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 2 

Abstract 24 

Purpose 25 

Prior studies demonstrate the significance of specific cis-regulatory variants in retinal 26 

disease, however determining the functional impact of regulatory variants remains a 27 

major challenge. In this study, we utilize a machine learning approach, trained on 28 

epigenomic data from the adult human retina, to systematically quantify the predicted 29 

impact of cis-regulatory variants.  30 

  31 

Methods 32 

We used human retinal DNA accessibility data (ATAC-seq) to determine a set of 18.9k 33 

high-confidence putative cis-regulatory elements. 80% of these elements were used to 34 

train a machine learning model utilizing a gapped k-mer support vector machine-based 35 

approach. In silico saturation mutagenesis and variant scoring was applied to predict the 36 

functional impact of all potential single nucleotide variants within cis-regulatory elements. 37 

Impact scores were tested in a 20% hold-out dataset and compared to allele population 38 

frequency, phylogenetic conservation, transcription factor (TF) binding motifs, and 39 

existing massively parallel reporter assay (MPRA) data. 40 

  41 

Results 42 

We generated a model that distinguishes between human retinal regulatory elements and 43 

negative test sequences with 95% accuracy. Among a hold-out test set of 3.7k human 44 

retinal CREs, all possible single nucleotide variants (SNVs) were scored. Variants with 45 

negative impact scores correlated with reduced population allele frequency, higher 46 
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phylogenetic conservation of the reference allele, disruption of predicted TF binding 47 

motifs, and massively-parallel reporter expression. 48 

  49 

Conclusions 50 

We demonstrated the utility of human retinal epigenomic data to train a machine learning 51 

model for the purpose of predicting the impact of non-coding regulatory sequence 52 

variants. Our model accurately scored sequences and predicted putative transcription 53 

factor binding motifs. This approach has the potential to expedite the characterization of 54 

pathogenic non-coding sequence variants in the context of unexplained retinal disease. 55 

 56 

 57 

 58 

 59 

Introduction 60 

Retinal disorders affect over 2 million individuals worldwide and consist of many classes 61 

of disease. Over 260 genes have now been associated with retinal disorders.1,2 However, 62 

as many as half of all cases cannot be explained by variants in protein-coding genes 63 

alone.3 This suggests that risk variants located within the non-coding genome may 64 

contribute to retinal disease. The comparatively vast non-coding genome harbors cis-65 

regulatory elements (CREs) including promoters, enhancers, silencers, and boundary 66 

elements that play a critical role in gene expression4-7. Genome-wide association studies 67 

(GWAS) frequently link non-coding regions to disease phenotypes 6,8-11. Moreover, 68 

individual case studies have identified causal regulatory variants in retinal disorders 69 
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including Blue Cone Monochromacy, Non-syndromic Congenital Retinal Non-70 

Attachment, and Aniridia with Foveal Hypoplasia12-14. However, due to the poor functional 71 

characterization of non-coding regions, it remains a challenge to systematically interpret 72 

the impact of variants within CREs.   73 

 74 

CRE function is mediated by complex interactions between transcription factors (TF) and 75 

DNA sequences15,16 to yield the appropriate transcriptional profile for a given cell type.17 76 

These interactions can be characterized through assays for DNA accessibility (ATAC-seq 77 

and DNase-Seq) and protein binding (ChIP-Seq, CUT&RUN, and CUT&Tag) to identify 78 

and characterize candidate CREs in a given tissue or cell type at a single point in time.18,19 79 

Despite recent advancements, it remains challenging to understand the functional 80 

significance of genetic variants within CREs without further experimental or integrative 81 

computational analyses.20,21 Identifying and investigating all potential regulatory regions 82 

and putative variants is a monumental task that requires painstaking efforts.  83 

 84 

Recent developments in artificial intelligence have popularized the use of machine 85 

learning for the holistic interpretation of multi-modal epigenetic sequencing data.22,23 86 

Many different approaches have been developed to accurately predict the inferred value 87 

of genetic sequences including non-coding regulatory regions.24-26 Such approaches 88 

have demonstrated promise in select cell lines and tissue types, and have been used 89 

successfully to integrate epigenomic data in the context of the human retina.27 This 90 

supports the premise of a comprehensive, tissue-specific analysis for CRE variant 91 

prioritization in the human retina.  While a number of approaches are available to predict 92 
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sequences and variant impact, it is important to choose a method that is appropriate for 93 

the data used in prediction. For the purposes of training a tissue-specific model to predict 94 

impacts on longer non-coding sequences, approaches such as a gapped k-mer support 95 

vector machine (GKM-SVM) can effectively predict the functional impact of single 96 

nucleotide variant impacts within CREs (deltaSVM).28-30  This GKM-SVM approach has 97 

been applied successfully to predict sequence values in the context of specific mouse 98 

retinal enhancers.31-34 However, to date, it has not been applied across a wider set of 99 

human retinal epigenomic data to perform a comprehensive prediction of CRE variant 100 

impact scores. 101 

 102 

In this study, we applied GKM-SVM modeling with variant impact score prediction 103 

