Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors

Valérie Campanacci, Agathe Urvoas, Liza Ammar Khodja, Magali Aumont-Nicaise, Magali Noiray, Sylvie Lachkar, Patrick A. Curmi, Philippe Minard, Benoît Gigant
doi: https://doi.org/10.1101/2021.10.19.464980
Valérie Campanacci
1Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Agathe Urvoas
1Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Liza Ammar Khodja
1Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Magali Aumont-Nicaise
1Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Magali Noiray
1Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sylvie Lachkar
2Centre de Recherche des Cordeliers, INSERM U1138, Team “Metabolism, Cancer & Immunity”, Sorbonne Université, Université de Paris, Institut Universitaire de France, Paris, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick A. Curmi
3Université Paris-Saclay, Inserm, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques, 91025, Evry, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philippe Minard
1Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benoît Gigant
1Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: benoit.gigant@i2bc.paris-saclay.fr
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Microtubule dynamics is regulated by various cellular proteins and perturbed by small molecule compounds. To what extent the mechanism of the former resembles that of the latter is an open question. We report here structures of tubulin bound to the PN2-3 domain of CPAP, a protein controlling the length of the centrioles. We show that an α-helix of the PN2-3 N-terminal region binds and caps the longitudinal surface of the tubulin β subunit. Moreover, a PN2-3 N-terminal stretch lies in a β-tubulin site also targeted by fungal and bacterial peptide-like inhibitors of the vinca domain, sharing a very similar binding mode with these compounds. Therefore, our results identify several characteristic features of cellular partners that bind to this site and highlight a structural convergence of CPAP with small molecule inhibitors of microtubule assembly.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted February 28, 2022.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors
Valérie Campanacci, Agathe Urvoas, Liza Ammar Khodja, Magali Aumont-Nicaise, Magali Noiray, Sylvie Lachkar, Patrick A. Curmi, Philippe Minard, Benoît Gigant
bioRxiv 2021.10.19.464980; doi: https://doi.org/10.1101/2021.10.19.464980
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors
Valérie Campanacci, Agathe Urvoas, Liza Ammar Khodja, Magali Aumont-Nicaise, Magali Noiray, Sylvie Lachkar, Patrick A. Curmi, Philippe Minard, Benoît Gigant
bioRxiv 2021.10.19.464980; doi: https://doi.org/10.1101/2021.10.19.464980

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Biochemistry
Subject Areas
All Articles
  • Animal Behavior and Cognition (3477)
  • Biochemistry (7316)
  • Bioengineering (5294)
  • Bioinformatics (20189)
  • Biophysics (9972)
  • Cancer Biology (7698)
  • Cell Biology (11243)
  • Clinical Trials (138)
  • Developmental Biology (6416)
  • Ecology (9912)
  • Epidemiology (2065)
  • Evolutionary Biology (13271)
  • Genetics (9347)
  • Genomics (12544)
  • Immunology (7667)
  • Microbiology (18928)
  • Molecular Biology (7415)
  • Neuroscience (40870)
  • Paleontology (298)
  • Pathology (1226)
  • Pharmacology and Toxicology (2125)
  • Physiology (3138)
  • Plant Biology (6836)
  • Scientific Communication and Education (1268)
  • Synthetic Biology (1891)
  • Systems Biology (5295)
  • Zoology (1083)