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Abstract 11 

Motivation: 12 

Kinship estimation is necessary for evaluating violations of assumptions or testing certain 13 

hypotheses in many population genomic studies. However, kinship estimators are usually 14 

designed for diploid systems and cannot be used in populations with mixed haploid diploid 15 

genetic systems. The only estimators for different ploidies require datasets free of population 16 

structure, limiting their usage.  17 

 18 

Results: 19 

We present KIMGENS, an estimator for kinship estimation among individuals of various 20 

ploidies, that is robust to population structure. This estimator is based on the popular KING-21 

robust estimator but uses diploid relatives of the individuals of interest as references of 22 

heterozygosity and extends its use to haploid-diploid and haploid pairs of individuals. We 23 

demonstrate that KIMGENS estimates kinship more accurately than previously developed 24 

estimators in simulated panmictic, structured and admixed populations, but has lower accuracy 25 

when the individual of interest is inbred. KIMGENS also outperforms other estimators in a 26 

honeybee dataset. Therefore, KIMGENS is a valuable addition to a population geneticist’s 27 

toolbox. 28 

 29 

Availability and Implementation: 30 

KIMGENS and its association simulation tool are implemented and available open-source at 31 

https://github.com/YenWenWang/HapDipKinship. 32 

 33 
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Contact: 34 

Yen-Wen Wang 35 

Email: ywang883@wisc.edu 36 

 37 

Introduction 38 

Kinship estimation is crucial to the evaluation of assumption violations (such as when 39 

estimating population nucleotide diversity) or to testing various ecological or evolutionary 40 

hypotheses (e.g., kin selection). However, kinship estimators for whole genome datasets are 41 

mainly developed for human populations (Ramstetter et al., 2017). Although these estimators 42 

have been widely used in non-human systems, their applications are restricted to diploid-only 43 

populations. Nonetheless, a large portion of life forms show plasticity in ploidy (Otto and 44 

Gerstein, 2008), which is not accounted for in these estimators. Many plants (e.g. ferns, mosses), 45 

fungi (e.g. mushrooms) and algae (e.g. sea lettuces) have complex, multistage life cycles, 46 

perform alternation of generations and form haploid structures independent of their diploid 47 

counterpart (Brown and Casselton, 2001; John, 1994). Furthermore, most Hymenopterans (e.g. 48 

bees and ants), Thysanopterans (e.g. thrips) and some other invertebrates (e.g. some spider mites 49 

and rotifers), have an arrhenotokous haplodiploidy system, where males are haploid and females 50 

are diploid (Cruickshank and Thomas, 1999; Normark, 2003). Because of the widely present 51 

mixed ploidy life-forms, it is crucial to develop estimators that can estimate kinship between 52 

individuals with different ploidy levels. 53 

Two marker-based estimators have been developed specifically to estimate relatedness 54 

among individuals of different ploidy, including Huang2014, a method-of-moments (MOM) 55 

estimator, and Huang2015, a maximum likelihood (ML) estimator (Huang et al., 2015). These 56 
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estimators can thus be used for genome sequencing data directly. In addition, some classical 57 

estimators can be extended to estimate relatedness between different ploidies. For example, two 58 

kinship estimators, Loiselle1995 and Ritland1996 (Loiselle et al., 1995; Ritland, 1996), are 59 

adapted and implemented in the program PolyRelatedness to resolve inequivalent ploidy (Huang 60 

et al., 2015). All estimators mentioned above are capable of using multi-allelic loci, which allow 61 

them to take advantage of a diversity of genetic markers (e.g., microsatellites). However, these 62 

estimators require allele frequencies at each locus in the population, which may not be available 63 

in some studies due to sampling strategies (Hahn, 2019). In addition, relying on allele 64 

frequencies essentially assumes a population free of stratification. Therefore, the estimators do 65 

not account for cryptic population structure, which can result in overestimating in kinship 66 

