP-MYK). We did
not adapt state-of-the-art feature importance learning method for DNNs
such as DeepLift [Shrikumar et al., 2017] to response selection since Lu
et al. [2018] have shown that DeepLift cannot achieve high power under a
high-dimensional setting.

We describe the implementation details of our neural network
architecture and tuning parameter choices in the implementation details
in the Supplementary Information. In this paper, we try to avoid data
set specific tuning as much as possible and choose commonly used
parameters for DNNs. Code to reproduce these experiments is available at
https://github.com/flahertylab/deepYknock.

Results and Conclusions. We address four key questions using our
simulation experiment data. Can our approach identify the important
responses with high power while controlling FDR (1) in either a linear
or a nonlinear setting with continuous or binary features? (2) in a high-
dimensional setting with r > n? (3) when the features are highly
correlated? (4) when the responses only rely on part of the features?
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(a) Linear setting with continuous
features X.
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(b) Linear setting with binary features X.
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(c) Nonlinear setting with continuous
features X.
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(d) Nonlinear setting with binary features
X.

Fig. 1: Power and FDR for Lasso-MYK, DNN-MYK, MLP-MYK and
Random Forest (RF) across all settings.

We report the power and FDR of our methods Lasso-MYK, DNN-
MYK and competing methods RF and MLP-MYK in Figure 1a-1d. We
make the following key observations: (1) Both Lasso-MYK and DNN-
MYK successfully control FDR across all settings, which validates our
theoretical claim. RF fails to control FDR under all settings. MLP-
MYK can control FDR but can only achieve dramatically low power,
especially in the high dimensional setting with continuous features. (2)
Our method Lasso-MYK achieves the highest power under three scenarios:
a linear model with continuous features (Figure 1a), a linear model with
binary features (Figure 1b), and a nonlinear model with binary features
(Figure 1d). (3) Lasso-MYK achieves higher power than the other methods
in the challenging settings when the correlation and sparsity level in X
is high. (4) DNN-MYK achieves higher power than Lasso-MYK under a
nonlinear model with continuous features. The performance of our DNN-
MYK is much better than MLP-MYK when the feature is continuous under
both linear and nonlinear models. This evidence supports the claim that
the pairwise-competing layer is useful for identifying important response
variables in DNN models.

4 Real Data Analysis
In this study, we examined genomic data from the Library of Integrated
Network-Based Cellular Signature (LINCS) Phase I L1000 data set which
was collected with the aim to improve understanding of human disease
and developing new therapies via cataloging how human cells respond to
chemical, genetic and disease perturbations [Keenan et al., 2018]. The
data set GSE92742 is fully available online 1 and is described in detail
elsewhere [Subramanian et al., 2017]. We analyzed a subset of the data
dealing with the following small molecule perturbations: anthracycline,
vorinostat, trichostatin-a, wortmannin, geldanamycin, sirolimus.

We set the target FDR=0.1 and used Lasso-MYK with binary features
in a logistic regression model since it is the most robust method as
suggested by our simulation studies. We first present our findings
for anthracycline drugs. Then we repeat the same statistical analysis
procedure to identify the important genes for vorinostat, trichostatin-
a, wortmannin, geldanamycin, and sirolimus, respectively in the

1 http://lincsportal.ccs.miami.edu/dcic-portal/

(a) Heatmap of true robust Z-scores for
selected important genes at FDR=0.1
across 100 replications.

(b) Heatmap of knockoff robust Z-
scores for selected important genes at
FDR=0.1 across 100 replications.
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(d) Mean and standard error of
coefficients of top 12 selected genes
at FDR=0.1 across 100 replications.

Fig. 2: Heatmap of true robust Z-scores for selected genes for anthracycline
(a) compared with knockoff responses (b). Density (c) and bar plots (d)
with error bars for top selected genes.

Supplementary Information. Finally, we construct a network diagram
(Figure 3) to show the individual and shared important transcriptional
responses genes when perturbed by the selected six drugs.

