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Abstract
A central problem in vision sciences is to understand how humans recognise objects
under novel viewing conditions. Recently, statistical inference models such as
Convolutional Neural Networks (CNNs) seem to have reproduced this ability by
incorporating some architectural constraints of biological vision systems into machine
learning models. This has led to the proposal that, like CNNs, humans solve the
problem of object recognition by performing a statistical inference over their
observations. This hypothesis remains difficult to test as models and humans learn in
vastly different environments. Accordingly, any differences in performance could be
attributed to the training environment rather than reflect any fundamental difference
between statistical inference models and human vision. To overcome these limitations,
we conducted a series of experiments and simulations where humans and models had no
prior experience with the stimuli. The stimuli contained multiple features that varied in
the extent to which they predicted category membership. We observed that human
participants frequently ignored features that were highly predictive and clearly visible.
Instead, they learned to rely on global features such as colour or shape, even when these
features were not the most predictive. When these features were absent they failed to
learn the task entirely. By contrast, ideal inference models as well as CNNs always
learned to categorise objects based on the most predictive feature. This was the case
even when the CNN was pre-trained to have a shape-bias and the convolutional
backbone was frozen. These results highlight a fundamental difference between
statistical inference models and humans: while statistical inference models such as
CNNs learn most diagnostic features with little regard for the computational cost of
learning these features, humans are highly constrained by their limited cognitive
capacities which results in a qualitatively different approach to object recognition.

Author summary
Any object consists of hundreds of visual features that can be used to recognise it. How
do humans select which feature to use? Do we always choose features that are best at
predicting the object? In a series of experiments using carefully designed stimuli, we
find that humans frequently ignore many features that are clearly visible and highly
predictive. This behaviour is statistically inefficient and we show that it contrasts with
statistical inference models such as state-of-the-art neural networks. Unlike humans,
these models learn to rely on the most predictive feature when trained on the same data.
We argue that the reason underlying human behaviour may be a bias to look for
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features that are less hungry for cognitive resources and generalise better to novel
instances. This may be why human vision overly relies on global features, such as shape,
and glosses over many other features that are perfectly diagnostic. Models that
incorporate cognitive constraints may not only allow us to better understand human
vision but also help us develop machine learning models that are more robust to
changes in incidental features of objects.

Introduction 1

Sometimes we fail to see what’s right in front of our eyes. 2

The seemingly simple task of recognising an object requires contending with a 3

multitude of problems. Humans can recognise something as a “chair” for a vast range of 4

lighting conditions, distances to the retina, viewing angles and contexts. We can 5

recognise chairs made out of wood, metal, plastic and glass. Thus, to classify something 6

as a chair, the brain must take the image of the object projected onto the retina and 7

convert it into an internal representation that remains invariant under all these 8

conditions [8]. A lot of effort in psychology, computational neuroscience and computer 9

vision has gone into understanding how the brain constructs these invariant 10

representations [7, 57]. 11

One hypothesis is that the brain learns these invariant representations from the 12

statistics of natural images [22, 7]. But till recently, it has proved challenging to 13

construct scalable statistical inference models that learn directly from natural images 14

and match human performance. A breakthrough has come in recent years from the field 15

of artificial intelligence. Deep Convolutional Neural Networks (CNNs) are statistical 16

inference models that are able to match, and in some cases exceed, human performance 17

on some image categorisation tasks [34]. Like humans, these models show impressive 18

generalisation to new images and to different translations, scales and viewpoints [23]. 19

And like humans, this capacity to generalise seems to stem from the ability of Deep 20

Networks to learn invariant internal representations [15]. It is also claimed that the 21

learned representations in humans and networks are similar [30, 23, 47]. These results 22

raise the exciting possibility that Deep Networks may finally provide a good model of 23

human object recognition [28, 60, 6, 45] and perhaps even provide important insights 24

into visual information processing in the primate brain [5, 63, 24, 46, 40]. 25

Many reasons could be, and are, given for why CNNs have succeeded where previous 26

models have failed [34, 2]. For example, it is often argued that CNNs excel in image 27

classification because they incorporate a number of key insights from biological vision, 28

including the hierarchical organization of the convolutional and pooling layers [33]. In 29

addition, both systems are thought to implement optimisation frameworks, generating 30

predictions by performing statistical inferences [64, 46]. Indeed, evidence suggests that 31

humans perform some form of statistical optimisation for many cognitive tasks including 32

language learning [49], spatial cognition [11], motor learning [27] and object perception 33

[22]. Due to this architectural and computational overlap between the two systems it 34

might seem reasonable to hypothesise that humans and CNNs end up with similar 35

internal representations. 36

However, the parsimony and promise of this hypothesis is somewhat dampened by 37

recent studies that have shown striking differences between CNNs and human vision. 38

For example, CNNs are susceptible to small perturbations of images that are nearly 39

invisible to the human eye [16, 43, 9]. They often classify images of objects based on 40

statistical regularities in the background [58], or based on texture of objects [36, 12] and 41

even based on single diagnostic pixels present within images [38]. That is, CNNs are 42

prone to overfitting, often relying on predictive features that are idiosyncratic to the 43

training set [13]. 44
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To what extent do these findings reflect fundamental differences between statistical 45

inference models and human vision? On the one hand, such differences could be simply 46

down to differences in training data [10, 21, 12]. While human beings have a lifetime of 47

experience in recognising and interacting with 3D objects, CNNs are trained to classify 48

images from fairly homogeneous training sets such as ImageNet. On the other hand, 49

these differences may arise out of fundamental differences in resource constraints posed 50

on the two systems. While both systems have the same learning objective, humans have 51

to learn to classify objects under a limited set of cognitive and physiological resources, 52

such as limited working memory [1], attention [62] and metabolic costs [52, 26]. So 53

unlike standard CNNs, the computational time and cost is a key consideration for 54

humans when choosing the stimulus feature for carrying out a task. 55

In this study, we explore the extent to which humans, like CNNs, are driven by 56

performing statistical inferences when learning to categorise novel objects. To ensure 57

that any difference in performance was not driven by familiarity with objects due to 58

past experience, we developed a novel set of images, where each image contained 59

multiple diagnostic features. These features predicted category membership of an image 60

with a fixed probability. We conducted a series of experiments where we presented these 61

novel images and their category labels to (i) human participants, (ii) an ideal inference 62

model, and (iii) a CNN. After participants (humans or models) had observed a sequence 63

of images and their category memberships, they were asked to predict the category of 64

unseen images containing a subset of the diagnostic features. We used the ideal inference 65

model to predict the best feature for making these decisions based on observations in an 66

experiment. We then compared the features predicted by this model to the ones used by 67

the CNN and humans. Our objective was to see whether human inferences match the 68

statistical inferences predicted by the ideal inference model and the CNN. 69

We observed that (i) human participants frequently ignored features that were clearly 70

visible and highly predictive and instead relied on reasonably diagnostic global features – 71

such as overall shape or colour – when these features were present, (ii) when global 72

feature were absent, participants struggled to learn some tasks entirely, even though 73

they contained other highly predictive features, (iii) when multiple global features were 74

concurrently present (e.g. overall shape as well as colour), participants frequently 75

selected only one of the predictive features even though the optimal policy was to learn 76

multiple features simultaneously, (iv) even when the relevant features were pointed out 77

at the beginning of the experiment, participants still struggled to classify objects based 78