(Manichaikul et al., 2010).  67 

To remove the requirement of no population structure, we built on the KING-robust 68 

estimator by Manichaikul et al., (2010). We extended the estimator’s use to haploid-diploid pairs 69 

and named this extension exKING-robust. The exKING-robust estimator uses the heterozygosity 70 

of the individuals in the pair of interest as a diversity estimate for background identity-by-71 

descent (IBD). Next, we developed KIMGENS (Kinship Inference for Mixed GENetic Systems), 72 

which instead uses the heterozygosity of relatives of the individuals of interest, allowing 73 

estimating kinship for diploid, haploid-diploid and haploid pairs of individuals. We showed the 74 

estimators are robust to population structure. KIMGENS also performs relatively well under 75 

admixture, but can underestimate kinship if an individual is inbred. 76 

 77 

Materials and Methods 78 
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We aim to develop a simple kinship estimator that applies to haploid, haploid-diploid and 79 

diploid pairs of individuals and is robust to population structure. KING-robust’s strategy is 80 

useful for developing a novel kinship estimator for haploid-diploid pairs of individuals. But the 81 

strategy cannot apply to haploid pairs directly because it requires the number of heterozygotic 82 

sites of an individual to estimate expected heterozygosity (2pq) in the ancestral subpopulation of 83 

an individual.  84 

To resolve this issue, we propose a two-step approach: (1) We extend KING-robust to 85 

obtain a haploid-diploid kinship analysis and to identify a set of diploid relatives for each 86 

individual; and (2) for two individuals of interest, i and j, we use their diploid relatives from step 87 

1 to estimate mean heterozygosity for this pair and to modify their kinship estimate. In the 88 

following sections we will first describe a haploid-diploid kinship estimator. Next, we will 89 

demonstrate the modification to KING-robust and haploid-diploid kinship estimators for using 90 

related individuals k. Then, we describe the haploid kinship analysis. Lastly, we will evaluate the 91 

performance of these estimators with simulations and a biological dataset (on honeybee).  92 

 93 

Kinship estimation in haploid-diploid pairs of individuals: exKING-robust 94 

The kinship coefficient 𝜙!", originally termed correlation coefficient of two individuals i 95 

and j, is defined as the probability that two randomly sampled alleles from two individuals are 96 

identical-by-descent (IBD) (Lange, 1997; Malécot, 1948). In this section, we derive an estimator 97 

for the kinship of a pair of individuals id and jh, where id is diploid and jh is haploid. 𝜙!!"" can be 98 

calculated with: 99 

 100 

𝜙!!"" = (1/2)	𝜋#!!"" 101 
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(1) 102 

where 𝜋$!!""denotes the probability of individuals id and jh sharing n alleles being IBD. The 103 

probability of individual id being homozygotic and not in identical-by-state (IBS) with individual 104 

jh at a site can be calculated with: 105 

 106 

Pr(𝐴𝐴, 𝑎 or 𝑎𝑎, 𝐴) = 𝑝%𝑞𝜋&!!"" + 𝑝𝑞
%𝜋&!!"" = 𝑝𝑞𝜋&!!"" 107 

(2) 108 

and the probability of individual id being heterozygotic and in IBS at the allele in individual jh at 109 

a site can be calculated with: 110 

 111 

Pr(𝐴𝑎, 𝑎 or 𝐴𝑎, 𝐴) = Pr(𝐴𝑎) = 2𝑝𝑞. 112 

(3) 113 

Because id and jh share either 0 or 1 allele by descent (jh being haploid), 114 

 115 

𝜋&!!"" + 𝜋#!!"" = 1. 116 

(4) 117 

With equation (1), we derive 118 

 119 

𝜙!!"" = (1/2)(1 − 𝜋&!!""). 120 

(5) 121 

We can combine equation (5) with equation (3) to get  122 

 123 

𝜙!!"" =
1
2 −

Pr(𝐴𝐴, 𝑎 or 𝑎𝑎, 𝐴)
2𝑝𝑞 . 124 
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(6) 125 

Because only individual id is heterozygotic, the expected genome-wide heterozygosity, 126 