(deltaSVM) in a high-throughput manner to predict the functional impact of variants in 104 

human retinal CRE sequences. We generated adult human retina ATAC-seq data to 105 

determine a high-confidence set of 18.9k putative CREs.35 We then used GKM-SVM to 106 

train a model which specifically distinguishes retinal CREs versus genomic background 107 

sequences, while reserving 20% of candidate CRE sequences as a hold-out dataset for 108 

model testing. We then performed in silico saturation mutagenesis on this hold-out 109 

dataset to generate a database of all possible single nucleotide variants (SNVs) for 3,773 110 

test CREs. We compared these variants to the reference sequence via deltaSVM, 111 

generating impact scores for each potential variant. The model revealed that predicted 112 

impact scores correlate with allele frequencies in human sequences, and with 113 

phylogenetic conservation within candidate CREs. Additionally, we observed distinct 114 

negative prediction scores when a variant disrupted the core sequence of a known retinal 115 
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TF binding motif, consistent with a putative deleterious effect. As a further demonstration 116 

of functional relevance, this model was able to predict the consequences of sequence 117 

variations when compared to a mutational scan of the mouse Rhodopsin promoter,36 118 

showing that the model is robust even across species. Using a larger set of putative retinal 119 

CREs, we generated a database of variant impact scores in ocular non-coding sequences 120 

(VISIONS) available on the UCSC genome browser. This analysis could be used to 121 

identify non-coding variants with higher disease relevance in the retina and prioritize 122 

these alleles for functional follow up. By addressing this diagnostic gap, we aim to 123 

contribute to a more robust elucidation of CRE function in the human retina. 124 

 125 

 126 

Methods 127 

Input Data Sources 128 

For positive training data, we generated ATAC sequencing datasets from adult human 129 

retinas as previously reported (Figure 1B).35 These data and other related datasets have 130 

been assembled in a searchable track hub on the University of California, Santa Cruz 131 

(UCSC) genome browser (https://tinyurl.com/CherryLab-EyeBrowser).35 Raw data files 132 

were aligned to the hg38 reference genome using Burrows-Wheeler Aligner (BWA), and 133 

file format conversions were carried out using SAMtools and BEDtools.38-40 Peaks were 134 

then called on each dataset using the Model-based Analysis of ChIP-Seq (MACS2) 135 

algorithm.41 The Irreproducible Discovery Rate (IDR) workflow was implemented to 136 

generate a high-confidence set of 18.9k summits of accessible regions by ATAC-seq.42 137 

Summits were all extended ±150bp to generate a set of 18,866 putative CRE regions. 138 
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For the purposes of training and validating the primary model, 80% of peaks were 139 

randomly selected for training, and the remaining 20% were used as hold-out data to test 140 

the model.  141 

For comparisons to non-retinal data, published data from the GEO database were used 142 

including ATAC-seq datasets from Retinal Pigmented Epithelium (RPE),43 Primary Visual 143 

Cortex (PVC),44 and Lung Fibroblasts.45 Raw data files were processed as with retinal 144 

data, and peaks were called with the same parameters using the MACS2 algorithm and 145 

the IDR workflow, and summits were extended ±150bp. For comparisons to retinal data, 146 

all regions overlapping with the retinal ATAC peaks were removed using BEDtools 147 

intersect. Comparisons of deltaSVM scores to reporter assay expression were made 148 

relative to mouse expression data of saturation mutagenesis in RhoCRE3 from 149 

Kwasnieski et al.36  150 

 151 

SVM Model Training and Validation 152 

To train an SVM model in a biologically meaningful way, the positive training data 153 

described above must be compared to an appropriate negative training set. To generate 154 

a negative training dataset, 1,000,000 regions were randomly selected from the hg38 155 

genome and extended to 301 bp. These regions were filtered against our positive training 156 

data, using BEDtools intersect to eliminate any overlapping sequences (Supplementary 157 

Figure 1). From here, an equal number of 301 bp sequences that do not overlap the 158 
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positive training regions were randomly chosen and GC-matched to the positive set using 159 

oPOSSUM.46  160 

 161 

After selecting the training regions, genomic coordinates were converted to fasta format 162 

with BEDtools and used to train a model using LS-GKM gkmtrain, developed by Lee, 163 

Beer, and colleagues.47 The SVM was trained with the gkmtrain hyperparameters: L=11, 164 

k=7, d=3, C=1, t=2, e=0.005; adopted from Shigaki et. al (Figure 1 A).30  165 

 166 

To validate the classification of the model, the training data was used in a 5-fold cross 167 

validation using gkmtrain -x 5 -L 11 -k 7 -d 3 -C 1 -t 2 -e 0.005 to generate performance 168 

prediction scores of all regions. Model accuracy was visualized using this data in Receiver 169 

Operator Characteristic and Precision-Recall curve graphs as calculated using the ROCR 170 

package.48 To assess the parameters and results of this primary model, an additional 171 

control model was trained with the same parameters and on the same data, but where 172 

the positive and negative labels were randomly shuffled to understand the false discovery 173 

rate of the GKM-SVM. To compare genomic region performance in the model, retinal and 174 

non-retinal genomic peaks were scored using LS-GKM’s gkmpredict. Because GKM-175 

SVM scores in many samples were non-normally distributed, significant differences 176 

between retinal and non-retinal data was scored by Kruskal-Wallis chi-squared test, and 177 

Pairwise Wilcoxon rank sum test for individual comparisons. 178 

 179 

Vocabulary and Sequence Scoring 180 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.464837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.19.464837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