on these features, highlighting that limitations in cognitive resources play a fundamental 79

role in how humans learn the task, (v) in contrast, both statistical inference models 80

placed a large emphasis on the most predictive feature, regardless of the computational 81

resources required to learn the feature, and (vi) even when CNNs were trained to have a 82

shape-bias [12, 20], this bias is lost as soon as they were trained on a new dataset with a 83

different bias and CNNs learned whatever feature was most diagnostic. 84

These results highlight important differences in how human participants and 85

statistical inference models learn to extract features from novel objects. Instead of an 86

optimisation approach that underlies many machine learning models, we argue that 87

human behaviour is much more in line with a satisficing account [53], where features are 88

selected because they allow participants to perform reasonably on the task while taking 89

into account their limited cognitive resources. While performing statistical inferences is 90

certainly important, models of vision must also consider the cognitive costs and biases 91

in order to be realistic theories of human object recognition. 92
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Fig 1. Examples of training images from Experiments 1 and 2. Each stimulus contains
one or two predictive features and was constructed by varying the colour, size and
position of patches and segments. (a) Two features predict stimulus category: global
shape and location (xcat, ycat) of one of the patches. For illustration, the predictive
patch is circled. Stimuli in the same category (middle row, reduced size) have a patch
with the same colour at the same location, while none of the stimuli in any other
category (bottom row) have a patch at this location. (b) Global shape and colour of one
of the segments predict stimulus category. Only stimuli in the same category (middle
row) but not in any other category (bottom row) have a segment of this colour (red).
The right-most stimulus in the middle row shows an example of a training image
containing a non-shape feature (red segment) but no shape feature. For further
illustration of stimuli used in these and other experiments, see Appendix E and
Movies S1 and S2 in Supplementary Information.

Results 93

Behavioural tasks and Simulations 94

The behavioural tasks mimicked the process of learning object categorisation through 95

supervised learning. In each experiment, participants were trained to categorise 96

artificially generated images into one of five categories. Each image consisted of 97

coloured patches that were organised into segments. These segments were, in turn, 98

organised so that they appeared to form a solid structure. The exact location, size and 99

colour of patches as well as segments varied from images to image, making each 100

stimulus unique and avoiding any unintentional diagnostic features. See Figure 1 for 101

some example images. 102

For each experiment, we constructed a dataset of images where one or more 103

generative factors – features – predicted the category labels. In Experiments 1 to 4, 104

images were drawn from datasets with two predictive features. One of these features 105
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Table 1. Feature combinations examined in different experiments

Experiment Features % Shape

Global
Shape

Patch
Location

Segment
Colour

Average
Size

Global
Colour

Exp 1a 100%

Exp 1b 80%

Exp 2a 100%

Exp 2b 80%

Exp 3a 100%

Exp 3b 80%

Exp 4a 100%

Exp 4b 80%

Exp 5 0%

Exp 6 0%
Rows correspond to experiments and columns correspond to features. A shaded cell indicates
that the feature in that column was used in the experiment in that row. The last column
shows the proportion of training trials that contain a diagnostic shape. In Experiments 1–4
each participant saw stimuli that consisted of the combination of features shown in that row.
Experiments 5 and 6 were between-subject designs so that participants were allocated to four
(Experiment 5) or three (Experiment 6) groups and each participant saw stimuli with only one
non-shape diagnostic feature.

was shape (the global configuration of segments) while the other feature was different in 106

each experiment. In Experiment 1, the second feature was the location of a single patch 107

in the image – that is, all images of a category contained a patch of a category-specific 108

colour at a particular location (and none of the images from other categories contained 109

a patch at this location). In Experiment 2, this feature was the colour of one of the 110

segments – that is, all images assigned to a category contained a segment of a particular 111

colour (and none of the images from other categories contained a segment of this 112

colour). In Experiment 3, the second feature was the average size of patches – all 113

patches in an image had similar sizes and the average size was diagnostic of the category. 114

In Experiment 4, this feature was the colour of patches – all patches in an image had 115

the same colour and images of different categories had different colours. In 116

Experiment 5 and 6, all images had only one predictive feature. This was either patch 117

location, segment colour, patch size or overall colour; but none of the categories had a 118

predictive shape. 119

Table 1 summarises the different combinations of features that were examined in the 120

behavioural tasks in this study. Examples for all Experiments are shown in Appendix E 121

and two movies illustrating the predictive features in Experiments 1 and 2 can be seen 122

in Movies S1 and S2 in Supporting Information. 123

In Experiments 1 to 4, training blocks were interleaved with test blocks which 124

presented novel images that had not been seen during training. Each test block 125

contained four types of test trials – Both, Conflict, Shape and Non-shape – that 126

were designed to reveal the feature(s) used by the participant to categorise images. 127

Trials in the Both condition contained the same combination of features that predicted 128

an image’s category during training. Conflict trials contained images with shape 129

feature from one category and the second feature was swapped from another category. 130
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Shape trials contained images with only the shape feature and a non-predictive value of 131

the second feature. Finally, the Non-Shape trials contained images where the five 132

segments were placed at random locations on the canvas, giving the stimulus no 133

coherent shape, but each image contained the second predictive feature. Examples of 134

these test trials are shown in Appendix E. 135

We can infer the features that a participant uses by looking at the pattern of 136

performance across the test conditions. There are four possible patterns. If a 137

participant relies on shape, they should perform well in trials where shape predicts the 138

image category. Thus their pattern of performance should be high, high, high, and low 139

in the Both, Conflict, Shape, and Non-shape conditions, respectively. In contrast, if 140

the participant relies on the non-shape feature, this pattern should be high, low, low, 141

high. If a participant uses both (shape and non-shape) features, the pattern should be 142

high, medium, high, high, where a “medium” performance in the Conflict condition is 143

indicative of the fact that the two cues (features) learnt by the participant will compete 144

with each other in these trials. Finally, if a participant does not learn either feature, 145

their performance should be low in all four conditions. For a similar methodological 146

approach for determining features used to categorise novel stimuli see [14]. 147

In each experiment, we compared the behaviour of participants with two statistical 148

inference models: an ideal inference model and a CNN. The ideal inference model 149

computes what should a participant do if they wanted to be statistically as efficient as 150

possible and use all the information available during training trials. It uses a sequential 151

Bayesian updating procedure to compute the probability distribution over category 152

labels given the training data and a test image. Similarly, the CNN computes the 153

most-likely category-label for an image by learning a mapping between images in the 154

training set and their category labels. Thus, it makes an approximate statistical 155

inference by approximating a regressive model [18, p85–89]. Both models are described 156

in Materials and Methods below. 157

Both features equally predictive 158

Figure 2a shows the pattern of performance in the final test block in Experiments 1a, 159

