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Abstract 27 

 Genome-wide association studies (GWAS) have made impactful discoveries for complex diseases, 28 

often by amassing very large sample sizes. Yet, GWAS of many diseases remain underpowered, 29 

especially for non-European ancestries. One cost-effective approach to increase sample size is to 30 

combine existing case-only cohorts with public controls, but this approach is limited by the need for a 31 

large overlap in variants across genotyping arrays and the scarcity of non-European controls. We 32 

developed and validated a protocol, Genotyping Array-WGS Merge (GAWMerge), for combining 33 

genotypes from arrays and whole genome sequencing, ensuring complete variant overlap, and allowing 34 

for diverse samples like Trans-Omics for Precision Medicine to be used. Our protocol involves phasing, 35 

imputation, and filtering. We illustrated its ability to control type I error and recover known disease-36 

associated signals across technologies, independent datasets, and ancestries in smoking-related cohorts. 37 

GAWMerge enables genetic studies to leverage existing cohorts to validly increase sample size and 38 

enhance discovery. 39 

 40 

  41 
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Genome-wide association studies (GWAS) offer a powerful tool for identifying genetic 42 

variants for complex diseases, especially when large sample sizes are amassed. For diseases 43 

with limited sample sizes or for which case-only cohorts are available, public controls, who are 44 

not assessed for the disease, can be used without bias to cost effectively improve statistical 45 

power and novel locus discovery, if the disease prevalence is low in the general population.1-5 46 

Combining cases and controls in this way is feasible even with samples genotyped on different 47 

array-based technologies6-9. A significant limitation of combining disease study cases with public 48 

controls is that unbiased results are only achieved using the intersecting set of variants 49 

genotyped across all arrays and cohorts being combined.9 This limitation effectively prevents 50 

combining cohorts where the number of shared genotyped variants is too small to form the 51 

basis for imputation or to provide whole genome coverage. An in-depth comparison of the 52 

Illumina HumanHap, Illumina OmniExpress, and Affymetrix 6.0 arrays found over 2,000,000 53 

single nucleotide polymorphisms (SNPs) in union but only 75,000 variants that intersect across 54 

all arrays10. Additionally, reliance on array-based technology prevents use of expanding whole 55 

genome sequencing (WGS) resources with high representation of non-European ancestry 56 

groups, like the Trans-Omics for Precision Medicine (TOPMed) program, for public controls.  57 

Being able to combine case and public control genotypes from array- and/or sequencing-based 58 

platforms opens up the increasing set of WGS resources for new GWAS. As of January 2021, 59 

there are at least 217 case-only studies containing >136,000 samples across many genotyping 60 

platforms in the database of Genetics and Phenotypes (dbGaP) (query = ‘case set[Study 61 

Design]’). There are >227,000 public controls with WGS data in resources such as TOPMed 62 

(>155,000 samples)11, UK BioBank (>50,000 samples)12, Gabriella Miller Kids First Pediatric 63 

Consortium (>21,000 samples), and GenomeAsia100K Project (>1,700 individuals)13, which are 64 

eligible to be combined with these case-only datasets for GWAS.  65 

The NHLBI-supported TOPMed program11 with its collection of >155,000 human 66 

subjects with WGS data affords an unparalleled opportunity to leverage public controls and 67 
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greatly expand GWAS sample sizes. With such a large sample size and one of the most 68 

genetically diverse datasets (40% European, 31% African, 16% Hispanic, 9% Asian, and 4% 69 

Others) available, TOPMed has the potential to overcome the aforementioned challenges of 70 

applying public controls, as the WGS data should overlap all variants measured on arrays, and 71 

the representation of non-European populations will enhance the availability of diverse public 72 

controls.  73 

While incorporating public controls to maximize the utility of genetic discovery is 74 

desirable, there is no established approach to validly combine array- and sequencing-based 75 

genotype data. Each of these technologies has its own strengths, weaknesses, and different 76 

inter- and intra-technology measurement properties that complicate combining data across 77 

technologies. Here, we developed a protocol, Genotype Array-WGS Merge (GAWMerge), to 78 

combine genotypes from array and WGS to conduct GWAS analyses. We illustrate our 79 

protocol’s validity and its utility using TOPMed WGS samples as public controls combined with 80 

case-only array-genotyped cohorts.  81 

 82 

 83 

  84 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.464854doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.19.464854
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 85 