To build a regulatory sequence vocabulary, all possible 2,097,152 non-redundant 11bp 181 

sequences (11-mers) were generated using nrkmers.py from LS-GKM and scored by the 182 

trained SVM model using gkmpredict. To validate the biological relevance of the 183 

vocabulary scores, scores were sorted by gkmpredict score value. The top and bottom 184 

1% of scored 11mers were subset for validation and validated against known TF binding 185 

motifs. 186 

 187 

Variant Impact Scoring on in silico Saturation Mutagenesis 188 

With the previously defined 20% holdout set of 3,773 regions, we scored putative SNVs. 189 

To simulate a deep mutational scan, we conducted in silico saturation mutagenesis with 190 

a custom-made script, yielding 4,542,692 computationally generated sequences that 191 

each contained exactly one regulatory SNV. The deltaSVM.pl script was used to 192 

quantitatively assess these variant sequences relative to the consensus allele by 193 

referencing the regulatory sequence vocabulary, allowing for the calculation of variant 194 

impact scores at a single base resolution.47 195 

 196 

deltaSVM Variant Impact Validation 197 

To assess the biological relevance of deltaSVM scores, scores were correlated against 198 

human population allele counts. Bcftools49 was first used to query the Genome 199 

Aggregation Database (gnomAD v3) for indel variants that overlapped with CRE windows 200 

defined by the prediction set.50 For each 301 bp CRE window, BEDtools was used to 201 

compute base-wise summary metrics for indel variant counts and variant impact 202 

respectively by summing allele counts per base and negative deltaSVM scores per base. 203 
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These summary metrics were averaged across CREs to map out the corresponding 204 

positional profiles. The relationship between summary metrics was quantified with a 205 

Pearson correlation metric between average variant impact scores and indel counts.  206 

 207 

PhyloP Conservation Scores 208 

Phylogenetic P values (PhyloP) of conservation from the PHAST package51 across 20 209 

mammalian species were downloaded from the UCSC genome browser. The deltaSVM 210 

scores were correlated with PhyloP conservation scores. Alleles were binned into 211 

representative groups of 2000 alleles from the top, middle, and bottom-most deltaSVM 212 

scores for plotting of conservation. Because PhyloP scores in deltaSVM bins were non-213 

normally distributed, significant differences between bins was scored by Kruskal-Wallis 214 

chi-squared test, and Pairwise Wilcoxon rank sum test for individual comparisons. 215 

 216 

Transcription Factor Motif Analysis 217 

Positive training data was scored for TF motif enrichment using HOMER 218 

findMotifsGenome.pl and findMotifs.pl.52 Common retinal motifs were selected from the 219 

known motif results for analyses of model relevancy. 220 

For the scoring of motif prevalence in distinct sequences rather than overall enrichment 221 

in a set, sequences were scored against the Homo Sapiens Comprehensive Model 222 

Collection (HOCOMOCO) v11 Core database.53 Motif prevalence in vocabulary and 223 

deltaSVM bins against the HOCOMOCO v11 database were scored using Find Individual 224 

Motif Occurrences (FIMO) from the MEME suite of tools with a significance threshold of 225 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.464837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.19.464837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

𝑃	 ≤ 	1	𝑥	10!".54 Significant changes in average dSVM within Motifs by bp was scored by 226 

ANOVA with post-hoc Tukey test. 227 

For the validation of motif interference in deltaSVM scores, known motif positions were 228 

obtained from HOMER and positions were extended by 25bps using Bedtools slop. 229 

Bedtools intersect was used to identify motifs that were with regions of interest and collect 230 

corresponding average delta-SVM scores. 231 

 232 

 233 

Results 234 

Human Retinal Epigenomic Data Can Be Used to Train a GKM-SVM Model 235 

To generate impact score predictions for single nucleotide variants within human retinal 236 

CREs, we first trained a gapped k-mer support vector machine model (GKM-SVM)28 to 237 

evaluate putative CRE sequences (Figure 1A). As input, we started with a set of genomic 238 

windows defined by high confidence ATAC-seq DNA-accessibility peaks. We split this set 239 

such that 80% of ATAC regions (~15k candidate CREs) were used as a positive training 240 

set, and 20% (~3.7k) were kept as a hold-out set to test the validity of predicted impact 241 

scores. (Figure 1B, Supplementary Figure 1). Also for input, we generated an equal sized 242 

negative training set of GC-matched non-coding genomic sequences (Supplementary 243 

Figure 1B & C). As expected for putative CREs and control regions, we found that both 244 

positive and negative datasets were enriched for intronic and intergenic regions. We also 245 

found that the negative training dataset was depleted of promoter regions when we 246 

removed any overlap with the positive training data. As a control, we trained a separate 247 
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model using the same input data but with the positive and negative region labels shuffled 248 

randomly, to demonstrate the baseline behavior of the model parameters. 249 

To use our trained model to predict the impact of CRE variants, we next generated a 250 

scored vocabulary of all possible non-redundant 11mer sequences. This k-mer length 251 

was chosen because it is long enough to encompass most eukaryotic TF binding motifs.55 252 