2a, 3a, and 4a. In these tasks, both shape and non-shape features perfectly and 160

independently predict the category label during training. Thus the learner could use 161

either (or both) features to learn an image’s category. The top row shows the pattern of 162

performance for the ideal inference model. In all four tasks, this model predicts that the 163

probability of choosing the correct category is high in the Both, Shape and Non-shape 164

conditions. This indicates that there is enough information in the training trials for all 165

four experiments to predict the category label based on either the shape or the 166

non-shape feature. 167

The middle row shows the pattern of performance for the CNN model. In all four 168

tasks, the network showed high accuracy in the Both condition – showing an ability to 169

generalise to novel (test) stimuli, as long as both shape and non-shape features were 170

preserved in the stimuli. It showed a low accuracy in the Conflict condition, but high 171

accuracy in the Non-shape condition. Its performance in the Shape condition was 172

above chance in Experiments 1a, 2a and 3a and at chance in Experiment 4a. The 173

above-chance performance in the Shape condition implies that this network is able to 174

pick up on shape cues. However, its performance is significantly lower in the Shape 175

condition compared to the Non-shape condition. When these two cues competed with 176

each other, in the Conflict condition, the network favoured the non-shape cue and the 177

accuracy was at or below chance. These results indicate that the CNN learns to 178

categorise using a combination of shape and non-shape features. 179

It is also worth noting that, unlike the ideal inference model, the CNN showed a bias 180

towards relying on non-shape features in all experiments, even though it would be ideal 181
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(a) Both features equally predictive
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(b) Non-shape feature more predictive
Fig 2. Results in Experiments 1–4. Each column corresponds to an experiment
and each row corresponds to the type of learner (ideal inference model, CNN or human
participants). The top row shows the posterior probability of choosing the labelled class
for a test trial given the training data. The bottom two rows show categorisation
accuracy for this labelled class. Each panel shows four bars that correspond to the four
types of test trials. Patch, Segment, Size and Colour refer to the Non-shape test
trials in Experiments 1, 2, 3 and 4, respectively. Error bars show 95% confidence and
dashed black line shows chance performance. In any panel, a large difference between
the Both and Conflict conditions shows that participants rely on the non-shape cue to
classify stimuli. Both models show this pattern while humans show no significant
difference.

(from an information-theoretic perspective) to learn both features in parallel. A similar 182

result was observed by Hermann and Lampinen [20], who found that when multiple 183

features predict the category, CNNs preferentially represent one of them and suppress 184

the other. 185

The bottom row shows the average accuracy in the four experiments for human 186

participants (N=25 in each task). Like the ideal inference model and the neural network 187

model, participants showed high accuracy in the Both condition (mean accuracy was 188

between 70% (in Experiment 1a) and 89% (in Experiment 4a). This indicates an ability 189

to generalise to novel (test) stimuli as long as shape and non-shape features were 190

preserved. However, their pattern of performance across the other three conditions were 191

in sharp contrast to the two models. In Experiments 1a, 2a, and 3a, participants showed 192

a high-high-high-low pattern in the Both-Conflict-Shape-Non-shape conditions, 193

indicating that they strongly preferred the shape cue over the non-shape cue. In fact, 194

performance in the Non-shape trials was at chance in all three tasks with mean 195

accuracy ranging from 20% to 24%. Single sample t-tests confirmed that performance 196

was statistically at chance in all three tasks (largest t(24) = 0.99, p > .05). Thus, unlike 197

the ideal inference model, which learnt both predictive cues, participants chose one of 198

these cues. And unlike the neural network model, which favoured the non-shape cue, 199

participants preferred to rely on shape. 200

The behaviour of participants was different in Experiment 4a, where the non-shape 201

cue was the colour of the entire figure. Performance was again high in the Both 202

condition, but significantly lower in the Conflict, Shape and Non-shape conditions 203

(F (3, 72) = 8.18, p < .01, η2p = .25). So, on average, participants seemed to be using 204

both shape and non-shape (colour) cues to make their decisions, but neither feature was 205

strongly preferred over the other. This behaviour seemed to be qualitatively similar to 206

the ideal inference model, which learnt to use both predictive cues simultaneously. 207
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However, examining each participant separately, we found that participants could be 208

grouped into two types, those that primarily relied on shape (N=12) and those that 209

relied on colour (N=13). Participants were categorised as relying on colour if 210

performance in the Non-shape condition was above performance in the Shape 211

condition. Figure S4 in Appendix B shows the average pattern of performance for each 212

of these groups. The first group shows a high-low-low-high pattern, indicating that they 213

were predominantly using the colour cue to classify test images. The second group 214

shows a high-high-high-low pattern, indicating that they were predominantly using the 215

shape cue. Mixing these two groups of participants results in the 216

high-medium-medium-medium pattern shown in Figure 2a. 217

One feature more predictive than the other 218

Our next step was to check what happens when one of the features predicts the 219

category better than the other. If CNNs and humans are driven by performing 220

statistical inferences, we expect both systems to start relying on the feature that is 221

better at predicting the category label. In Experiments 1b, 2b, 3b, and 4b the shape 222

feature predicted the category label in only 80% of the training trials. The remaining 223

20% images contained horizontal and vertical segments placed at random locations on 224

the canvas so that these images contained no coherent shape. The second feature (patch 225

location, segment colour, patch size or overall colour) predicted the category label in 226

100% of training trials. See Figures 1 and S12 for some examples of training images that 227

do not contain a shape feature but contain a non-shape feature. Figure 2b shows the 228

performance for the two models as well as human participants (N=25 in each task). The 229

ideal inference model (top row) showed a very similar performance, again predicting 230

that a participant should learn both features simultaneously. Its accuracy on non-shape 231

feature was slightly better. This is a consequence of larger number of samples 232

containing non-shape cues. In contrast, the performance for the CNN model was 233

significantly different. In all experiments, the model now showed a high–low–low–high 234

pattern, with performance in the Shape condition close to chance in most experiments. 235

Thus, the CNN model started relying almost exclusively on the (more predictive) 236

non-shape feature. 237

In contrast to both models, participants continued showing a high–high–high–low 238

pattern in Experiments 1b, 2b, and 3b, indicating a clear preference for relying on shape. 239

It should be noted that this happens even though shape is not the most predictive 240

feature. In fact, performance in the Non-shape condition was at chance (mean accuracy 241

ranged from 18% to 24%, largest t(24) = 1.74, p > .05 when compared to chance level), 242

showing that participants completely ignored the most predictive feature. 243

The behaviour of participants was again different in the experiment using colour of 244

entire figure as the non-shape cue (Experiment 4b). Average accuracy across 245

participants was high in the Both condition, but significantly lower in the Conflict, 246

Shape, and Non-shape conditions (F (3, 72) = 22.68, p < .01, η2p = .49). Like 247

Experiment 4a, examining each participant separately in Experiment 4b showed that 248

participants could be divided into two groups – those that learnt to rely on shape and 249

those that learnt to rely on colour. However, the ratio of participants in these groups 250

changed. While 12 participants (out of 25) relied on shape in Experiment 4a, 7 251

participants (out of 25) relied on it in Experiment 4b (see Figure S5 in Appendix B). 252

Effect of previous training on CNN behaviour 253

In the above experiments, we observed that the participants systematically deviated 254

from the two statistical inference models. This contrast was particularly noteworthy in 255

Experiments 1b-4b. Here, the non-shape feature was more predictive than shape but 256
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Fig 3. Results for pre-training on a dataset with a shape-bias. The first row
shows results when the CNN was pre-trained on the Style-transfer ImageNet [12] and
allowed to learn throughout the network. The second row shows results of the same
network when weights for all convolution layers are frozen. First column shows results
when both features are equally likely (Experiments 1a, 2a, 3a and 4a) while the second
column shows results when the non-shape cue is more predictive (Experiments 1b, 2b,
3b and 4b). In all panels, we again observed a large difference between the Both and
Conflict conditions, indicating that despite pre-training, models relied heavily on the
non-shape cue to classify stimuli.