Protocol to Integrate Array and WGS data. GAWMerge is a protocol that we developed to 86 

integrate array and WGS genotyping technologies that minimizes false positives while 87 

discovering true association signals. Details of the protocol development process are provided 88 

in the Methods section. The final protocol consists of eight major steps (Figure 1): (1) select 89 

control dataset(s) with WGS genotype data; (2) extract the SNPs  from the WGS data of the 90 

control samples that match those for the array-genotyped case samples; (3) independently 91 

subject the case and control samples to the same quality control (QC) procedure (further details 92 

in the Methods); (4) phase the case and control samples with the same software (further details 93 

in the Methods); (5) merge the phased case and control data and impute to the desired 94 

reference genome (e.g., 1000Genome, TOPMed reference panel); (6) filter out genotyped SNPs 95 

with low quality (empirical ER2<0.9)14 and re-impute; (7) test SNP associations with phenotype 96 

of interest in case and control samples combined; and (8) filter association results for minor 97 

allele frequency (MAF), imputation quality (R2), and difference in imputation quality.  98 

For selection of controls in step 1, it is crucial to choose samples with an ancestral 99 

composition consistent with the case samples, as population stratification is a strong 100 

confounding factor for GWAS analysis. Additional demographic (e.g., age, sex) and clinical 101 

variables (e.g., smoking status) should be considered based on the datasets being combined. 102 

Our previous work9 suggested potential bias in association testing when using 103 

genotypes imputed from the full sets of SNPs from different genotyping arrays. Starting from the 104 

intersection of genotyped SNP sets avoids such bias (step 2). We employed the same strategy 105 

for merging array and WGS genotypes, but because of the full genome coverage of WGS, the 106 

entire set of array SNPs were used. The array and WGS data were then independently QC’d 107 

using the same QC steps (step 3). This then was followed by phasing, merging, and imputation 108 

(steps 4-5). To further reduce potential bias between the array-genotyped and WGS-derived 109 
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SNPs, a second round of imputation is performed after removing genotyped SNPs with low 110 

empirical R2 (ER2<0.9, step 6, Supplementary Figure 1). Finally, following association testing 111 

(step 7), filtering based on MAF (> 0.01), imputation quality (R2 > 0.8), and imputation quality 112 

difference between cases (i.e., array data) and controls (i.e., WGS data) is step 8 (�������� �113 

����
� � � 0.1, Supplementary Figure 2) which minimizes technical variation in the combined 114 

case/control data. More details regarding the development of the protocol can be found in the 115 

“Protocol Development” section of Methods. 116 

 117 

Protocol Evaluation Design. To evaluate the performance of GAWMerge, we used three 118 

smoking-related datasets: Collaborative Genetic Study of Nicotine Dependence (COGEND)15,16, 119 

Genetic Epidemiology of COPD (COPDGene) study17, and Evaluation of COPD Longitudinally 120 

to Identify Predictive Surrogate End-points (ECLIPSE)18. As indicated in Table 1, the three 121 

datasets have different array platforms, providing the opportunity to assess the performance of 122 

the protocol in different settings. In both COPDGene and ECLIPSE, the COPD diagnosis 123 

followed the Global Initiative for Chronic Obstructive Lung Disease (GOLD) severity 124 

classifications, and COPD cases were defined as GOLD Grade 2–4 COPD (moderate, severe, 125 

and very severe COPD)19. The study design to evaluate GAWMerge across (a) genotyping 126 

technology (ensuring no technology driven false positives), (b) type-I error (ensuring minimal 127 

false positive associations), and (c) recovery of known GWAS hits (demonstrating capture of 128 

true positives) is presented in Figure 2.  129 

 130 

Reproducibility across genotyping technologies. COPDGene has both array and WGS 131 

genotype data on the same samples available through TOPMed. Genotypes derived from array 132 

and whole genome sequencing data for the same samples should be consistent but are often 133 

not.20,21 To evaluate the consistency of genotyping, we performed a technical comparison of 134 
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array and WGS data using the same set of samples from COPDGene (n=3,235 with African-135 