We then used the trained model to weigh each 11-mer based on its relative similarity to 253 

the positive training set (positive values) versus the negative training set (negative 254 

values). This scored vocabulary was subsequently used to evaluate variant sequences in 255 

the generation of variant impact (deltaSVM) scores (Figure 1A).  256 

Finally, to generate individual CRE variant impact scores, we performed base-wise in 257 

silico saturation mutagenesis on CREs from the 20% hold-out dataset. We then used the 258 

scored 11-mer vocabulary to predict impact scores for every possible single nucleotide 259 

variant within these CREs. These predicted impact scores represent the difference 260 

between the sum of all 11-mers that scan across a given single nucleotide variant 261 

compared to the sum of those that scan across the reference allele (Figure 1A, 1C).29 A 262 

negative impact score therefore is assigned to a variant when it causes the sequence to 263 

become less similar to the positive training dataset compared to the original reference 264 

sequence. When deltaSVM scores are combined across a genomic region, distinct 265 

features of CREs become apparent. For example, inspecting for contiguous, highly 266 

negative summed deltaSVM scores, it is possible to identify well-characterized TF binding 267 

motifs in the reference sequence, such as the TAATCC motif favored by the K50 268 
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homeodomain transcription factors OTX2 and CRX and the CTCF binding motif (Figure 269 

1C, Supplementary Figure 3).  270 

Performance and Biological Relevance of the Trained SVM Model  271 

To assess the validity of this approach, we first performed 5-fold cross validation on the 272 

original and shuffled models. The training data was randomly assigned to one of five 273 

outgroups, and each outgroup was scored against a model trained excluding that 274 

outgroup. This cross validation allows for the specific calculation of false positives and 275 

negatives, as well as model precision. These measures of model accuracy can be plotted 276 

as a Receiver Operating Characteristic (ROC) curve (Figure 2A), or a Precision-Recall 277 

Curve (Figure 2B). For this model’s ROC curve, an area under the curve (AUC) of 0.951 278 

was achieved, indicating a highly accurate model with low false positivity. Similarly, the 279 

precision-recall curve for this model demonstrated an AUC = 0.956, indicating high 280 

precision. In contrast, when positive and negative labels were shuffled for the training 281 

data, the ROC and precision-recall curves demonstrated baseline AUCs, showcasing the 282 

specificity of model training gained by the true positive and negative datasets. 283 

To determine the tissue-specificity of our trained models, we next used these models to 284 

compare retinal versus non-retinal CRE sequences.  We found that our original model 285 

scored retinal-specific CREs from our hold-out dataset much more highly than non-retinal 286 

CRE datasets of equal size (Figure 2C). Retinal ATAC-seq regions demonstrated a wide 287 

variety of scores, averaging at a GKM-SVM score of 0.870. This was significantly higher 288 

than all other non-retinal ATAC-seq data (p values < 2e-16 in pairwise Wilcoxon rank sum 289 

tests, Bonferroni adjusted). Retinal pigmented epithelium (RPE), being developmentally 290 
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related to the retina, scored most neutrally with an average score of 0.125, as compared 291 

to the primary visual cortex (PVC) at -0.104, and fibroblasts at -0.087 (Figure 2C). These 292 

differences were eliminated when we used the shuffled model to score CREs, 293 

demonstrating the specificity of our original model for evaluating retinal CREs. 294 

To further assess the tissue-specific relevance of our original model, we searched for the 295 

enrichment of known transcription factor binding motifs within the top 1% of the scored 296 

11-mer vocabulary. Within this group we found significant enrichment for motifs shared 297 

by well-known retinal transcription factors (Figure 2D). Photoreceptor-associated motifs 298 

such as homeobox domain motifs consistent with CRX and OTX2 binding were most 299 

highly enriched, while more broadly expressed retinal TF motifs such as bHLH motifs 300 

were also highly ranked. This enrichment within the 11mer vocabulary suggests an 301 

additional level of tissue-specificity in our model. 302 

Variant Impact Scores Correlate with Conservation of Non-Coding Sequences 303 

Pathological variants within human retinal CREs are relatively rare but can disrupt visual 304 

function.2,12-14 We therefore reasoned that if our variant impact scores were biologically 305 

relevant, then strongly scored variants should be rare within the normal human 306 

population. To test this, we compared our predicted variant impact (deltaSVM) scores to 307 

allele frequency in the Genome Aggregation Database (GnomAD).50 When directly 308 

plotted against each other, we found that alleles with high frequencies in the population 309 

clearly aggregated around the neutral deltaSVM scores (Figure 3A, A’). Conversely, 310 

alleles with a large predicted impact (negative or positive) are not frequently found in the 311 

population. The majority of alleles scored with a deltaSVM between -3 and 3, with 1% of 312 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.464837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.19.464837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

all alleles scoring less than -4.9, and another 1% scoring more than 3.4 (Figure 3B).  By 313 

comparison, when constrained to deltaSVM scores from -2.5 to 2.5 to select more 314 

common alleles, 1% score bins span respectively from -2.5 to -2.3, and 2.26 to 2.5. These 315 

four 1% bins are defined as the top and bottom 1% and the mid -top and -bottom 1%, as 316 

shown in Figure 3 A and B. A fifth bin was additionally defined, spanning the most neutral 317 

deltaSVM scores from -0.001 to 0.001 (Figure 3A, A’). This comparison suggests that 318 

variants predicted to have a strong impact on CRE function may be deleterious because 319 

they are rare in the human population. 320 

Another test of the relevance of the variant scores is the distribution of these scores 321 

across the linear sequence of CREs. The center of retinal CREs is typically depleted of 322 

indels in the normal human population where indels could disrupt transcription factor 323 

binding or the spacing between motifs.35 We would expect a similar trend for our predicted 324 

impact scores where deltaSVM values would be more strongly negative toward the center 325 

of a CRE. We therefore averaged negative deltaSVMs across all 3.7k CRE windows and 326 

compared them to indel count and position within CREs. When plotted, a clear trend 327 

emerges, where deltaSVM scores, as well as the average indel count, decreased toward 328 

the center of CREs, corresponding to the peak of DNA accessibility (Figure 3B). These 329 

deltaSVM scores correlated with the frequency of indels (Pearson Correlation Coefficient 330 