participants still focused on global features like shape. In contrast, the CNN preferred 257

to rely on the more predictive (non-shape) feature. So we wanted to explore whether 258

CNNs can be made to behave like humans through training. A recent set of studies 259

have suggested that CNNs indeed start showing a shape-bias if they are pre-trained on 260

a dataset that contains such a bias [12, 21]. However, after the network had been 261

pre-trained on the first set with a shape-bias, these studies did not systematically 262

manipulate how well each feature predicted category membership in the new set of 263

images. This is a crucial manipulation in the above studies that allowed us to more 264

directly assess the feature biases of CNNs, and our results suggest that the CNN learns 265

to rely on the most diagnostic feature in this new set. 266

To test the effect of pre-training, we used the same CNN as above – ResNet50 – but 267

this time pre-trained on the Style-transfer ImageNet database created by [12] to 268

encourage a shape-bias. We then trained this network on our task under two settings: 269

(i) the same setting as above, where we retuned the weights of the network at a reduced 270

learning rate, and (ii) an extreme condition where we froze the weights of all convolution 271

layers (that is 49 out of 50 layers) limiting learning to just the top (linear) layer. 272

The results under these two settings are summarised in Figure 3. In line with 273

previous results [12, 21], we observed that this network had a larger shape-bias – for 274

example, it predicts the target category better in the Shape condition than the network 275

pre-trained on ImageNet (compare with the middle row in Figure 2). In some cases, this 276

makes the network behave more like the ideal inference model, where it is able to 277

predict the category based on either shape or non-shape features. But this pattern is 278

still in contrast with participants who were at chance when predicting based on 279

non-shape features in Experiments 1–3. Crucially, when the non-shape feature is made 280

more predictive, the network shows a bias towards this feature, showing the same 281

high-low-low-high pattern observed above (Figure 3, top right). Even under the extreme 282

condition, where we froze the weights of all except the final layer, the network preferred 283

the non-shape feature as long as this feature was more predictive (Figure 3, bottom 284

right). That is, CNNs do not learn to preferentially rely on shape when learning new 285

categories even when pre-trained to have a shape bias on other categories. 286
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(b) Learning in absence of
shape

Fig 4. Each panel in (a) shows how accuracy on the four types of test trials changes
with experience. The top, middle and bottom row correspond to ideal inference model,
CNN and human participants respectively. Columns correspond to different
experiments. The scale on the x-axis represents the number of training trials in the top
row, the number of training epochs in the middle row and the index of the test block in
the bottom row. The two panels in (b) show accuracy in test blocks for humans and
CNN, respectively, when they are trained on images that lack any coherent shape. Each
bar corresponds to the type of non-shape feature used in training.

Dynamics of learning 287

We probed the learning strategy used by models and participants by examining 288

performance at regular intervals during training. If a participant (or model) learns 289

multiple features in parallel, they should show an above-chance performance on both 290

the Shape and Non-shape test trials at the probed interval. If they focus on a single 291

feature, their performance on that feature should be above-chance and match the 292

performance on the Both trials. If they switch between different features over time, 293

their relative performance on Shape and Non-shape trials should also switch over time. 294

Figure 4a shows the performance under the four test conditions over time for 295

Experiments 1b, 2b, 3b and 4b (results for Experiments 1a, 2a, 3a and 4a show a similar 296

pattern and are shown in Appendix C). The ideal inference model shows an 297

above-chance performance on the Shape as well as Non-shape trials throughout 298

learning. This confirms the expectation that the ideal inference model should keep track 299

of both features in parallel. However, this is neither what the CNN nor what human 300

participants do. The CNN shows a bias towards learning the most predictive 301

(non-shape) feature from the outset, with performance on the Non-shape trials closely 302

following performance on the Both trials. Human participants showed the opposite bias, 303

with performance on the Shape trials closely following performance on the Both trials. 304

We did not observe any case where the relative performance on the Shape and 305

Non-shape trials switched over time. This suggests that participants did not 306

systematically explore different features and choose one – rather they continued learning 307

a feature as long as it yielded enough reward. Even in Experiment 4b, where some 308

participants used the colour cue while others used the shape cue, no participant in 309

either group showed any evidence for switching form one feature to the other. 310
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Learning in the absence of shape 311

The above experiments always pit a highly predictive feature against shape. We wanted 312

to know whether participants struggle to learn the predictive local feature even when a 313

diagnostic shape was absent. If participants only fail to learn this feature when a 314

diagnostic shape is present, it indicates a difference in the bias between participants and 315

CNNs (humans prefer global shape, while CNNs prefer more local features). On the 316

other hand, if participants struggle to learn this feature even when it is clearly visible 317

and a diagnostic shape is absent, it indicates a more fundamental limitation in human 318

(but not CNN) capacity to extract these features. To test this, we designed a 319

behavioural task (Experiment 5) where a shape feature was absent from the training set. 320

Like the above experiments, each training stimulus still contained a set of patches and 321

segments, but the segments were not consistently organised in a spatial structure (see 322

Figure S12 in Appendix E for examples of this stimuli). Instead, every training trial 323

contained a non-shape predictive feature. We used the same features as above – patch 324

location, segment colour, patch size or overall colour. Participants were divided into 325

four groups based on the type of predictive feature they were shown in the training 326

trials. The test block consisted of novel images (that were not seen in training) but had 327

the same diagnostic feature as training (equivalent to the Non-shape condition in the 328

above experiments). 329

The average accuracy in test trials for each type of diagnostic feature is shown in 330

Figure 4b. There was a large difference in performance depending on the type of 331

diagnostic feature. When the colour of the entire figure predicted the category, accuracy 332

on test trials was high (M = 98.67%). The responses collected for training trials 333

indicated that participants learned this feature quickly (performance reached 94.40% 334

after 100 training trials). Accuracy in the test block was lower (though still significantly 335

above chance) when the size of patches predicted the category (M = 52.40%) and 336

participants learned this feature at a slower rate. In contrast to these two conditions, 337

participants were unable to learn the other two diagnostic local features. Performance 338

was at chance in test trials both when the colour of a segment predicted the category 339

(M = 21.47%) and when the location and colour of a single patch predicted the category 340

(M = 17.47%). Thus participants seemed sensitive to the computational complexity of 341

the diagnostic feature. They extracted simple features like the colour of the entire figure 342

or the size of patches, but did not extract more complex features like colour of single 343

segment or patch. Figure 4b also shows the performance of the CNN on this task. In 344

contrast to human participants, the network learnt all four types of non-shape stimuli 345

and showed high accuracy on test trials in all four conditions. 346

Identifying versus Learning features 347

In order to discover the correct diagnostic features in the experiments above, a 348

participant must perform two distinct operations: they must identify a diagnostic 349

feature (from a list of all possible features) and match the correct value of this feature 350

to each category. For example, in Experiment 2, the participant must first realise that 351

the diagnostic feature is the colour of each segment. That is, they must find this feature 352

in the space of all possible features (shape, number of patches, location, size, etc.). 353

Secondly, they must map the stimulus on a given trial to the correct category, 354

extracting the colour of all five segments, working out which segment is diagnostic and 355

what the mapping is between the diagnostic colour and category. The second operation – 356

mapping a diagnostic value to a category – is a computationally demanding task as it 357

requires the participant to remember several pieces of information, comparing the 358

features observed in a given stimulus with the features and outcomes of past stimuli. 359