American ancestry). The array data were phased independently and integrated with the WGS 136 

phased data available in TOPMed, followed by imputation and association testing using 137 

genotyping platform as the outcome. If the array- and WGS-derived genotypes for the same set 138 

of samples were equivalent, one would expect to observe no significant associations, but in fact 139 

we observed many false positives (Supplementary Figure 3). 140 

We suspected that the false positives we observed derived from the phasing step since 141 

phasing of the array and WGS genotypes was based on different sets of variants. In addition, 142 

the TOPMed phased WGS data were derived from the samples of all studies22, which is 143 

different from the sample set we used, the COPDGene cohort, for phasing the array data. We 144 

repeated the technical comparison, using the same set of QC-validated variants and samples 145 

(Figure 2a) as the basis for separate phasing of the array and WGS data, followed by the 146 

subsequent steps in GAWMerge (Figure 1). The array data were specified as the case group for 147 

association testing, and the WGS data were specified as the control group, for European 148 

ancestry (EA) and African ancestry (AA) separately. The results (Supplementary Figure 3) 149 

confirmed that phasing based on a common set of variants and samples followed by the 150 

additional steps of GAWMerge eliminated false positives and made array and WGS data 151 

comparable for conducting GWAS.  152 

 153 

Controlling type I error in case-only vs. public control GWAS. We assessed type-I 154 

error in a comprehensive analysis involving three smoking-related datasets and their meta-155 

analysis, as shown in Figure 2b. To fully leverage the large sample size of the COPDGene 156 

dataset, we evenly divided the EA samples into two subsets: EA1 and EA2. COPDGene EA1 157 

included all participants diagnosed with COPD (N=2,736) and randomly sampled participants 158 

with no COPD (N=515). The resulting ratio of individuals with COPD in COPDGene EA1 (84%) 159 
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was close to the ratio in ECLIPSE EA (87%). Three GWAS were conducted to assess type-I 160 

error, as follows: (1) array data from COPDGene EA1 (N=3,251) vs. WGS from ECLIPSE EA 161 

(N=1,461); (2) array data from COGEND EA (N=1,961) vs. WGS data from COPDGene EA2 162 

(with no COPD, N=3,251); and (3) array data from COGEND AA (N=712) vs. WGS from 163 

COPDGene AA (N=1,710). All association models include ten principal components as 164 

covariates to account for population substructure. COPDGene, COGEND, and ECLIPSE are all 165 

smoking cohorts and ratios of COPD were consistent across array and WGS datasets, thus we 166 

expected no genome-wide significant association signals (controlled type 1 error). Applying 167 

GAWMerge to these data we observed no false positive signals in each separate GWAS 168 

analysis (Supplementary Figure 5) and in their meta-analysis (Figure 3) results.  169 

 170 

Recovery of known COPD loci in case-only vs. public control GWAS. The last 171 

evaluation step was to recover known GWAS hits for COPD.19,23 As shown in Figure 2c, we 172 

conducted three GWAS for COPD, as follows: (1) COPD cases from COPDGene EA with WGS 173 

data (N=2,736) vs. controls from COGEND EA with array data (N=1,961); (2) COPD cases from 174 

ECLIPSE EA with array data (N=1,764) vs. controls from COPDGene EA with WGS data 175 

(N=2,475); and (3) COPD cases from COPDGene AA with WGS data (N=813) vs. controls from 176 

COGEND AA with array data (N=712). Because COPD is highly comorbid with smoking history, 177 

only smokers (current and former) were used as controls to compare with COPD cases across 178 

these GWAS analyses. All association models include ten principal components as covariates 179 

to account for population substructure. Results for each GWAS analysis are presented in 180 

Supplementary Figure 6. Meta-analysis of the 3 analyses successfully recovered 5 out of 7 loci 181 

reported as COPD-associated (Figure 4 and Table 2) at genome-wide significance (� � 5 
182 