∑ 2𝑝'𝑞'' , can be estimated with 𝑁()
(!!)/𝑀!!"" (Manichaikul et al., 2010), where 𝑁()

(!!) is the 127 

number of heterozygotic sites in individual id and 𝑀!!"" is the number of sites with non-missing 128 

data in both id and jh. ∑ Pr(𝐴𝐴, 𝑎 or 𝑎𝑎, 𝐴)''  can be estimated with 𝑁((,)	./	)),(/𝑀!!"", where 129 

𝑁((,)	./	)),( is the number of sites where individual 𝑖 is homozygotic but not in IBS with 130 

individual jh. Therefore, kinship between individuals id and jh can be estimated with: 131 

 132 

ϕ9 !!"" =
#
%
− 0##,% '( %%,#

0#%
)*!+

, 133 

(7) 134 

which constitute our exKING-robust estimator for a haploid-diploid pair. 135 

 136 

Methods for using related individuals to estimate pq 137 

The KING-robust extension, including KING-robust (Manichaikul et al., 2010) for 138 

diploid pairs and exKING-robust for haploid-diploid pairs (7), relies on 𝑁()
(!!) (and 𝑁()

("!)). 139 

However, in haploid pairs, we do not have the luxury of using the heterozygosity of individuals 140 

of interest, so we develop a different estimator, KIMGENS, which uses “heterozygosity 141 

references” to estimate pq. The accuracy of 𝜙:!""" highly depends on the choice of references. To 142 

accurately capture heterozygosity, references should come from the same subpopulation as 143 

individuals ih and jh. Identification of appropriate references can be done by examining kinship 144 

estimates between the individual ih and jh and the potential references. Since some individuals 145 

may deviate from Hardy-Weinberg equilibrium (HWE) in subpopulations, choosing a single 146 
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reference from the relatives of either individual ih or jh may result in using an inbred or admixed 147 

product, biasing the estimate. So, we choose two sets of individuals K(ih,t) and K(jh,t), which are 148 

related to either one of the two individuals of interest, given a kinship threshold t. Every 149 

individual k in K(ih,t) or K(jh,t) is used as a heterozygosity reference for an intermediate kinship 150 

estimate, 𝜙:!"""
[2] . Then, we calculate two medians of intermediate kinship estimates, one from 151 

K(ih,t) and one from K(jh,t). Finally, we take the mean of these two medians as our final estimate 152 

𝜙:!""". We explain this estimation procedure below in detail. 153 

For more generality, we introduce this procedure for diploid individuals to modify the 154 

exKING-robust estimators as well. For two diploids id and jd and for a reference individual k, we 155 

define the intermediate kinship estimate 𝜙:!!"! as  156 

 157 

𝜙:!!"!
[2] =

1
2 −

1
4
4𝑁((,))	./	)),((

(!!,"!) − 2𝑁(),()
(!!,"!) + 𝑁()

(!!) + 𝑁()
("!)

𝑁()
(2) . 158 

 (8) 159 

Next, for an individual x, we consider its references to be the set K(x,t) of diploid individuals that 160 

share kinship with x greater than a given threshold t (including x itself if x is diploid), based on 161 

the exKING-robust kinship estimate. Finally, we define the KIMGENS estimate as follows: 162 

 163 

𝜙:!!"! =
1
2 <Median

2	∈5(!!,6)
=𝜙:!!"!

[2] > + Median
7	∈5("!,6)

=𝜙:!!"!
[7] >?. 164 

(9) 165 

Parenthesized superscripts denote the individuals with which sequences are compared to derive 166 

the number of sites with a particular pattern, and bracketed superscripts denote the individuals 167 

used for intermediate kinship estimates. Note, (8) corresponds to equation (11) in Manichaikul et 168 
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al., (2010) for k taken to be either id or jd, whichever has the smallest 𝑁()
(2). The innovation here 169 

is to consider the median of kinship estimates, and to use close relatives (not just id or jd) to 170 

approximate heterozygosity at the denominator. 171 

Using the same idea, we use (7) to define the intermediate kinship estimate between a 172 

pair of diploid and haploid individuals, given a reference individual k as:  173 

 174 

𝜙:!!""
[2] =

1
2 −

𝑁((,)	./	)),(
(!!,"")

𝑁()
(2)  175 

(10) 176 

and for a haploid-diploid pair we define the KIMGENS estimate as: 177 

𝜙:!!"" =
1
2 <Median

2	∈5(!!,6)
=𝜙:!!""

