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Abstract
Humans rely heavily on the shape of objects to recognise them. Recently, it has been
argued that Convolutional Neural Networks (CNNs) can also show a shape-bias,
provided their learning environment contains this bias. This has led to the proposal
that CNNs provide good mechanistic models of shape-bias and, more generally, human
visual processing. However, it is also possible that humans and CNNs show a shape-bias
for very different reasons, namely, shape-bias in humans may be a consequence of
architectural and cognitive constraints whereas CNNs show a shape-bias as a
consequence of learning the statistics of the environment. We investigated this question
by exploring shape-bias in humans and CNNs when they learn in a novel environment.
We observed that, in this new environment, humans (i) focused on shape and overlooked
many non-shape features, even when non-shape features were more diagnostic, (ii)
learned based on only one out of multiple predictive features, and (iii) failed to learn
when global features, such as shape, were absent. This behaviour contrasted with the
predictions of a statistical inference model with no priors, showing the strong role that
shape-bias plays in human feature selection. It also contrasted with CNNs that (i)
preferred to categorise objects based on non-shape features, and (ii) increased reliance
on these non-shape features as they became more predictive. This was the case even
when the CNN was pre-trained to have a shape-bias and the convolutional backbone
was frozen. These results suggest that shape-bias has a different source in humans and
CNNs: while learning in CNNs is driven by the statistical properties of the environment,
humans are highly constrained by their previous biases, which suggests that cognitive
constraints play a key role in how humans learn to recognise novel objects.

Author summary
Any object consists of hundreds of visual features that can be used to recognise it. How
do humans select which feature to use? Do we always choose features that are best at
predicting the object? In a series of experiments using carefully designed stimuli, we
find that humans frequently ignore many features that are clearly visible and highly
predictive. This behaviour is statistically inefficient and we show that it contrasts with
statistical inference models such as state-of-the-art neural networks. Unlike humans,
these models learn to rely on the most predictive feature when trained on the same data.
We argue that the reason underlying human behaviour may be a bias to look for
features that are less hungry for cognitive resources and generalise better to novel
instances. Models that incorporate cognitive constraints may not only allow us to better
understand human vision but also help us develop machine learning models that are
more robust to changes in incidental features of objects.
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Introduction 1

Sometimes we fail to see what’s right in front of our eyes. 2

The seemingly simple task of recognising an object requires contending with a 3

multitude of problems. Humans can recognise something as a “chair” for a vast range of 4

lighting conditions, distances to the retina, viewing angles and contexts. We can 5

recognise chairs made out of wood, metal, plastic and glass. Thus, to classify something 6

as a chair, the brain must take the image of the object projected onto the retina and 7

convert it into an internal representation that remains invariant under all these 8

conditions [1]. A lot of effort in psychology, computational neuroscience and computer 9

vision has gone into understanding how the brain constructs these invariant 10

representations [2, 3]. 11

One hypothesis is that the brain learns these invariant representations from the 12

statistics of natural images [2, 4, 5]. But until recently, it has proved challenging to 13

construct scalable statistical inference models that learn directly from natural images 14

and match human performance. A breakthrough has come in recent years from the field 15

of artificial intelligence. Deep Convolutional Neural Networks (CNNs) are statistical 16

inference models that are able to match, and in some cases exceed, human performance 17

on some image categorisation tasks [6]. Like humans, these models show impressive 18

generalisation to new images and to different translations, scales and viewpoints [7]. 19

And like humans, this capacity to generalise seems to stem from the ability of Deep 20

Networks to learn invariant internal representations [8]. It is also claimed that the 21

learned representations in humans and networks are similar [7, 9, 10]. These results raise 22

the exciting possibility that Deep Networks may finally provide a good model of human 23

object recognition [11–14] and provide important insights into visual information 24

processing in the primate brain [15–19]. 25

Many reasons could be, and are, given for why CNNs have succeeded where previous 26

models have failed [6, 20]. For example, it is often argued that CNNs excel in image 27

classification because they incorporate a number of key insights from biological vision, 28

including the hierarchical organization of the convolutional and pooling layers [21]. In 29

addition, both systems are thought to implement optimisation frameworks, generating 30

predictions by performing statistical inferences [18,22]. Indeed, evidence suggests that 31

humans perform some form of statistical optimisation for many cognitive tasks including 32

language learning [23], spatial cognition [24], motor learning [25] and object 33

perception [4]. Due to this architectural and computational overlap between the two 34

systems it might seem reasonable to hypothesise that humans and CNNs end up with 35

similar internal representations. 36

However, the parsimony and promise of this hypothesis is somewhat dampened by 37

recent studies that have shown striking differences between CNNs and human vision. 38