10�	, Supplementary Table 2). The direction of association for all recovered SNPs was the 183 

same as previously reported24. The two SNPs that did not exceed the genome-wide significance 184 
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threshold were nominally associated at � � 0.05 in our analysis. These two SNPs were missing 185 

in Analysis 1 (COPD cases with WGS data from COPDGene EA Vs. smoking controls with 186 

array data from COGEND EA) due to the filters applied with the protocol; the reduced power 187 

caused by their missingness likely explain the lower significance level observed. 188 
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Discussion 189 

 In summary, we present GAWMerge, a protocol for integrating array and WGS genotype 190 

data to conduct GWAS with a case-only and public control design. This protocol overcomes 191 

previous obstacles to using public controls9. The ability to use WGS data for public controls 1) 192 

ensures complete overlap with variants on any array used for genotyping of cases, and 2) 193 

provides a much larger pool of public controls to draw from, especially for non-Europeans, from 194 

ancestrally diverse resources like TOPMed. In our proof-of-concept study, we applied 195 

GAWMerge to WGS data from TOPMed (specifically, COPDGene and ECLIPSE cohorts) as 196 

public controls for array-genotyped case datasets. We first showed that the two genotyping 197 

technologies are compatible by comparing array- and WGS-derived genotypes for the same 198 

samples from COPDGene and demonstrating a lack of false positives. We then showed that 199 

GAWMerge controls type I error, as evidenced by the expected lack of genome-wide significant 200 

findings in a GWAS meta-analysis comparing smoker cases vs. smoker controls from 201 

independent datasets. Lastly, GAWMerge recovered known COPD-associated findings from 202 

Hobbs et al.24 including CHRNA3 on chromosome 15, FAM13A on chromosome 4, CYP2A6 on 203 

chromosome 19, TGFB2 on chromosome 1, and HHIP on chromosome 4. The key aspects of 204 

the protocol that provide these unbiased findings are 1) phasing the array and WGS data 205 

independently using only the intersection of variants across technologies and 2) including the 206 

empirical R2 and R2 difference filters to remove poorly imputed and differently imputed variants.  207 

 The development of GAWMerge was done with TOPMed WGS and array genotyped-208 

data, although it can be applied using any case-only array-genotyped data with other WGS data 209 

resources (e.g., UK BioBank12, Gabrielle Miller Kids First and/or GenomeAsia 100K13 data). To 210 

incorporate new data, it will be important to identify the phenotypic data which will be used to 211 

combine controls with available cases. For example, we selected controls based on the smoking 212 

status of the cohorts to minimize bias due to smoking. Additional phenotypic and clinical data, 213 
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such as sex and age distributions, should be considered when selecting the most appropriate 214 

controls for combining with available cases. In this study we combined cases and controls with 215 

the same ancestry to minimize bias. Further work is needed to evaluate GAWMerge for trans-216 

ancestry and mega analysis GWAS25. GAWMerge was developed with imputation using the 217 

thousand genomes reference population, although method can be applied using other reference 218 

populations, such as the TOPMed reference population on the Michigan Imputation Server14. 219 

Since TOPMed samples are used as controls in GAWMerge, there will be sample overlap 220 

between the input data and the TOPMed reference population, which may cause bias and must 221 

be applied cautiously. Further work is needed to evaluate the bias of such an imputation 222 

strategy.  223 

 GAWMerge has some limitations. First, careful consideration of not only ancestry, sex, 224 

and age distributions, but other systematic differences between a given case-only cohort and 225 

public controls, like smoking status, is essential to unbiased use of public controls and 226 

application of GAWMerge. All association analysis conducted included ten principal components 227 

as covariates to account for population substructure, although applying GWAS in as 228 

homogenous population as possible is desirable. This requirement places some limits on the 229 

public controls that can be used for any given case-only cohort. Second, the additional QC 230 

steps might mask some real trait-associated variants. In the attempt to recover the known 231 

genetic variants associated with COPD, there were two loci (RIN3 and MMP3/12) not reaching 232 