One reason why participants might fail when the CNN succeeds is that humans and 360
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CNNs have very different computational resources available to them. For example, 361

while humans are limited by the capacity of their working memories (the number of 362

features they can process at the same time), CNNs have no such limitations. If this was 363

the case – i.e., if participants were failing because of their limited cognitive resources 364

and not because they were unable to identify the correct feature – we hypothesised that 365

helping the participants identify the diagnostic feature will not improve their 366

performance on these tasks. 367

We checked this hypothesis in Experiment 6 that repeated the design of 368

Experiment 5, where participants saw stimuli that had only the non-shape diagnostic 369

feature and no coherent shape. Instead of letting participants figure out which feature 370

was diagnostic, we informed them of the diaganostic feature in each task and showed 371

them two examples of stimuli with the diagnostic feature (see Materials and Methods 372

for details). Additionally, we increased the duration of each stimulus from 1s to 3s to 373

ensure that participants do not underperform because of the time constraint. Finally, 374

we gave participants an added incentive to learn the task, increasing the possible bonus 375

reward based on their performance in the test block. Participants then completed 6 376

training blocks (50 trials each) where they saw random samples of stimuli from each 377

category. We already know that participants can solve the task when the diagnostic 378

feature was the colour of the entire figure (see Figure 4b above). Therefore, we tested 379

three groups of participants, where each group was trained on stimuli with one of the 380

other three non-shape features – patch location, segment colour or average size – being 381

diagnostic of the category. 382

Fig 5. Results of telling participants the diagnostic cue. Each bar shows mean
accuracy across 10 participants in the test block. Participants were divided into three
groups based on the diagnostic cue – patch location, segment colour, or average size –
used to train the participants.

The results of Experiment 6 are shown in Figure 5. Like Experiment 5, mean 383

performance across participants was above chance in the Size condition but at chance in 384

the Patch and Segment conditions. The overall pattern of results for the three 385

conditions was statistically indistinguishable from the results of Experiment 5. In other 386

words, even when participants were told the diagnostic features and given additional 387

time and incentive to learn the task, they struggled to classify stimuli based on patch 388

location or segment colour. These results confirm the hypothesis that the difficulty of 389

these tasks for human participants is not limited to identifying the diagnostic features. 390

Instead, the cognitive resources required to extract the diagnostic feature value and 391

mapping it to the correct category may play a critical role in how humans select 392

features for object classification. 393
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Discussion 394

In a series of experiments we repeatedly observed that participants failed to pick up 395

highly predictive features of the training set in a visual recognition task. This behaviour 396

contrasted with the ideal inference model as well as the CNN, both of which always 397

learnt to categorise based on the predictive non-shape features. These results pose a 398

challenge for the hypothesis that humans and CNNs have similar internal 399

representations of visual objects. CNNs are designed to learn the statistical 400

dependencies between features and categories via backpropagation. So it is not 401

surprising that they learned to classify objects based on highly predictive features. In 402

contrast, participants were blind to many perfectly predictive statistical regularities – 403

which goes to show that humans do not select features purely through this mechanism 404

of internalising statistical dependencies. This is in keeping with many psychological 405

studies which show that humans prefer to categorise visual objects based on global 406

features, such as overall shape [42, 3, 32, 35]. 407

We also observed that participants diverged from ideal inference model in interesting 408

ways. Not only did they ignore many diagnostic features they could clearly see, they 409

frequently selected only one of several possible features available to learn an 410

input-output mapping (e.g. in Experiment 4 participants chose to classify either based 411

on colour or shape but almost never both, even though this was the optimal policy). 412

Furthermore, in Experiment 6, we observed that even when the relevant features are 413

pointed out, participants still did not learn to classify objects relying on these features. 414

These results highlight that limitations in cognitive resources play a fundamental role in 415

how humans learn the task and suggest that participants are looking for a satisfactory 416

rather than optimal solution to the categorisation problem. In other words, participant 417

behaviour is better explained by a “satisficing” account [53] than an optimising account 418

of object recognition. 419

The contrast in the behaviour of humans and CNNs speaks to an ongoing debate 420

about the role of inductive biases in humans and Deep Neural Networks. Many 421

researchers have suggested that innate inductive biases, such as a shape-bias, are needed 422

to generalize under challenging conditions [31, 50, 13, 66, 17]. But building-in inductive 423

biases is a controversial approach. Instead of imposing constraints on the architectures 424

or learning algorithms of CNNs, some researchers have argued that current models may 425

not display similar biases to humans simply because of limitations in standard training 426

sets (such as ImageNet) where shape is not the most diagnostic feature of object classes. 427

And indeed, studies have shown that standard networks can develop a shape-bias when 428

the training set is designed to make shape the most diagnostic feature for object 429

classification [10, 12, 21, 20]. On this view, the lack of a shape-bias and a corresponding 430

limitation of generalisation in many CNNs reflects a limitation of the training sets, 431

rather than a more fundamental limitation of architecture or learning algorithm. 432

Our findings pose a challenge to this claim. We designed a behavioural task with 433

novel objects that participants had never classified before. We did this to preclude the 434

possibility that participants can use previously learnt diagnostic features of these 435

objects to classify them. When learning to classify these objects, participants 436

systematically relied on shape, even when shape was not the most diagnostic feature 437

(Figure 2b). In other words, unlike CNNs, participants did not need to be trained on a 438

dataset with a shape-bias in order to display a shape-bias. These results support the 439

hypothesis that humans do indeed have an inductive bias to classify objects by shape 440

even when this is not the ideal statistical feature for classification in a given task. Our 441

findings are consistent with recent study that also found DNNs learn to classify images 442

on the basis of simple diagnostic features and ignore more complex features [51]. 443

Interestingly, the focus of this study was not on comparing DNNs to humans, but 444

rather, showing how a simplicity bias limits generalization. 445
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Of course, the participants in our studies had a life-time of exposure to a natural 446

world where shape may be the most diagnostic feature. Accordingly, it is possible that 447

they had acquired a shape-bias early on in life [55] that constrained how the new 448

objects in our experiments were learned. But we observed that CNNs did not adopt a 449

shape-bias in classifying our objects even when we induced a shape-bias in pre-training 450

and when we froze the weights in an attempt to preserve the shape-bias when classifying 451

our new objects. Instead they simply learned whatever features of new object categories 452

were most diagnostic. In other words, even when a network has learned a shape-bias, 453

this bias is wiped out when a new training set contains a non-shape features that are 454

diagnostic of object category. 455

It should also be noted that the behaviour of participants observed here highlights a 456

more extreme form of shape-bias than has been reported before. In a typical shape-bias 457

experiment, the term shape-bias indicates the inductive-bias to rely on shape in the 458

presence of alternative features that are equally good at predicting the target category 459