[2] > + Median
7	∈5("",6)

=𝜙:!!""
[7] >?. 178 

(11) 179 

 180 

When calculating a 𝜙:!!"!
[2]  (or 𝜙:!!""

[2] ), there are three individuals involved: id, jd (or jh) and 181 

k. The amount of missing data are not the same in these three individuals. So, we only consider 182 

the sites that are non-missing in all three individuals for each 𝜙:!!"!
[2]  (or 𝜙:!!""

[2] ).  183 

 184 

Kinship estimation in haploid pairs of individuals 185 

Under the same definition for kinship, in haploid pairs, the kinship coefficient 𝜙!""" can 186 

be calculated with: 187 

 188 

𝜙!""" =	𝜋#!""" . 189 
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(12) 190 

The probability of individuals ih and jh not in IBS at a site can be calculated with: 191 

 192 

Pr(𝐴, 𝑎 or 𝑎, 𝐴) = 2𝑝𝑞𝜋&!""" . 193 

(13) 194 

Because 195 

𝜋&!""" + 𝜋#!""" = 1, 196 

 197 

𝜙!""" = 1 −
Pr(𝐴, 𝑎 or 𝑎, 𝐴)

2𝑝𝑞 . 198 

(14) 199 

Using the same strategy described above, an intermediate kinship for haploid pairs of 200 

individuals can be estimated using a reference diploid individual k with: 201 

 202 

𝜙:!"""
[2] = 1 −

𝑁(,)	./	),(
(!","")

𝑁()
(2)  203 

(15) 204 

and the KIMGENS estimate for a haploid-haploid pair is defined as 205 

 206 

𝜙:!""" =
1
2<Median

2	∈5(!",6)
=𝜙:!"""

[2] > + Median
7	∈5("",6)

=𝜙:!"""
[7] >?. 207 

(16) 208 

 209 

Simulations 210 
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To assess the performance of these estimators, we simulated panmictic, structured and 211 

admixed populations of species with haplodiploid or diploid genetic system. For panmictic 212 

populations, the allele frequency of each site was simulated from a uniform distribution between 213 

0.1 and 0.9, U(0.1,0.9). The genotypes for starter individuals (those without known parents) in 214 

pedigree simulations were drawn from the allele frequency. For structured and admixture 215 

populations, the allele frequencies of three subpopulations were simulated following the Balding-216 

Nichols model from a panmictic ancestral population (allele frequency drawn from U(0.1,0.9)). 217 

The Wright’s Fst (θk) of the subpopulations was set to 0.05, 0.15 and 0.25. In structured 218 

populations, each family was drawn from a random subpopulation. To simulate admixture, 219 

Conomos’s strategy was used (Conomos et al., 2016). In pedigree simulations, the ancestry 220 

proportions of the founders were drawn independently from either of two Dirichlet distributions: 221 

Dir(6, 2, 0.3) and Dir(2, 6, 0.3), and the genotypes of the founders were drawn from the ancestry 222 

and allele frequencies of the three subpopulations.  223 

While simulating pedigrees, nine different scenarios were simulated 1000 times each. 224 

The scenarios differed by four factors: (1) the number of independent SNP sites: 20k or 100k, (2) 225 

genetic system: arrhenotokous haplodiploidy or diploidy, (3) population structure: panmictic, 226 

structured or admixture and (4) pedigrees (Supplementary Table 1). Overall, 100k SNP sites 227 

were simulated unless when the estimators being compared included those implemented in 228 