the genome-wide significance in the meta-analysis (Table 2). The three SNPs were filtered out 233 

in the first GWAS, comparing COPD cases in COPDGene EA with WGS data and smoking 234 

controls in COGEND EA with array data, due to high R2 difference between the WGS and array 235 

data. Thus, GAWMerge may lose some sensitivity while controlling type I errors. There is also 236 

the potential for reduced power to detect COPD associated genetic variants here due to the 237 

missingness of lung function phenotypes in COGEND public controls, with power being reduced 238 
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relative to the amount of COPD status misclassification among these controls. Third, when 239 

GAWMerge has been tested as an application of GWAS, it is limited by the MAF and genomic 240 

coverage on array genotyping technologies. Since GAWMerge extracts only SNPs within the 241 

array technology, the complete coverage of WGS (over 410 million variants within TOPMed 242 

WGS data22) is not fully utilized. Therefore, those rare variants and large insertions/deletions 243 

only detected in WGS data were lost during the extraction and merging processes 244 

(Supplementary Table 3). However, coming from a case-only dataset with array-based 245 

genotyping, the dominant scenario for use of GAWMerge, the WGS is a substantial strength, 246 

accounting for all the array genotyped variants except for technology based regional loss of 247 

variants. With our strategy of WGS data as public controls for GWAS, there will be regional loss 248 

in specific areas depending on the array technology design and quality control of the 249 

sequencing. A complete analysis of different regional genetic variants covered specifically by 250 

array-genotyping platforms or sequencing will be beneficial to calibrate the application of 251 

GAWMerge in the future.26,27  252 

Overall, GAWMerge presents a practical application of integrating case-only array-253 

genotyped data with WGS data as public controls to enable new GWAS and enhance the 254 

potential for discovering novel genetic loci. It is a general approach for integrating array and 255 

WGS genotyping technologies, breaking any barriers in such integration. The substantial 256 

availability of case-only datasets in public repositories and collected across many consortia 257 

makes the protocol broadly applicable. With >155,000 samples with WGS data within the 258 

TOPMed program, this an ample resource  for selecting public controls for a variety of case-only 259 

disease datasets. With WGS data, the overlap of measured variants across genotyping 260 

platforms is overcome. Furthermore, the diversity of individuals within the TOPMed (>47,000 261 

African, >23,000 Hispanic/Latino, and >13,000 Asian ancestries) and increasing representation 262 

in other resources make widespread use of non-European public controls realistic. With many 263 
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other WGS resources being launched and released, the potential to use public controls to 264 

increase sample size and leverage case-only cohorts is just beginning.  265 

  266 
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Methods 267 

Dataset Descriptions. The Trans-Omics for Precision Medicine (TOPMed) program aims to 268 

improve understanding of the diseases through the integration of Whole Genome Sequencing 269 

(WGS) and other omics data from pre-existing parent studies having large samples of human 270 

subjects. The two studies used in this work, Genetic Epidemiology of Chronic Obstructive 271 

Pulmonary Disease (COPDGene) and Evaluation of COPD Longitudinally to Identify Predictive 272 

Surrogate Endpoints (ECLIPSE), are both part of TOPMed. As of February 2020, TOPMed has 273 

gathered data from ~155k participants with rich phenotypic data. TOPMed prioritizes to increase 274 

ancestral and ethnic diversity, so ~60% of the sequenced participants are of non-European 275 

ancestry (31% African, 16% Hispanic, 9% Asian, and 4% Others). 276 

COPDGene (ClinicalTrials.gov: NCT00608764) is an ongoing study of over 10,000 non-277 

Hispanic White and African American cigarette smokers. It was designed to investigate COPD 278 

and other smoking-related lung diseases17. COPDGene subjects were initially genotyped for ~1 279 

million single nucleotide polymorphisms (SNPs) using the HumanOmniExpress array (Illumina, 280 

San Diego, CA). As part of TOPMed freeze 6a, WGS was conducted on 10,372 subjects. 281 