[32, 55]. In our experiments, we observed that participants relied on shape even in the 460

presence of features that were better at predicting the target category. Furthermore, in 461

two of our experiments (Experiments 5 and 6) there was no consistent shape at all that 462

could be used to predict category membership. In these experiments, participants failed 463

to pick some perfectly predictive statistical features (like location of patch or colour of 464

segment) even in the absence of a diagnostic shape. This blindness towards certain 465

features cannot be explained as a shape-bias as there is no competing shape feature to 466

learn. 467

An important outstanding question is why participants in our study relied on global 468

features such as shape or overall colour whereas CNNs and the ideal inference model 469

learned on the basis of whatever features in the dataset were most predictive. One 470

relevant difference between the models and participants is that the models do not suffer 471

from the same resource limitations as humans. A striking example of this is that CNNs 472

not only succeed in learning to classify millions of images in ImageNet into 1000 473

categories, they can also learn to classify the same number of random patterns of TV 474

static-like noise into 1000 different categories [67], something far beyond the capacity of 475

humans [59]. This capacity was no doubt exploited by the CNNs in the current learning 476

context. By contrast, our participants had to learn the object categories in the face of 477

many well documented cognitive limitations of humans, such as limited capacity of 478

visual short-term memory [1], visual crowding [61, 39] and selective attention [37, 68]. 479

Another difference between humans and CNNs is how they perceive sensory data. 480

While CNNs work with raw pixels, we know that the human visual system has a limited 481

acuity for colour, contrast, location, etc. [48, 56]. However, we do not believe that this 482

limited acuity is the key factor underlying the results above. First of all, we tested 483

acuity to location and colour in a pilot study (see Material and Methods) by asking 484

participants to remember the location and colour of a given patch embedded in a 485

typical stimulus. We found that participants were very good at performing this task, 486

indicating that they were capable of perceiving and remembering the locations of single 487

patches. Indeed, as can be verified by looking at Movies S1 and S2 of the stimuli in 488

Supplementary Information, once the diagnostic patch in a category is pointed out, it is 489

difficult to miss it. Secondly, Experiments 5 and 6 show that participant performance 490

was at chance not only in the Patch condition, but also in the Segment condition, where 491

the diagnostic feature was the colour of a whole segment. There can be no doubt that 492

participants can perceive the colour of the five segments, especially as they were able to 493

use the same colours to classify stimuli in the global Colour condition. Based on the 494

results of Experiment 6, the most plausible explanation of participant behaviour is that 495

limited cognitive resources play a critical role in which features they select for 496

classification. Indeed, limited cognitive resources may also explain why humans have a 497
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shape-bias in the first place. Shape may be a compact code – a low-dimensional 498

representation that ignores many details of the object – that is not only highly 499

diagnostic of object categories, but a well suited feature for a brain with limited 500

resources. 501

Whatever the origin of the shape-bias, the results here should give pause for thought 502

to researchers interested in computational models of visual object recognition. These 503

results show that humans are blind to a wide range of non-shape predictive features 504

when classifying objects, and if models are going to be used as theories of human vision, 505

they should be blind to these features as well. This may result not only in models that 506

are more psychologically relevant, but also capture the robustness and generalisability of 507

the human visual system that is lacking in current models [13, 50, 9]. 508

Materials and Methods 509

Experimental Details 510

Materials We constructed nine datasets of training and test images. There were 2000 511

training images and 500 test images in each dataset. Each image consisted of 30–55 512

coloured patches on a white background. The colours of patches were sampled from a 513

palette of 20 distinct colours so that they were clearly discernible. These patches were 514

organised into five segments. There were four short segments (consisting of 5–10 515

patches) and one long segment (consisting of 10–15 patches). Each segment was 516

oriented either vertically or horizontally. Images were grouped into five target categories 517

and each category was paired with a unique spatial configuration of segments. It is this 518

spatial configuration of segments that we refer to as shape. All images in a category also 519

contained a second diagnostic feature, which was the location and colour of a patch in 520

Experiment 1, the colour of a segment in Experiment 2, the average size of patches in 521

Experiment 3 and the colour of all the segments in Experiment 4. 522

Within each category, images were randomly generated and varied in the number, 523

colour, location and size of patches. This variability ensured that (i) participants 524

(human and CNN) had to generalise over images to learn the category mappings, and 525

(ii) there were no incidental local features that could be used to predict the category. 526

The exact number of patches in each segment was sampled from a uniform distribution; 527

the size and location of each patch was jittered (around 30%); and the colour of each 528

patch (Experiments 1 and 3) or each segment (Experiment 2) was randomly sampled 529

from the set of (non-diagnostic) colours. In addition, each figure was translated to a 530

random location on the canvas and could be presented in one of four different 531

orientations (0, π/2, π and 3π/4 radians). 532

The original size of images was 600x600 pixels. This was reduced to 224x224 pixels 533

for the simulations with CNNs. For the behavioural experiments, the stimuli size was 534

scaled to 90% of the screen height (e.g. if the screen resolution was 1920x1080 the image 535

size would have been 972x972). This ensured that participants could clearly discern the 536

smallest feature in an image (a single patch) which we confirmed in a pilot study (see 537

Procedure below). 538

Participants Participants were recruited and reimbursed through Prolific. In 539

Experiments 1-4 there were N = 25 participants per experiment (total N = 200), and in 540

Experiments 5 and 6 there were 10 participants per experimental condition (N = 40 in 541

Experiment 5, and N = 30 in Experiment 6). In the first 5 experiments participants 542

received 4 GBP for participating in the experiment and could earn an additional 2 GBP 543

depending on average accuracy in the test blocks. In Experiment 6 the incentive was 544

increased to 5.30 GBP and a possible bonus of 3 GBP based on performance in the test 545

October 21, 2021 15/32

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465074doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465074
http://creativecommons.org/licenses/by-nc/4.0/


block. Calculated as payment per hour, the average payout per participant in our 546

experiments was 7.53 GBP per hour. 547

Procedure All experiments consisted of blocks of training trials, where participants 548

learned the categorisation task, followed by test trials, where their performance was 549

observed. During training trials participants saw an image for 1000ms and were asked 550

to predict its category label. After each training trial, participants were told whether 551

their choice was correct and received feedback on the correct label if their choice was 552

incorrect. In Experiments 1 to 5, participants had to discover the predictive features 553

themselves, while in Experiment 6, they were explicitly told what the predictive feature 554

was at the beginning of the experiment. In this experiment, they were given textual 555

instructions describing the target feature and shown exemplars where the target feature 556

was highlighted. Participants saw 5 blocks of 60 training trials in Experiments 1–4 and 557

10 blocks of 50 trials in Experiments 5 and 6. The number of training trials was chosen 558

based on a pilot experiment and ensured that participants learnt the behavioural task. 559

In Experiments 1 to 4, each training block was followed by a test block containing 40 560

trials (10 per condition). In Experiments 5 and 6, one test block was presented at the 561

end of training consisting of 75 trials. Test trials followed the same procedure as 562

training, except participants were not given any feedback. As we were interested in 563

object recognition rather than visual problem solving, all trials (training as well as test) 564

used a short presentation time of 1000ms. In a follow-up experiment (as well as 565

Experiment 6), we also tried a longer presentation time of 3000ms and observed a 566

similar pattern of results (see Appendix D in Supplementary Information). 567

All experiments were designed in PsychoPy and carried out online on the Pavlovia 568

platform. We ensured that participants could clearly see the location of each patch by 569

conducting a pilot study. In this study, participants were shown an image from one of 570

our datasets and asked to attend to a highlighted patch. After a blank screen they were 571

shown a second image from the same dataset and asked to click on the patch which was 572

in the same position as the highlighted patch in the first image. We found that the 573

median location indicated by participants deviated from the center of the target patch 574

by only a quarter of the width of a patch - meaning that participants were able to 575

attend, keep in working memory and point out a specific patch location. This indicates 576

that even the smallest of the local features used in this study was perceivable for human 577

participants. 578

Data Analysis In all experiments chance performance was 20% since there is a 1 in 5 579

chance of randomly picking the correct category. Single sample t-tests were conducted 580

in order to determine whether participants were above chance level performance. 581