PolyRelatedness, in whick case 20k SNPs were simulated. All simulations are under 229 

haplodiploidy unless otherwise noted. First, to evaluate the performance of exKING-robust and 230 

KIMGENS, we simulated a single large family (Supplementary Figure 1) from a panmictic 231 

population (scenario 1). To compare the performance with that of previously published 232 

estimators, we simulated 11 families (Supplementary Figure 2) from a panmictic or structured 233 
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population (scenarios 2 and 3). To explore the performance of the estimators under admixture, 234 

we simulated the single large family (Supplementary Figure 1) or 11 families (Supplementary 235 

Figure 2) from an admixed population with 100k or 20k sites (scenarios 4 and 5). To understand 236 

how different estimators perform on inbred products, we simulated five inbreeding families 237 

(Supplementary Figure 3) and ten unrelated individuals (so PolyRelatedness can estimate allele 238 

frequency more accurately) from a panmictic diploid or haplodiploid population (scenarios 6 and 239 

7). Lastly, to explore the use of different thresholds (t), we simulated a new family 240 

(Supplementary Figure 4) with twenty unrelated diploid individuals in a structured or admixed 241 

population (scenarios 8 and 9).  242 

We estimated pairwise kinships for all individuals using different estimators and 243 

extracted the estimates of the pairs of interest. To convert relatedness (calculated by the 244 

estimators implemented in PolyRelatedness) to kinship, the relatedness estimates for diploid 245 

pairs were divided by two and those for haploid-haploid and haploid-diploid pairs were divided 246 

by one. To summarize the estimation, we calculated the bias (∑@ϕ9 8 − ϕ6/9:A/𝑛) and root-mean-247 

square error (RMSE; C∑@ϕ9 8 − ϕ6/9:A
%/𝑛) of each estimator. For KIMGENS, the threshold t 248 

was arbitrarily set to 0.1, except when exploring different thresholds, in which case t was set to 249 

either 0.1 or 0. Inbreeding coefficients were calculated from pedigrees with the R package 250 

kinship2 (Sinnwell et al., 2014). 251 

 252 

Biological data 253 

In addition to simulations, we used a honeybee dataset which was originally collected for 254 

estimating crossover rate (Liu et al., 2015). This dataset includes three monogynous colonies 255 

(one queen per colony). One queen (diploid) and multiple drones (haploids) were sampled from 256 
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all three colonies. Six additional workers (diploids) were sampled from one of the colonies. Also, 257 

three drones were sequenced twice. We therefore expect that from a single colony, (1) the drones 258 

and the queen share a kinship of 0.5, (2) the workers and the queen share a kinship of 0.25, (3) 259 

the drones share a kinship of 0.5 with each other, (3) the workers share a kinship of 0.375 (full-260 

siblings) or 0.125 (half-siblings) with each other, (4) the drones and workers share a kinship of 261 

0.25, and (5) the two sequences from the same drone share a kinship of 1 with each other. 262 

The genomic raw reads were downloaded from NCBI and mapped to reference genome 263 

(GCF_000002195.4) with BWA mem ver. 0.7.17. Duplicated reads were filtered with samtools 264 

ver. 1.9 and SNPs were called with bcftools ver. 1.9. To avoid identifying SNPs due to indels, 265 

we applied four filters: (1) the repetitive regions identified by RepeatMasker, (2) sites with read 266 

depth higher than 1.3X mean depth or lower than 0.75X mean depth, (3) sites with minor allele 267 

frequency lower than 0.01 and (4) sites that are called heterozygous in any haploid individuals 268 

(drones). All filtered SNPs (N=1,008,683) were used to estimate kinship without LD correction. 269 

As the previous section, for KIMGENS, the threshold t was arbitrarily set to 0.1. To compare 270 