Among them, 9,732 subjects are overlapped with the subjects in the parent study having array 282 

genotyped data, and thus were used in our analyses. 283 

ECLIPSE was an observational study launched in 200618. It recruited 2,164 COPD 284 

subjects, 337 smoking controls, and 245 nonsmoking controls. The genotype data with Illumina 285 

HumanHap550v3.0 array (~550,000 SNPs) included 1,764 COPD subjects, 217 smoking 286 

controls, and 178 non-smoking controls. In TOPMed freeze 6a, WGS was conducted on 1,271 287 

COPD subjects and 190 smoking controls. 288 

COGEND was initiated in 2001 as a genetic study of nicotine dependence15,16. Nicotine 289 

dependent cases and non-dependent smoking controls were identified and recruited from 290 

Detroit and St. Louis. Over 2,900 donated blood samples were collected and used to genotype 291 
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~2.5 million SNPs using the HumanOmni2.5 array. After QC, 2,673 subjects were kept for 292 

following analyses. 293 

 294 

GAWMerge development. Below we provide further details on the protocol steps, and 295 

iterations used to devise the recommended thresholds. 296 

 297 

Quality control (QC). We performed standard QC steps for both array genotyped data and the 298 

subset of WGS data extracted in step 2 using PLINK28. Samples failing sex check or with >3% 299 

missing data were excluded. SNPs with missing rate >3% or that failed Hardy-Weinberg 300 

Equilibrium check (p < 1e-4) were excluded from the study. A structure analysis was conducted 301 

to match ancestries to 1000 genomes reference haplotypes and mis-classified samples were 302 

excluded. In addition, we adopted standard TOPMed filters (https://topmed.nhlbi.nih.gov/) for 303 

variant selection. The variants that were labeled as follows were excluded: SVM (support vector 304 

machine score more negative than -0.5 and hence fails the SVM filter), CEN (falls in a 305 

centromeric region with inferred reference sequence), DISC (more than 5 percent Mendelian 306 

inconsistencies), EXHET (has excessive heterozygosity with HWE p-value less than 1e-6) or 307 

CHRXHET (has excessive heterozygosity in male chrX). 308 

 309 

Combining Array and WGS Data. GAWMerge, a protocol for integrating array and WGS data is 310 

shown in Figure 1 and described in more detail in the Results. The WGS data were first 311 

prepared by extracting the selected control samples and the variants available within the array 312 

genotyping data. Utilizing the intersection of variants was important, as many false positives 313 

were introduced without this step9. This extraction of samples and variants was performed by 314 

BCFtools29. After QC, the intersection of SNPs between the array and WGS data was extracted, 315 

and the datasets were phased independently using SHAPEIT230,31. The datasets were then 316 

merged using BCFtools29. 317 
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 318 

Imputation strategy. The merged array and WGS data were first imputed using Minimac414 319 

using the thousand genomes phase 3 version 5 EUR and AFR super populations for EA and AA 320 

samples, respectively. The reference panel includes 503 EUR and 661 AFR samples with data 321 

on GRCh37 genome version. TOPMed WGS data was converted from genome version 322 

GRCh38 to GRCh37 to match the reference and array-genotyped data. Besides applying the 323 

standard imputation quality measurement R2, we also observed poorly imputed variants 324 

indicated by Empirical R2 (ER2). ER2 was defined only for genotyped variants as the squared 325 

correlation between leave-one-out imputed dosages and the true, observed genotypes. Under 326 

our first test for controlling type I error (Figure 2b), array data from COPDGene EA1 (N=3,251) 327 

and WGS data from ECLIPSE EA (N=1,461), we expected no genome-wide significant 328 

associations since all individuals were smokers and no disease was being tested between the 329 

datasets. Without the ER2 filter, we found many false positives (Supplementary Figure 1a) 330 

based around the variant on chromosome 10 (chr10:32370743, ER2 = 0.391, MAF=0.068). We 331 

recommend removing such genotyped SNPs with ER2 < 0.9 from the analysis and re-running 332 

imputation without these variants included. With this and other low-quality variants removed, 333 

false positives were controlled (Supplementary Figure 1b). With the ER2 filter of 0.9, we found 334 

that 81.1% of SNPs met this criterion (Supplementary Figure 1c) and these removed SNPs 335 

were scattered across the genome (Supplementary Figure 1d). 336 

Filtering association test results. Association analysis was conducted using rvTest32 with ten 337 

principal components included to account for population substructure. Besides the common 338 

filters for minor allele frequency (MAF>0.01) and imputation quality (�� � 0.8), we also 339 

investigated the imputation quality difference between array-genotyped samples and WGS-340 

genotyped samples by comparing the imputation quality within each sample type,  �������  and 341 