= 0.685, Figure 3C). However, at the center of the CRE, the average deltaSVM score 331 

increased locally, generating a bimodal distribution of negative impact scores. This may 332 

reflect the actual distribution of TF binding within CREs. To test this, we analyzed the 333 

distribution of TF motifs and found a similar trend. Motifs consistent with TFs such as 334 

CREB, CRX, MEF2D, NRL, OTX2, and RORB were most enriched directly adjacent the 335 
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center of CREs (Figure 3D, Supplementary Figure 4). Together these results suggest that 336 

variants near, but not at, the DNA-accessibility-defined center of CREs are likely to have 337 

a negative impact on CRE function, especially in regions of TF binding. 338 

Consistent with these trends, we would expect deltaSVM to be negatively correlated with 339 

conservation values across species. Evolutionary conservation of specific CRE 340 

sequences suggests that those sequences are functionally important. To test this, we 341 

binned deltaSVM scores into the most negative, most positive, and neutral deltaSVM 342 

categories as defined in Figure 3A, and compared these categories to phylogenetic 343 

conservation scores from the PhyloP database. The most negatively scored SNVs 344 

(average -9.98) corresponded to more conserved sequences (higher PhyloP scores 345 

around an average of 0.456), while more neutral (average 4.9e-06) or positively (7.39) 346 

scored SNVs had lower conservation scores (Neutral average PhyloP score = 0.119, 347 

Positive average PhyloP score = 0.101, Negative to Neutral/Positive p values < 2e-16, 348 

Bonferroni corrected, Figure 3E). SNVs with more negative predicted impacts therefore 349 

appear to be more highly conserved, indicating their potential regulatory value in a given 350 

putative CRE.  351 

Highly Negative Variant Impact Scores Disrupt TF Binding Motifs 352 

The correspondence of variant impact scores with allele frequency and conservation 353 

suggests that deltaSVM value correlates with TF binding motifs. To evaluate this directly, 354 

we first determined the counts of specific TF binding motifs in the most negative, most 355 

positive, and the neutral deltaSVM categories. In each of these categories (Figure 3A), 356 

the 22 bp around a given SNV were scored for the presence of known motifs in the 357 
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HOCOMOCO human motif database.53 In the most negatively scored category, we found 358 

many well-characterized retinal TF motifs, such as OTX2 and CREB represented in the 359 

reference sequences (Figure 4A, A’’, Supplementary Figure 5). By contrast, in the SNV 360 

sequences there were far fewer motifs as scored by FIMO, indicating that the variant 361 

sequences specifically disrupt the sequence of the motif. This pattern varies in the mid-362 

bottom deltaSVM scoring variants. While MEF2D motifs show a high number of motif 363 

calls, OTX2 calls by contrast are much less frequent (Figure 4A’). The variants scored in 364 

the top bins demonstrate the opposite trend, with few calls for motifs of interest in the 365 

reference sequence, with modest increases in the variants likely due to situations where 366 

the variant coverts a sequence into an approximation of a TF binding motif (Figure 4A, 367 

A’, A’’, Supplementary Figure 5). 368 

To gain a better understanding of the relationship between TF motifs within CREs and 369 

our predicted variant impact scores, we identified all instances of specific TF motifs in our 370 

test data set and centered these on 60bp windows. We then plotted the distribution of 371 

deltaSVM scores across these windows. We observed that the scores dip dramatically 372 

around canonical motif sequences while the flanking regions are relatively unaffected 373 

(Figure 4B, B’, B’’, Supplementary Figure 6). This indicated that our scoring strategy is 374 

uniquely sensitive to these motifs. TF motif sequences however allow for flexibility at 375 

specific positions across the motif.  We therefore sought to determine how impact scores 376 

varied within a motif itself. At a single base pair resolution, we found that the significance 377 

of the core motif of some TFs such as OTX2 is apparent (Figure 4C, Supplementary 378 

Figure 6. Average deltaSVM scores for SNVs in the core TAATCC sequence are more 379 

negative than for SNVs in contextual positions immediately adjacent (Figure 4C). For 380 
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other motifs, changes to key nucleotides in a motif sequence become apparent, with 381 

larger decreases highlighting the CTA/TAR caps of the MEF2D consensus motif (Figure 382 

4C’) as well as key bases in the CREB motif (Figure 4C’’). These changes in deltaSVM 383 

scores along TF binding motifs demonstrate the specificity of these scores to isolate 384 

crucial core sequences in a putative CRE, and where alterations to the sequence may 385 

have significant impact on function.  386 

Prediction Scores Across a Conserved CRE Match Changes in Reporter Expression 387 