KIMGENS with other published estimators, we sampled one every twenty SNPs to avoid 271 

segmentation faults for these other estimators. 272 

 273 

Results and discussion 274 

Evaluation of the methods under a panmictic population 275 

We simulated a single large family in haplodiploidy with 100k sites in a panmictic 276 

population (Supplementary Table 1 and Supplementary Figure 1) and compared the performance 277 

of exKING-robust and KIMGENS, for each ploidy level of the individuals of interests (diploid, 278 

haploid-diploid or haploid). For diploid pairs of individuals, the estimates from both exKING-279 
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robust and KIMGENS are accurate with no bias and small RMSE (Figure 1, Supplementary 280 

Table 2). The same is observed for haploid-diploid and haploid pairs (Figure 1, Supplementary 281 

Table 2). The variance of estimates is usually higher in haploid pairs and lower in diploid pairs, 282 

likely due to the fact that the amount of allelic data is halved in haploid compared to diploid 283 

individuals, causing a precision decrease.  284 

 285 

Comparison with previous methods in panmictic and structured populations 286 

We compared the performance of KIMGENS with other relatedness estimators 287 

implemented in the package PolyRelatedness, including Huang2014 (MOM), Huang2015 288 

(MLE), Ritland1996 and Loiselle1995 (Huang et al., 2015; Loiselle et al., 1995; Ritland, 1996). 289 

We simulated 11 families from a panmictic or structured population (Supplementary Table 1 and 290 

Supplementary Figure 2).  291 

In a panmictic population, the performance of KIMGENS outcompetes all other 292 

estimators in terms of the overall RMSE and bias (Figure 2A, Supplementary Table 3). 293 

KIMGENS performs slightly worse than Huang2015 only when the true kinship is zero. In a 294 

structured population, KIMGENS again outperforms all other methods when the true kinship is 295 

not zero (Figure 2B and Supplementary Table 4). However, KIMGENS has the highest RMSE 296 

and absolute bias when true kinship is zero, and Huang2015 has the lowest. In the structured 297 

population simulation, there is 1/3 chance that two unrelated individuals are from different 298 

subpopulations. The fixed variants in the subpopulations increase the homozygotic differences 299 

between two individuals and hence lower the kinship estimates between unrelated samples using 300 

KING-robust-based strategies (Manichaikul et al., 2010). Also, note that Huang2015 performs 301 

the best when the true kinship equals zero in both conditions (Supplementary Table 4). This is 302 
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likely because Huang2015 uses a maximum likelihood strategy searching for IBD on a parameter 303 

space, where the lower bound of the parameter space is zero (Huang et al., 2015). If negative 304 

kinship is a concern, one can enforce a lower bound of zero for all estimators. In our simulations, 305 

this would vastly improve the bias and RMSE of KIMGENS when the true kinship is zero, 306 

without affecting the performance when the true kinship is positive. 307 

 308 

Estimates in an admixed population 309 

Although estimating kinship in an admixed population is not the goal of this project, we 310 

explored the robustness of KIMGENS in admixed population. First, we simulated the single-311 

family pedigree in an admixed population to evaluate the performance of exKING-robust and 312 

KIMGENS (Supplementary Table 1 and Supplementary Figure 1). Like previous reports on 313 

KING-robust (Conomos et al., 2016), the accuracy of both estimators drops compared to the 314 

estimates in a panmictic population because the individuals from a single family may have 315 

different ancestries (Supplementary Table 5 and Supplementary Figure 5). Similarly to the 316 

panmictic population simulation, the estimates in haploid and diploid pairs of individuals have 317 

slightly higher and lower RMSE, respectively. KIMGENS also performs slightly better than 318 

exKING-robust in terms of RMSE and bias.  319 

We further compared KIMGENS with aforementioned estimators using the 11-family-320 

pedigree (Supplementary Table 1 and Supplementary Figure 2). In this admixture simulation, 321 

KIMGENS has lower absolute bias than all other estimators but a RMSE slightly higher than 322 