����
� . We verified that the imputation quality between the two types of data were similar. 342 
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However, some outliers (|������� � ����
� | � 0.1) were a major source of false positives, and 343 

were removed from the results as a post-association testing filter. Using the same test between 344 

COGEND and COPDGene EA sample comparison, inflation of GWAS P-values was apparent 345 

when |������� � ����
� | � 0.1, but otherwise no inflation was observed (Supplementary Figure 2a). 346 

An imputation quality difference of > 0.1 only filtered out about 5% of variants (Supplementary 347 

Figure 2b), and the removed variants were scattered throughout the genome (Supplementary 348 

Figure 2c). 349 

 350 

GAWMerge implementation. 351 

GAWMerge was developed within the DNANexus computing environment 352 

(https://www.dnanexus.com/) and the BioData Catalyst ecosystem33. The protocol within the 353 

DNANexus computing environment used docker images, which have been packaged together 354 

into DNANexus applications. The BioData Catalyst ecosystem33 protocol was implemented in 355 

the common workflow language (CWL); therefore, it is interoperable in other computing 356 

ecosystems. Both implemented workflows are built using the same docker images of the 357 

underlying software programs (https://github.com/RTIInternational/biocloud_docker_tools and 358 

https://hub.docker.com/u/rtibiocloud). The protocol has been written to easily adapt to plink or 359 

vcf formats of the genotype files, therefore either are acceptable. The BioData Catalyst workflow 360 

leverages key services, tools, and workflows available within the ecosystem including BioData 361 

Catalyst Powered by Gen3, BioData Catalyst Powered by PIC-SURE, and BioData Catalyst 362 

Powered by Seven Bridges. These tools make discovery of data for use as public controls easy 363 

with their easy-to-use web interface. 364 

To discover optimal controls to combine with available cases, TOPMed phenotypic data 365 

were easily accessible using the Gen3 and PIC-SURE tools within the BioData Catalyst 366 

ecosystem. With these tools, users identify which studies were comparable for use as public 367 
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controls, urge the access request for these studies within dbGaP, and then use as public 368 

controls with the protocol.  369 

Computation of GAWMerge is comparable to other GWAS efforts. For example, in the 370 

analysis comparing ECLIPSE WGS data and COPDGene EA array data, phasing the 10,302 371 

variants on chromosome 10 (overlapped with the array data) of the 1,461 samples in ECLIPSE 372 

WGS data took ~9 hours using a machine with 32GB memory and 16 CPUs. The following 373 

imputation ran on a machine with 16GB memory and 4 CPUs for 2 hour and 37 minutes. Then 374 

the re-imputation runs for similar amount of time. 375 

  376 
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Table 1. Dataset characteristics. 377 

  COGEND COPDGene ECLIPSE 

Array type Illumina 

HumanOmni

2.5 

Illumina 

HumanOmni1-

Quad_v1-0_B 

Illumina 

HumanHap550v3.0 

Array-

genotyped 

data 

N, SNPs 2,443,179 1,051,295 561,466 

Participants, total N 2,673 9,962 2,159 

Ancestry group, 

N (%) 

European 1,961 (73%) 6,664 (67%) 2,159 (100%) 

African 

American 
712 (27%) 3,298 (33%) NA 

Sex, N (%) Males 1,019 (38%) 5,333 (54%) 1,367 (63%) 

Females 1,654 (62%) 4,629 (46%) 792 (37%) 

COPD diagnosis, 

N (%) 

Yes NA 4,280 (43%) 1,764 (82%) 