Prior studies have demonstrated the ability to experimentally test the impact of every 388 

possible SNV within a retinal CRE using a massively parallel reporter (MPRA)-based 389 

approach.36 Kwasnieski et al. used SNV saturation mutagenesis of the mouse Rhodopsin 390 

promoter to test the impact of every possible variant with base-pair resolution (Figure 391 

5A).36 This analysis highlighted the unique importance of CRX and NRL motif sequences 392 

within the larger CRE. As a final test of our predicted variant impact scores, we used our 393 

human retinal CRE-trained model to assign predicted variant impact scores every 394 

possible SNV within this mouse sequence (Figure 5B). Although the human ortholog of 395 

this CRE was not included in the original 80% training set and despite being tested against 396 

reporter data generated in the mouse retina, the model predicted markedly negative 397 

deltaSVM scores overlapping the previously identified TF binding sites, highlighted in 398 

figure 5A and 5B, as well as similarities in the region between the CRX(2) and NRL 399 

binding motifs (Figure 5B). When relative expression from 5A was plotted against 400 

deltaSVM scores in 5B, these values were found to be positively correlated, with a 401 
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Pearson correlation coefficient of 0.506. Altogether, this correlation and consistency 402 

across TF motifs, suggested to us that our CRE variant prediction strategy is robust. 403 

A Resource for Human Retinal Regulatory Variant Interpretation 404 

The analyses described above suggested that this variant impact scoring strategy using 405 

the GKM-SVM/deltaSVM workflow trained on human retinal ATAC-seq data has several 406 

biologically relevant features. We therefore extended these scores to include a more 407 

inclusive set of ~39k putative retinal CREs as determined by our adult human retinal 408 

ATAC-Seq analysis. This analysis entitled “Variant Impact Scores in Ocular Non-coding 409 

Sequences” (VISIONS) is available on the UCSC genome browser to query and to 410 

compare with human retinal DNA-accessibility, transcription factor binding and histone 411 

modifications (http://genome.ucsc.edu/s/CherryLab/VISIONS_TrackHub). It is our hope 412 

that these predicted impact scores can assist other researchers in identifying and 413 

interpreting variants of interest within non-coding retinal regulatory elements. 414 

 415 

Discussion 416 

The identification and characterization of non-coding mutations in retinal cis-regulatory 417 

elements (CREs) can be a resource-intensive process. This study demonstrates the value 418 

of machine learning to identify highly impactful SNVs and to generate an exhaustive 419 

analysis of retinal CRE variant impact scores. These scores were generated through 420 

training a GKM-SVM model on adult human retinal ATAC data. By utilizing this machine 421 

learning-based approach, large epigenomic sequencing datasets can be analyzed, and 422 
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with the GKM-SVM and deltaSVM approaches, sequence variations can be easily 423 

screened. This SVM-based method has been previously used to highlight specific 424 

sequence features in the mouse retinal epigenome and to predict retinal-reporter 425 

expression post-hoc.31-34 Together these previous studies and our current work 426 

demonstrate the potential of this approach to characterize human retinal CRE sequences 427 

for the identification of crucial features and their variants. While this approach can be 428 

applied to many types of sequencing data, the use of general chromatin accessibility via 429 

ATAC-seq allows the model to incorporate the sequence features of diverse regulatory 430 

elements in a less biased approach than using more specific ChIP-seq data. Ultimately, 431 

we hope that the model generated in this study can be used to identify non-coding 432 

sequence variants that are likely to disrupt retinal CRE function to guide deeper analyses 433 

of non-coding mutations. Currently, single nucleotide variant scores for sequences in 39k 434 

putative retinal CREs can be accessed via our UCSC genome browser track to identify 435 

variants with large predicted impacts to retinal CRE function 436 

(http://genome.ucsc.edu/s/CherryLab/VISIONS_TrackHub). 437 

This study presents a machine learning model of putative human retinal CREs, and the 438 

predicted impact of all possible SNVs in a set of tested sequences. This model behaves 439 

in a tissue-specific manner, and accurately identifies the enrichment of well characterized 440 

TF binding motifs. Through the analysis of related datasets and known motif databases, 441 

the model trained on human retinal ATAC data versus genomic background can clearly 442 

identify sequences of interest in a biologically relevant manner, specifically scoring retina-443 

associated sequences above non-retinal CRE sequences. Further, in the generation of 444 

variant impact deltaSVM scores, the model’s scores follow known conservation, and 445 
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specifically identify where disrupted sequences intersect canonical transcription factor 446 

binding motifs to potentially affect CRE activity. The enrichment of negative deltaSVM 447 

scores around known motifs specifically highlights well-characterized core sequences 448 

and key base positions in motifs, and thus the ability of the model to recognize the value 449 

of these sequences. Additionally, it becomes apparent that distinct motifs contribute 450 

differently to model relevancy. Potentially, the motif disruption and severity of the 451 

deltaSVM score may be an indicator of the severity of impact on CRE and therefore retinal 452 

function. Those SNVs with the most negative deltaSVM scores were associated with the 453 

highest level of conservation, demonstrating that these sequences may have a distinct 454 

role in retinal function. 455 

When observing these deltaSVM scores in the general context of the CRE, trends 456 

