New Results
ZipHiC: a novel Bayesian framework to identify enriched interactions and experimental biases in Hi-C data
Itunu G. Osuntoki, Andrew Harrison, Hongsheng Dai, Yanchun Bao, View ORCID ProfileNicolae Radu Zabet
doi: https://doi.org/10.1101/2021.10.19.463680
Itunu G. Osuntoki
1Department of Mathematics, University of Essex, Colchester, CO4 3SQ, United Kingdom
Andrew Harrison
1Department of Mathematics, University of Essex, Colchester, CO4 3SQ, United Kingdom
Hongsheng Dai
1Department of Mathematics, University of Essex, Colchester, CO4 3SQ, United Kingdom
Yanchun Bao
1Department of Mathematics, University of Essex, Colchester, CO4 3SQ, United Kingdom
Nicolae Radu Zabet
2School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
3Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom
Posted October 20, 2021.
ZipHiC: a novel Bayesian framework to identify enriched interactions and experimental biases in Hi-C data
Itunu G. Osuntoki, Andrew Harrison, Hongsheng Dai, Yanchun Bao, Nicolae Radu Zabet
bioRxiv 2021.10.19.463680; doi: https://doi.org/10.1101/2021.10.19.463680
Subject Area
Subject Areas
- Biochemistry (13742)
- Bioengineering (10478)
- Bioinformatics (33280)
- Biophysics (17159)
- Cancer Biology (14232)
- Cell Biology (20184)
- Clinical Trials (138)
- Developmental Biology (10898)
- Ecology (16067)
- Epidemiology (2067)
- Evolutionary Biology (20388)
- Genetics (13435)
- Genomics (18680)
- Immunology (13804)
- Microbiology (32253)
- Molecular Biology (13409)
- Neuroscience (70242)
- Paleontology (528)
- Pathology (2201)
- Pharmacology and Toxicology (3751)
- Physiology (5900)
- Plant Biology (12051)
- Synthetic Biology (3374)
- Systems Biology (8186)
- Zoology (1846)