Repeated measures analyses of variance (ANOVA) were conducted when determining 582

whether there was an effect of condition (Both, Conflict, Shape, Non-shape) on 583

performance in an experiment. Follow-up comparisons were conducted with the Tukey 584

HSD correction for multiple comparisons. 585

Ethics All studies adhered to the University of Bristol ethics guidelines and obtained 586

an ethics approval from the University of Bristol ethics approval board. 587

Simulation Details 588

Neural Network model During a supervised learning task (like the task outlined in 589

this study), a neural network performs an approximate statistical inference by 590

constructing an input-output mapping between a random vector X and a dependent 591

variable Y . The training set consists of N realisations of this random vector, 592
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{x1 . . . ,xN} and N category labels {c1 . . . , cn}. For a CNN, the vectors xi can simply 593

be an image (i.e. a vector of pixel values). That is, X lies in a high-dimensional image 594

space. The neural network learns a non-linear parametric function ĉi = F (xi,w) by 595

finding the connection weights w which minimise the difference between the outputs 596

produced by the network ĉi and the given category labels, ci. During a test trial, the 597

network performs an approximate statistical inference by deducing the class of a test 598

vector xtest by applying the learnt parametric function to this vector: c = F (xtest,w). 599

Since our task involved image classification, we evaluated three state-of-the-art deep 600

convolutional neural networks, ResNet50 [19], VGG-16 [54] and AlexNet [29] which 601

performs image classification on some image datasets to a near-human standard. We 602

obtained qualitatively similar results with all three architectures. Therefore, we focus on 603

the results of ResNet50 in the main text and describe the results of the other two 604

architectures in SI Appendix A. Since participants had a lifetime experience of 605

classifying naturalistic objects prior to the experiment, we pre-trained our networks on 606

a set of naturalistic images (ImageNet). In each experiment, this pre-trained network 607

was fine-tuned to classify the 2000 images sampled from the corresponding dataset into 608

5 categories. This fine-tuning was performed in the standard manner [65] by replacing 609

the final (fully-connected) layer of the network to reflect the number of target classes in 610

each dataset. The models learnt to minimise the cross-entropy error by using the Adam 611

optimiser [25] with a mini-batch size of 32 and learning rate of 10−5, which was reduced 612

by a factor of 10 on plateau using the Pytorch scheduler function ReduceLROnPlateau. 613

In one simulation study (Figure 3), we used a network that was pre-trained on a 614

variation of ImageNet that induces a shape bias [12] and then froze the weights in all 615

but the final classification layer to ensure that the learned bias was present during the 616

training on the new images. In all simulations, learning continued till the loss function 617

had converged. Generally this meant that accuracy in the training set was > 99%, 618

except in the case where we froze all convolution weights where accuracy converged to a 619

value > 70%. Each model was tested on 500 images drawn from Both, Conflict, Shape 620

and Non-Shape conditions outlined above. The results presented here are averaged over 621

10 random seed initialisations for each model. All simulations were perfomed using the 622

Pytorch framework [44] and we used torchvision implementation of all models. 623

Ideal inference model The goal of this model is to answer the following question: 624

what class, Y ∈ {1, . . . , C}, should a decision-maker assign to a test image, given a set 625

of mappings from images to class labels (training trials). For the purpose of statistical 626

inference, each image can be treated as a vector of features and each training trial 627

assigns a feature vector, xi = (x1i , . . . , x
F
i ), to a class label, Y = c. In our behavioural 628

task, each feature (colour / location / size) can take a discrete set of values, so we treat 629

each feature as a categorical random variable, Xf ∈ {1, . . . ,K}. The decision-maker 630

infers the class label for a test image, xtest, in two steps. Like the neural network, it 631

first learns a set of parameters θ that encode the dependencies between class labels and 632

feature values in the training data. It then uses these parameters to predict class label 633

for a given test image, xtest. 634

We start at the end. Our goal is to compute p(Y = c|X = xtest,D), the probability
distribution over class labels given the training data, D, and a test image, xtest. Using
Bayes’ law, we have:

p(Y = c|X = xtest,D) ∝ p(X = xtest|Y = c,D) p(Y = c) (1)

where p(Y = c) is the class prior and p(X = xtest|Y = c,D) is a joint class-conditional
density – the probability of observing the set of features, xtest, for a given class, c. In
our behavioural tasks, each feature is independently sampled. This means that the joint
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distribution factorises as a product of class-conditional densities for each feature:

p(X = xtest|Y = c,D) =
F∏

f=1

p(Xf = xftest|Y = c,D)

Our approach is to estimate these class-conditional densities by constructing a 635

generative model p(Xf = xftest|Y = c,θ). Here θ are the parameters of the model that 636

need to be estimated based on training data. Since Xf is a categorical variable, a 637

suitable form for this parametric distribution is the multinomial distribution, 638

Mult(xftest|1,θ). The Bayesian method of estimating these parameters is to start with 639

the prior distribution p(θ) and update it based on training data, D, to obtain the 640

posterior p(θ|D). An appropriate prior for the multinomial is the Dirichlet distribution, 641

Dir(θ|α), where α are the hyper-parameters of the Dirichlet distribution. For this 642

Dirichlet-multinomial model, the update step involves counting the number of times 643

each feature value occurs in the training data and adding these counts to the 644

hyper-parameters [4]. 645

Once we have a posterior distribution on the model parameters, p(θ|D), we can
obtain the required class-conditional densities, p(Xf = xftest|Y = c,D) by integrating
over these parameters. This leads to the following expression (see [41]):

p(Xf = xftest|Y = c,D) =
Nk + αk∑
v Nv + αv

Here Nk is the number of times Xf takes the value k in the training data and the sum 646

in the denominator is carried out over all possible values {1, . . . ,K} of Xf . Thus this 647

model predicts that the class-conditional density of observing a feature value during a 648

test trial depends on the relative frequency with which the given feature value occurs 649

during the training data. These class-conditional densities can be plugged back into 650

Equation 1 to give the probability distribution over all classes given the test image, 651

xtest. In our Results, we report this probability for the labelled class averaged over all 652

the test images in a test condition. 653
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Supporting Information