become apparent as to where the most impactful variants are found confirming known 457 

features of CREs. The trend of deltaSVM scores across putative CREs demonstrates 458 

both the known density of true TF binding sites near the summit and the depletion at the 459 

summit itself. This is consistent with findings from other studies, which show that TF motifs 460 

are most enriched around the center of CREs, but are somewhat depleted at the direct 461 

summit.55 These data indicate that disruptions to these TF motifs have the most dramatic 462 

impact on CRE scoring. Previous studies have performed massively parallel reporter 463 

assays to test the function of specific CRE sequences.36,57,58 The results of these studies 464 

emphasize the impact of specific TF motif disruption and also serve as an important 465 

resource for the validation of ML predictions of variant impact. The characterization of 466 

these motifs is highly conserved as negative deltaSVM scores from this model specifically 467 

correlate with MPRA-based approaches.30,36 These results demonstrate both the ability 468 
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of this model trained on human retinal epigenomic data to identify variants with notable 469 

relevance to changes in gene expression, as well as its ability to operate across species 470 

in a conserved manner. This ability of the model to identify sequences of interest, 471 

especially variants that correlate to losses in gene expression, demonstrates the ability 472 

of this model to predict non-coding variants with relevance to retinal disease. 473 

This model has unique value in the retina, in that it can specifically evaluate sequences 474 

associated with cis-regulatory elements, lending itself to a wide variety of applications. 475 

deltaSVM impact scores can be used in the identification of crucial TF binding sites in a 476 

high-throughput manner. In particular, the in silico saturation mutagenesis approach to 477 

generating a database of deltaSVM scores means that variants can be pre-screened by 478 

their predicted change in regulatory function. In the screening of regions identified via 479 

GWAS, such data can specifically narrow down regions of interest and locations of 480 

mutations of functional value to the retina. In more precise applications, variants identified 481 

in patients can be quickly ranked by their relevance to this model and prioritized for further 482 

functional investigation. This model can be further refined via integration of new 483 

epigenomic datasets, in particular single-cell epigenomic datasets to refine the sensitivity 484 

and specificity of these predictions. In the rapidly moving field of AI, new machine learning 485 

strategies will also likely enable characterization of new and different sequence-based 486 

features within CREs. 487 

In sum, this workflow and the resulting prediction scores serve as a promising genomic 488 

tool for guiding the interpretation of non-coding sequence variation, and for narrowing the 489 

search space for potentially pathogenic regulatory variants in visual disorders. Validation 490 
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of the model demonstrates its capacity for tissue specificity, and the identification of 491 

crucial CRE features. By applying a deltaSVM approach to putative CRE sequences, it is 492 

possible to pre-screen variant sequences of interest for further in vivo analyses. With 493 

further model validation, the presented database of SNV scores could be used in the 494 

identification of clinically relevant sequence variations and have applications beyond the 495 

bench. 496 

 497 
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Figure 1 Model Overview and Training Data 679 

A.) A schematic overviewing the workflow used in this study in generation of a GKM-SVM based 680 

model trained on retinal data and randomly selected genomic regions, and deltaSVM variant 681 

impact scores generated through model ranking of in silico saturation mutagenesis of putative 682 

retinal CREs. B.) UCSC genome browser track positioned at the Rhodopsin (Rho) gene 683 

visualizing tracks of the ATAC and ChIP-seq datasets used to generate the Positive Training 684 

dataset, schematized in (A). One selected region of interest highlighted in blue (C). Within the 685 

highlighted region in (B), base-pair resolution deltaSVM variant impact scores, separated by bp 686 

substitution, and summed negative scores. A region of continuous negative scores is highlighted 687 

in blue. (C’). In the highlighted region from (C), the summed deltaSVM scores highlighting the 688 

core TAATC motif of the OTX2 binding site. 689 
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Figure 2. The GKM-SVM model is Accurate, and Retinal-Specific 693 

A. Receiver Operating Characteristic curve for 5-fold cross-validation of the GKM-SVM model 694 

trained on retinal epigenomic data (black) and for the model trained on shuffled positive and 695 

negative training data (light grey). Area under the curve (AUC) ATAC = 0.951; shuffled = 0.498. 696 

B. Precision-Recall curve for 5-fold cross-validation of the GKM-SVM model trained on retinal 697 

epigenomic data. AUC ATAC = 0.956, shuffled = 0.499. C. Violin plot demonstrating GKM-SVM 698 

model scores for Retinal positive training data, Retinal Pigmented Epithelium ATAC-seq peaks,41 699 

Primary Visual Cortex ATAC-seq peaks,42 and human Fibroblast ATAC-seq peaks.43 Kruskal-700 

Wallace p < 2e-16. For all pairwise comparisons to Retinal ATAC by Wilcoxon rank sum, p < 2e-701 

16 (**) Bonferroni adjusted. D. Top enriched TF motifs from HOMER in top 1% of scored model 702 

11mer vocabulary, 703 
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Figure 3 705 
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Figure 3. deltaSVM Scores Match Allele Frequencies, Conservation 707 