No 3,632 (36%) 395 (14%) 

Age (mean±SD) 36.6±5.6 59.6±9.0 62.2±8.2 

WGS-

genotyped 

data* 

Participants, total N NA 9,737 1,484 

Ancestry group, 

N (%) 

European 

NA 

6,502 (67%) 1,461 (98%) 

African 

American 

3,235 (33%) 23
¶ 

(2%) 

Sex, N (%) Males 5,213 (54%) 933 (64%) 

Females 4,524 (46%) 528 (36%) 

COPD diagnosis, 

N (%) 

Yes 4,186 (43%) 1,271 (87%) 

No 3,549 (36%) 190 (13%) 

Age (mean±SD) 59.6±9.0 62.7±7.7 

* All WGS genotyped data are from TOPMed freeze6a. 378 

¶
 The number of African American in ECLIPSE is too small and excluded from following analysis. 379 

 380 

  381 
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Table 2. Recovery of GWAS-identified variants, following application of our protocol to each of 3 GWAS 382 

and their meta-analysis, compared to published risk loci for COPD with combined data from COPDGene, 383 

ECLIPSE, NETT/NAS, and GenKOLS (Norway)
19

. 384 

SNP Position 

Risk 

Allele 

Related 

gene 

Reported 

(N=12,337) 

Current meta-analysis 

(N=10,461) 

OR P-value OR Direction P-value 

rs12914385 chr15:78898723 T CHRNA3 1.36 2.70E-16 1.28 +++ 3.35E-16 

rs4416442 chr4:89866713 C FAM13A 1.36 9.44E-15 1.21 +++ 2.66E-10 

rs7937
23

 chr19:41302706 C CYP2A6 0.74 2.88E-09 0.84 --- 1.91E-08 

rs4846480 chr1:218598469 A TGFB2 1.26 1.25E-07 1.19 +++ 9.37E-08 

rs13141641 chr4:145506456 T HHIP 1.39 3.66E-15 1.23 ?++* 2.64E-07 

rs754388 chr14:93115410 C RIN3 1.33 6.69E-08 1.12 ?++* 0.020 

rs626750 chr11:102720945 G MMP3/12 1.36 5.35E-09 1.14 ?++* 0.005 

* The question mark “?” means the SNP is missing from the first analysis, and it may result in reduced power in the final meta-analysis.  385 

 386 

  387 
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Figures 388 

 389 

 390 

Figure 1: Overview of the protocol to use whole-genome sequencing (WGS) data as public control in 391 

GWAS. *The quality control (QC) of the case and public control data is conducted independently 392 

according to the steps outlined in the methods. 393 

 394 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.464854doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.19.464854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 395 

Figure 2. Evaluation design for (a) technical comparison, (b) type-I error assessment, and (c) 396 

known GWAS hits. *The samples with European ancestry in COPDGene were evenly divided to two 397 

subsets of samples. EA1 includes all COPD cases and some COPD controls to match the COPD prevalence 398 

in ECLIPSE. EA2 has all the rest COPD free samples. 399 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.464854doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.19.464854
http://creativecommons.org/licenses/by-nc-nd/4.0/


400 

Figure 3. Meta-analysis results from evaluation for type-I error. The Manhattan plot (a) shows 401 

the expected no signal, while the QQ-plot (b) shows no inflation. 402 

 403 

404 

Figure 4. Meta-analysis results for replication of GWAS hits for COPD. The Manhattan plot (a) 405 

shows the replicated signals, while the QQ-plot (b) shows inflation due to the true signal. 406 
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Data availability 407 

The individual-level genotype and phenotype data used are all available through dbGap. The dbGap 408 

study accession number for COGEND is phs000404, for COPDGene are phs000179 (parent study with 409 

array genotype data) and phs000951 (WGS data generated by TOPMed), and for ECLIPSE are phs001252 410 

(parent study with array genotype data) and phs001472 (WGS data generated by TOPMed).  411 

Code availability 412 

The codes to run the protocol can be found at https://github.com/RTIInternational/GAWMerge.  413 
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