Huang 2015 (Figure 2C and Supplementary Table 6). The relatively high RMSE is also driven 323 

by the lower kinship estimates on unrelated individuals due to the same reasons discussed in the 324 

last section. 325 
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 326 

Estimates on inbred individuals 327 

Like KING-robust, KIMGENS is not designed to calculate kinship in inbred populations, 328 

but we explored its performance for inbred individuals by simulating five families and ten 329 

additional unrelated individuals (half male and half female) in a panmictic population in diploid 330 

or haplodiploid genetic system (Supplementary Table 1 and Supplementary Figure 3). The 331 

unrelated individuals were included because all of the methods being compared require 332 

population allele frequency, which is estimated with the sampled individuals in this study. In a 333 

diploid genetic system, KIMGENS performs slightly better than other estimators overall in terms 334 

of both RMSE and bias (Figure 3A and Supplementary Table 7). However, the RMSE and 335 

absolute bias increase when the individual inbreeding coefficients of the two individuals 336 

increase, and the increasing rate is faster than other kinship estimators, such as Huang2015 and 337 

Loiselle1995.  338 

In a haplodiploid genetic system, KIMGENS has a relatively high overall RMSE and 339 

absolute bias (Figure 3B and Supplementary Table 8), so we broke down the results by the 340 

ploidy of pairs and individual inbreeding coefficients. For diploid pairs, the behavior of 341 

KIMGENS is very similar to that in the diploid simulation (Supplementary Table 8 and 342 

Supplementary Figure 6A). KIMGENS outperforms all other estimators overall, but the accuracy 343 

drops when the individual inbreeding coefficient increases. For haploid pairs, all individuals 344 

have zero inbreeding coefficients and KIMGENS also performs better than other estimators 345 

(Supplementary Table 8 and Supplementary Figure 6C). However, for haploid-diploid pairs, 346 

KIMGENS performs worse than other estimators overall except for exKING-robust and also 347 

when individual inbreeding coefficients are higher than zero (Supplementary Table 8 and 348 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.465018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.19.465018


 17 

Supplementary Figure 6B). Like diploid pairs, the kinship estimates decrease under a higher 349 

degree of inbreeding (Supplementary Table 8 and Supplementary Figure 6B). This correlation is 350 

essentially the same underestimation as when the individuals in the pair of interest are from two 351 

different subpopulations.  352 

 353 

Performance on biological data 354 

The kinship estimates on the honeybee dataset using KIMGENS are close to expectations 355 

in all within-colony relationships except for workers-workers (Figure 4; Supplementary Table 9). 356 

Kinship estimates between workers can be clustered into three groups: 0.125, 0.25 and 0.375. 357 

While estimates at 0.125 and 0.375 between workers are expected for full-siblings and half-358 

siblings, estimates at 0.25 are unexpected, but is likely the result of paternal relatedness. For 359 

example, the kinship between two workers whose fathers are siblings equals 0.25. In addition, 360 

we found that individuals between different colonies share a considerably high degree of kinship 361 

(mean= 0.08) (Figure 4). We hypothesize that the high degree of kinship is derived from true 362 

background relatedness due to breeding management of the bee farm. The background 363 

relatedness may also contribute to the positive biases of kinship estimates between workers 364 

within a single family–that is, the putative half-siblings may have distantly related fathers 365 

(Supplementary Table 9). 366 

The performance of KIMGENS on the subsampled dataset is similar to that on the whole 367 

dataset, while all other estimators underestimate kinships on the subsampled dataset when the 368 

true kinships are lower than 1 (Supplementary Figure 7 and Supplementary Table 10). This 369 

observation supports the usage of KIMGENS on biological datasets. 370 

 371 
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Choice of the kinship threshold t 372 

The only parameter in KIMGENS is the kinship threshold t used to define the set of 373 

relatives for heterozygosity referencing. Without inbreeding in a panmictic or structured 374 

population, the threshold t should not affect the accuracy as long as it is positive. However, 375 

admixture may elevate unrelated individuals kinship (Figure 2C), and inbreeding can lower the 376 

heterozygosity in some individuals, so the choice of t needs to be taken into consideration.  377 