A. Scatterplot demonstrating the correlation between deltaSVM scores and allele frequencies 708 

from the GnomAD database. deltaSVM bins for the bottom, mid-bottom, mid-top and top 1% of 709 

scores are highlighted along the X axis. A’. Alternate view of (A), demonstrating values from 710 

deltaSVM scores -4 to 4.  deltaSVM bins for the bottom (partial), mid-bottom, neutral, mid-top and 711 

top (partial) 1% of scores are highlighted along the X axis. Arrows indicate points beyond the axis 712 

limits for the highlighted bins. B. Changes in average deltaSVM and Indel counts across the 713 

average 301 bp window of 20% outgroup CREs. C. Correlation between average deltaSVM and 714 

Indel count by position along the averaged 301 bp window. Pearson correlation 0.303 D. Sums 715 

of retinal motif classes across the 301 bp window of 20% outgroup CREs in 15 bp bins. E. Violin 716 

plot of PhyloP conservation scores in Negative, Neutral, and Positive deltaSVM scores (Kruskal-717 

Wallace p < 2e-16, Wilcoxon rank sum: **: p < 0.0001, Bonferroni adjusted). 718 
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Figure 4 720 

 721 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.464837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.19.464837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

Figure 4. Disruption of Retinal TF Motifs Dramatically Reduces deltaSVM Score 722 

A-A’’. Numbers of motifs as scored by FIMO in reference and variant sequences for bins 723 

highlighted in (3A). Motifs shown are OTX2 (A), MEF2D (A’), and CREB (A’’). B-B’’. Line plots 724 

showing the average deltaSVM for SNVs +/- 25 bp around the core motifs shown in (A-A’’) in blue. 725 

Scores for the same motifs in the shuffled model in grey. C-C’’. Bar plots showing the average 726 

deltaSVM for SNVs on a base pair resolution within the core motifs of those shown in (A-A’’). 727 

(ANOVA with Post-hoc Tukey: *: p<0.02; **: p< 0.002) 728 
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Figure 5 730 
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Figure 5. deltaSVM Scores for SNVs in RhoCRE3 Correlate to Changes in Reporter Expression. 732 

A. Relative expression (log2(mut/wt)) of fluorescent reporter for mutations in RhoCRE3 in mouse 733 

retina from Kwasnieski et al.34 Identified TF binding sites of CRX (1 and 2) and NRL are 734 

highlighted. B. deltaSVM variant impact scores of the same SNVs as in (A) along the RhoCRE3 735 

locus. Identified TF binding sites of CRX (1 and 2) and NRL are highlighted. C. Scatter plot of 736 

relative expression and deltaSVM scores in (A) and (B) with linear regression and 95% confidence 737 

intervals. Pearson = 0.506. 738 
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Supplementary Figure 1 743 

A. UCSC genome browser track positioned at the Nr2e3 gene visualizing tracks of the ATAC and 744 

ChIP-seq datasets used to generate the Positive Training dataset, schematized in 1A. B. GC 745 

content density of Positive training dataset (ATAC/Foreground in red), and Negative training data 746 

(Background in Blue) before and after GC matching with oPOSSUM. C. HOMER genome 747 

annotation of the positive (80% training and 20% hold-out) and negative training datasets used to 748 

train the GKM-SVM model. 749 
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Figure S2 751 
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Demonstration of the Shuffled model utilizing ATAC-seq positive and negative training data 754 

shuffled randomly. A. Retinal (20% outgroup) and nonretinal sequences scored by the shuffled 755 

model. B. deltaSVM scores (in 20% outgroup sequences) for the shuffled model as compared to 756 

GnomAD allele frequencies in the same regions. C-D. Average deltaSVM and GnomAD indel 757 

counts across the average 301mer in the 20% outgroup CREs demonstrating the trend in score 758 

across the CRE (C), and the correlation between average deltaSVM and average indel count (D). 759 

E. Violin plot of PhyloP conservation scores in Negative, Neutral, and Positive deltaSVM scores. 760 
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Figure S3 762 
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Supplementary Figure 3  764 

A. UCSC genome browser track positioned at an intergenic putative CRE within the DMBT1 gene 765 

visualizing tracks of the ATAC and ChIP-seq datasets used to generate the Positive Training 766 

dataset, schematized in 1A, as well as deltaSVM scores split by alternate base substitution and 767 

predicted TF binding sites. 768 
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Figure S4 771 
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Supplementary Figure 4. 773 

Sums of retinal TF motifs across the 301 bp window of 20% outgroup CREs in 15 bp bins. A-F 774 

demonstrate motif sums for individual retinal motifs CREB (A), CRX (B), MEF2D (C), NRL (D), 775 

OTX (E), and ROR (F). G. Sums for all possible motifs (retinal and non-retinal) from the 776 

HOCOMOCO v11 motif database. 777 
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Figure S5 799 

 800 

Supplementary Figure 5  801 

Numbers of motifs as scored by FIMO in reference and variant sequences for bins highlighted in 802 

Figure 3A. Motifs shown are CRX (A), CTCF (B), NRL(C), and ROR (D).  803 
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Figure S6 805 
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Supplementary Figure 6  807 

(A-D) Line plots showing the average deltaSVM for SNVs +/- 25 bp around the core motifs shown 808 

in Supplementary Figure 3. ATAC model shown in blue, shuffled model in gray. (A’-D’) Bar plots 809 

showing the average deltaSVM for SNVs on a base pair resolution within the core motifs of those 810 

shown in Supplementary Figure 3. (**: p< 0.002) 811 
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