A Robustness across CNN architectures
The results in Figures 2 and 4 in the main text show the behaviour of one CNN
architecture – ResNet50 – in our experiments. Here we evaluated the robustness of
these results by training and testing two other CNN architectures – AlexNet [29] and
VGG-16 [54] – on our tasks. The training and testing procedure remained the same as
for ResNet50, and as described in the Section above. As can be seen from Figures S1,
S2 and S3 below, both these architectures show qualitatively similar results to
ResNet50: both models pick up on the Non-shape feature in all experiments and
clearly favour this feature when it is more predictive that the Shape feature in
Experiments 1b–4b.
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Fig S1. Results when both features are equally predictive. Each panel shows
the accuracy under the four test conditions for AlexNet (top row) or VGG-16 (bottom
row). Each column corresponds to a different experiment. Both models were pre-trained
on ImageNet and fine-tuned by reshaping the final layer to reflect the number of target
classes in each experiment and trained on 2000 images from the training set (see
Section for details). A comparison with Figure 2a shows that both architectures
showed the same pattern of results as ResNet50: models were able to learn the task
(high accuracy in the Same condition), learned both the Shape and Non-shape features
(above chance accuracy in Shape and Non-shape conditions) and preferred to rely on the
Non-shape feature (low accuracy in the Swap condition).
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Fig S2. Results when non-shape feature is more predictive. Each panel again
shows the accuracy under the four test conditions for AlexNet (top row) or VGG-16
(bottom row). Each column corresponds to a different experiment. A comparison with
Figure 2b shows that both architectures showed the same pattern of results as
ResNet50: models showed a strong preference to rely on the non-shape feature in this
case (a high-low-low-high pattern in the Same-Swap-Shape-Non-shape conditions) and
this preference became larger than the experiments where both features were equally
predictive (compare with Figure S1 above).
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Fig S3. Results for learning without shape feature. The two panels show
accuracy in test blocks for AlexNet and VGG-16, respectively, when these models were
trained on images that lack any coherent shape (Experiment 5). Each bar corresponds
to the type of non-shape feature used in training. Like ResNet50, but unlike human
participants (compare with Figure 4b), both models were able to learn all types of
non-shape features.
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B Two groups in Experiment 4
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Fig S4. Two groups in Experiment 4a. Each panel shows the accuracy under the
four test conditions for a subgroup of participants. Participants were split based on
whether they performed better in the shape or colour conditions. The first group
contained N=12 participants and the second group contained N=13 participants.
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Fig S5. Two groups in Experiment 4b. Each panel again shows accuracy under
the four test conditions for the subgroups of participants who prefer to rely on shape
and colour, respectively. In this case, the first group consisted of N=7 participants and
the second group consisted of N=18 participants.
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C Learning dynamics in Experiments 1a, 2a, 3a,
and 4a

Figure 4a in the main text shows the change in performance under the four test
conditions in Experiment 1b, 2b, 3b and 4b, where the non-shape feature and more
predictive than shape features in training. Here we have plotted how performance
changes in Experiments 1a, 2a, 3a and 4a, where both features are equally likely. A
comparison of Figure S6 and Figure 4a from the main text shows a very similar pattern
in all experiments and for humans as well as the two types of models. The two models
predict that a difference between Both and Swap conditions emerges early and grows
with learning. In contrast, human participants show no difference in the two conditions
throughout the experiment in Experiments 1a, 2a and 3a. Further analysis of individual
participants showed that, like Experiments 1b, 2b, 3b and 4b, no participant switched
from using one feature to another during the experiment.
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Fig S6. Change in test performance with training in Experiments 1a, 2a,
3a, and 4a. Each panel shows how accuracy on the four types of test trials changes
with experience. The top, middle and bottom row correspond to optimal decision model,
CNN and human participants respectively. Columns correspond to different
experiments. The scale on the x-axis represents the number of training trials in the top
row, the number of training epochs in the middle row and the index of the test block in
the bottom row.
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D Longer presentation time

Fig S7. Results of giving participants more time in Experiment 3a.
Accuracy in the four conditions when participants are shown the stimuli for 3s instead
of 1s. In this experiment, every trial has two diagnostic features – global shape and
average size. Despite the increase in the duration of the stimulus, participants
performed well in the Both, Conflict and Shape conditions, but performed at chance
in the non-shape (Size) condition, indicating that they still preferred to learn based on
shape. Notice, we used Experiment 3 (non-shape cue = average size) to test this
because this is experiment in which the participants were most likely to pick on the
non-shape (Size) cue based on results in Experiment 5, where mean performance in the
Size condition was above chance, while mean performance in Segment or Patch
conditions was at chance, even when there was no competing shape feature.
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E Example stimuli
In this section, we show an examples of images from all experiments. The reader may
also want to look at Movies S1 and S2 in Supplementary Materials, which best illustrate
the features used in Experiment 1 and 2.
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Fig S8. Examples of stimuli in Experiment 1 (patch). In each row we show
(from left to right) an example image from the training set, Both condition, Swap
condition, Shape condition and Non-shape (Patch) condition for a category. Each
image in the training set contains a diagnostic patch of a certain colour that is present
at a category-specific location. Additionally, all training images in Experiment 1a and
80% of images in Experiment 1b have a diagnostic shape. Images in the Both condition
contain both these features. Images in the Swap condition contain the shape from one
category but diagnostic patch from another category. Images in the Shape condition
contain the shape feature but none of the diagnostic patches. Images in the Patch
condition contain the diagnostic patch but none of the shapes from the training set.
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Train Both Conflict Shape Segment
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Fig S9. Examples of stimuli in Experiment 2 (segment). In each row we show
(from left to right) an example image from the training set, Both condition, Swap
condition, Shape condition and Non-shape (Segment) condition for a category. Each
image in the training set contains a diagnostic segment of a category-specific colour.
Only images of this category have a segment of this colour. Additionally, all training
images in Experiment 2a and 80% of images in Experiment 2b have a diagnostic shape.
Images in the Both condition contain both these features. Images in the Swap condition
contain the shape from one category but diagnostic segment from another category.
Images in the Shape condition contain the shape feature but none of the diagnostic
segments. Images in the Segment condition contain the diagnostic segment but none of
the shapes from the training set.

October 21, 2021 29/32

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465074doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465074
http://creativecommons.org/licenses/by-nc/4.0/


Train Both Conflict Shape Size
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Fig S10. Examples of stimuli in Experiment 3 (size). In each row we show
(from left to right) an example image from the training set, Both condition, Swap
condition, Shape condition and Non-shape (Size) condition for a category. The
average size of all images in the training set is diagnostic of the category. That is,
different categories have images that have different average size of patches. Additionally,
all training images in Experiment 3a and 80% of images in Experiment 3b have a
diagnostic shape. Images in the Both condition contain both these features. Images in
the Swap condition contain the shape from one category but diagnostic size from
another category. Images in the Shape condition contain the shape feature and the
average size of patches is larger than the diagnostic size of any category in the training
set. Finally, the Size condition contains images where the average size of patches is
diagnostic but shape is not.
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Train Both Conflict Shape Color
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Fig S11. Examples of stimuli in Experiment 4 (colour). In each row we show
(from left to right) an example image from the training set, Both condition, Swap
condition, Shape condition and Non-shape (Size) condition for a category. All patches
in an image have the same colour. This colour is diagnostic of an image’s category in
the training set. Additionally, all training images in Experiment 4a and 80% of images
in Experiment 4b have a diagnostic shape. Images in the Both condition contain both
these features. Images in the Swap condition contain the shape from one category but
diagnostic colour from another category. Images in the Shape condition contain the
shape feature and a colour that is not diagnostic of any category in the training set.
Finally, the Colour condition contains images with no coherent shape but where the
colour of segments is diagnostic of the category.
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Fig S12. Examples of stimuli in Experiment 5 and 6 (no shape). Each row
shows four examples from the training set that have the same category label as well as
one example from the test set with the same label. The four rows correspond to the four
conditions. In row 1, the predictive feature is patch location. In row 2, the predictive
feature is colour of one of the segments. In row 3, the predictive feature is average size
of patches. And in row 4, the predictive feature is colour of all patches.
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