Anthracyclines. For anthracycline drug perturbagens (RUBICIN), the
model-Y knockoff procedure selected 40 unique landmark genes across all
100 replications. Figure 2a shows the robust Z-score of the selected genes
under DMSO control and anthracycline treatment perturbation. Clearly,
the selected important genes have a different signature under the control
and treatment groups. In comparison, we also display the average of the
knockoffs, Ỹ , across different replications for the selected genes. The
model-Y knockoffs, Ỹ , do not demonstrate such strong association with
the treatment perturbation. This lack of association is the expected property
that we aimed to achieve with Ỹ — it mimics the correlation structure in
Y but is conditionally independent with the perturbation. Figures 2c and
2d show density plot of the robust Z-score and bar plots of the mean and
standard error of the coefficients for top 12 selected genes across 100
replications based on their selection frequency.

Anthracycline compounds are a widely used class of cancer
chemotherapy that primarily act by intercalating with DNA and inhibiting
both DNA metabolism and RNA synthesis. Lasso-MYK identified
Chromodomain Helicase DNA Binding Protein 4 (CHD4) which encodes
a DNA-binding helicase protein. A recent study reported that “CHD4
depletion dramatically decreases tumor-forming behavior of AML cells
and modulates expression of genes associated with tumor colony
formation” Sperlazza et al. [2015]. The identification of CHD4 by
our procedure with a negative coefficient suggest that treatment with
anthracycline decreases CHD4 levels and contributes to the anticancer
efficacy of the drug by reducing tumor colony formation. Vinculin (VCL)
is identified as an important response and has a reduced expression
after perturbation with anthracycline. Decreased expression of this gene
is associated with cardiomyopathy which is a common side effect
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Fig. 3: Network plot of identified genes for vorinostat, trichostatin-a,
wortmannin, geldanamycin, sirolimus, and rubicin. Genes in orange,
purple, blue, and black represent the common genes identified with
exposure to five, three, two and one drug, respectively.

of anthracycline treatment [Chatterjee et al., 2010]. Finally, FMR1
Autosomal Homolog 1 (FXR1) was recently reported in a study involving
triple-negative breast cancer patients [Qian et al., 2017]. That study
reported that a locus on the q arm of chromosome 3, later localized to
FXR1, is strongly associated with distant metastasis in triple-negative
breast cancer. The observation that FXR1 is an important gene and has a
negative coefficient suggesting the hypothesis that anthracycline may have
a therapeutic effect for triple-negative breast cancer patients by decreasing
expression of FXR1 and this reduces the likelihood of distant metastasis.

Comparison to marginal testing The standard state-of-the-art methods for
identification of important transcriptional responses are based on model-
based or model-free marginal testing [Strasser and Weber, 1999, Zeileis
et al., 2008]. Therefore, we compare this approach to our conditional
testing approach based on knockoffs and to avoid biases due to model
selection we select a model-free permutation testing methodology [Strasser
and Weber, 1999] and use the local FDR method [Efron, 2004] to
control the false discovery rate. We use the coin R package to test
the independence of the perturbation type and the 978 landmark gene
expressions [Zeileis et al., 2008]. Once we obtain the test statistic value for
each gene, we used an empirical Bayes technique [Efron, 2004] for large-
scale simultaneous hypothesis testing to estimate the local FDR and control
the proportion of false positives in the set of genes under the assumption
that a majority of the genes modeled are not affected by the perturbations.
For each drug, if the estimated FDR for one gene is smaller than the target
level of 0.1, the gene will be selected as important. We found that the
permutation test method with FDR control at 0.1 is not able to identify any
of the genes that were identified by knockoffs for vorinostat, trichostatin-a,
wortmannin, and anthracycline, respectively. Table 1 shows an overview
of the number of genes identified by marginal testing only, knockoffs only,
and both.

For geldanamycin, permutation test with FDR control selects 15 genes
including SEPT2, C1D, HNRNPK, STMN1, RPS10, RPS21, AKR1B1,
COPB1, PPP2CB, TPD52L2, DHX15, COPS6, ADAR, KDM5A, COPS3.
All the selected genes are also identified by our method except SEPT2,
RPS21, and PPP2CB. Our method identified 68 out of 978 genes in total
under geldanamycin permutations. For sirolimus, permutation test with
FDR control only selects HNRNPK and ALDOA. Both are identified with
our method and we identify 70 out of 978 genes in total.