The threshold t can affect two factors: the accuracy of heterozygosity referencing and the 378 

number of reference individuals. In order to identify diploid individuals that can represent the 379 

heterozygosity of the individuals of interest (in a same population), one should consider a higher 380 

t, but a higher t may reduce the number of heterozygosity references. A lower number of 381 

references should not directly affect the accuracy of kinship estimation. For example, although 382 

there are 46 drones in the honeybee dataset and only nine females, the female honeybees are 383 

closely related to the drones and hence can represent the heterozygosity of the drones well. 384 

However, if a dataset includes numerous inbreeding events, using a high t may result in only 385 

referencing the inbred individuals, and the kinship estimation will be inaccurate, so a lower t 386 

should be considered. In some extreme cases, it may be that KIMGENS cannot estimate kinship, 387 

if zero diploid relatives are available for a pair of haploid individuals. In this case, one may 388 

choose zero for threshold t, which allows referencing unrelated individuals from the same 389 

subpopulation for heterozygosity.  390 

To explore the effect of using unrelated individuals as heterozygosity references on 391 

kinship estimation for haploid pairs of individuals, we simulated one family and twenty unrelated 392 

diploids in a structured or admixed population (Supplementary Table 1 and Supplementary 393 

Figure 4). We first estimated kinships regularly using a threshold t at 0.1 with KIMGENS. Then, 394 
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we removed all diploid individuals within the family, leaving the unrelated diploids in the dataset 395 

only and estimated kinship using a threshold t at 0. In a structured population, both the RMSE 396 

and absolute bias are higher when using non-relatives compared to using relatives, but the 397 

estimates are still accurate (Supplementary Table 11 and Supplementary Figure 8A). In admixed 398 

populations, the RMSE and bias are also higher when using non-relatives; however, the RMSE is 399 

noticeably higher when the true kinship is over zero (Supplementary Table 11 and 400 

Supplementary Figure 8B). This is likely due to the complex ancestry of the individuals in 401 

admixed populations, resulting in non-relatives providing a significantly worse heterozygosity 402 

reference than relatives. Of note, in 1% of the pairs of interest, there were no diploid individuals 403 

with a kinship above 0 (but less than 0.1) with either haploid individual in the pair, so no kinship 404 

was estimated for these pairs. Using a negative threshold t can resolve the issue, but these 405 

estimates should be interpreted with extra caution. 406 

 407 

Conclusions 408 

Here we present new kinship estimators for mixed haploid-diploid populations that are 409 

robust to population structure. We demonstrate the accuracy of KIMGENS in panmictic, 410 

structured and admixed simulated populations as well as in a biological dataset. Simulations and 411 

biological datasets indicate that KIMGENS performs better than previously developed kinship 412 

estimators, but one may choose to use previously developed kinship estimators when the dataset 413 

contains many multiallelic loci or individuals of interest with high degree of inbreeding 414 

coefficient. The methods are implemented in an R package available on github 415 

(https://github.com/YenWenWang/HapDipKinship) for researchers studying population 416 

genomics in mixed ploidy systems. 417 
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Figures 467 

 468 

Figure 1. Distribution of kinship estimates of exKING-robust and KIMGENS in a panmictic 469 

population. Boxplots show the median, first and third quartiles, and range of each distribution. 470 

 471 

 472 

Figure 2. Kinship estimates of different estimators in panmictic (A), structured (B) and admixed 473 

(C) populations. 474 
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 476 

Figure 3. Performance of different estimators on inbred diploid (A) and haplodiploid (B) 477 

populations. A thousand points were chosen randomly to be presented on each plots. Diagonal 478 

line: estimated kinship = true kinship. f1+f2: the sum of inbreeding coefficients of the two 479 

individuals in a pair of interest.  480 

 481 

 482 

Figure 4. Kinship estimates from KIMGENS on three honeybee colonies. Gray dots indicate 483 

each kinship estimate between workers. The “same individual” category consists of pairs of 484 

sequence data sets from the drones that were sequenced twice. Stars indicate expected kinship. 485 
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