Marginal Only Knockoffs Only Both

Anthracyclines 0 32 0
Vorinostat 0 54 0
Trichostatin 0 27 0
Wortmanin 0 65 0
Geldanamycin 3 56 12
Sirolimus 2 68 2

Table 1. Comparison between marginal testing and knockoffs for LINCS data.

Response Network A comparative analysis of the important genes for each
small molecule perturbation (Figure 3) reveals the gene expression changes
that are private to each perturbation as well as shared genes. Out of five of
all six drug perturbations, CCND2 and RPS20 are identified as important
gene expressions that are affected by the drugs. CCND2 has been identified
as a common therapeutic target in lung and breast cancer [Hung et al.,
2018]. Our identification of the transcriptional response to perturbations by
all compounds is interesting in that it may indicate a wider molecular role
for this gene. Diseases associated with RPS20 include familial colorectal
cancer type X and diamond-blackfan anemia. RPS20 shown in Figure 3
has a negative coefficient with all six drugs which indicates a decrease in
RPS20 levels which in turn suggests the potential to contribute to treatment
of anti-familial colorectal cancer and diamond-blackfan anemia.

Heterogeneous Nuclear Ribonucleoprotein K (HNRNPK) was
identified as important and has a negative coefficient under wortmannin,
geldanamycin, sirolimus perturbations (supplementary Figure 4, 5,
6). Poenisch et al. [2015] reported that an RNA interference of
HNRNPK results in decreased Hepatitis C virus (HCV) particle production
without affecting viral RNA replication. Therefore, our findings suggest
that wortmannin, geldanamycin, sirolimus may decreased HNRNPK
expression and thus decrease HCV particle production. In line with this
hypothesis, wortmannin has been suggested as pretreatment drugs for acute
liver damage [Li et al., 2014].

Human chromosomal segregation 1-like (CSE1L) expression is
associated with tumor progression in various human cancers. Li et al.
[2020] showed that CSE1L was highly expressed in gastric cancer
cell lines and CSE1L silencing promoted apoptosis and inhibited cell
proliferation and invasion. We have found that the the coefficient of
CSE1L is negative under vorinostat, wortmannin and geldanamycin
perturbations (Supplementary Figures 2, 4, 5), which indicates that
vorinostat, wortmannin and geldanamycin are able to decrease expressions
of CSE1L which may indicate its benefits for gastric cancer treatment.

5 Discussion
In this paper we have presented a novel method for controlled response
variable selection with theoretical finite sample guarantees on the FDR. We
show how the framework can be used in both linear and nonlinear (DNN)
models. Synthetic and real data analysis of experimental genomics data sets
empirically support the theoretical behavior of the approach. Our analysis
of the NIH LINCS data identified important genes whose expression
is modulated in response to perturbation with anthracycline, vorinostat,
trichostatin-a, geldanamycin, and sirolimus, small molecule drugs used
in cancer chemotherapy using NIH LINCS data set. Furthermore,
we compared the set of important genes that respond to vorinostat,
geldanamycin, sirolimus, trichostatin-a, wortmannin, and anthracycline to
elucidate the response gene network and identify co-responsive pathways.
A potential limitation is that we only consider a Gaussian distribution
of the response variable such that the Y knockoffs can be generated
analytically according Equation (1). Even so, we have found that the
Gaussian assumption practically useful in a real data analysis scenario and
the knockoff framework has been shown to be robust to this assumption
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onFX [Barber et al., 2018]. There are several areas that are interesting for
future work. In this work, we have assumed the marginal distributionFY is
known, and this assumption has proven to be reasonable for the data set we
analyzed. But in other applications, it may be necessary to learn about the
marginal distribution and it would be of interest to offer theoretical bounds
on the performance when approximations are employed. In addition, it is
also of great interest to design more flexible generation methods to relax
the Gaussian assumption for model-Y knockoffs.
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Data Availability
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