For example, CNNs are susceptible to small perturbations of images that are nearly 39

invisible to the human eye [26–28]. They often classify images of objects based on 40

statistical regularities in the background [29], or even based on single diagnostic pixels 41

present within images [30]. That is, CNNs are prone to overfitting, often relying on 42

predictive features that are idiosyncratic to the training set [31]. 43

To what extent do these findings reflect fundamental differences between CNNs and 44

human vision? On the one hand, such differences could be simply down to differences in 45

the learning environments of humans and artificial neural networks. Evidence 46

supporting this hypothesis comes from studies that have compared features used by 47

CNNs and humans to classify objects. Psychological experiments have repeatedly shown 48

that humans rely primarily on global features, such as shape, for naming and 49

recognising objects [32–35]. By contrast, a number of studies have demonstrated that 50

CNNs trained on standard datsets, such as ImageNet, rely on local textures [36–38]. 51

But these studies have also shown that, when CNNs are trained on datsets with the 52
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right biases, their behaviour can be brought a lot closer to human behaviour [37–40]. 53

For example, Geirhos et al. [37] showed that CNNs trained on a modified version of 54

ImageNet learn to show a shape-bias. Based on these results, Geirhos et al. conclude 55

that “texture bias in current CNNs is not by design but induced by ImageNet training 56

data”. Similarly, Hermann et al. [38] showed that CNNs can learn to classify images 57

based on global shape when they are trained with naturalistic data augmentations, 58

leading them to conclude that “apparent differences in the way humans and 59

ImageNet-trained CNNs process images may arise not primarily from differences in their 60

internal workings, but from differences in the data that they see.” 61

On the other hand, behavioural differences between humans and CNNs may arise 62

out of more fundamental differences in resource constraints and mechanisms, rather 63

than just differences in their training sets. While a CNN trained on a particular 64

environment is able to mimic some aspects of shape-bias, the origin of shape-bias may 65

be very different in the two systems. One way to distinguish between these two 66

hypotheses is to check how the bias (of a network or human) is affected by moving to a 67

new environment. If the origin of the bias is purely environmental, then a shift in the 68

environment should also lead to a shift in the bias – that is, the system should start 69

selecting features based on the statistical properties of the new environment. If, on the 70

other hand, the bias is a reflection of a mechanistic principle or a resource constraint, it 71

will be much more immune to a change in the statistical properties of the environment. 72

In this study, we explored this question by training models and humans to classify a 73

set of novel objects. Each object contained multiple diagnostic features, all of which 74

were clearly visible and could be used to perform the task. We manipulated the 75

statistical bias for selecting these features, by manipulating the extent to which each 76

feature type predicted the category labels. We wanted to explore the extent to which 77

human adults and pre-trained CNNs were adaptable to the biases present within this 78

task environment. At one extreme, people (and CNNs) could be completely adaptable, 79

and select features solely based on the statistical properties of the new environment. At 80

the other extreme, they could be completely inflexible and continue selecting features 81

based on their prior biases. To gain a deeper insight into the role that prior biases play 82

in learning new information, we compared the performance of both humans and CNNs 83

to a statistical inference model that had no biases and learned to infer the category of a 84

stimulus based on the sequence of samples observed in the task. 85

In a sequence of experiments that tested a range of different feature types and model 86

settings, we observed that (i) the behaviour of human participants was in sharp contrast 87

with the statistical inference model, with participants continuing to rely on global 88

features, such as shape, and ignoring local features even when these features were better 89

at predicting the target categories, (ii) when multiple global features were concurrently 90

present (e.g. overall shape as well as colour), some participants chose to rely on one 91

feature while others chose to rely on the second feature, but participants generally did 92

not learn both features simultaneously, (iii) the behaviour of CNNs also contrasted with 93

the statistical inference model, with the CNNs also preferring to rely on one feature, (iv) 94

however, unlike human participants, CNNs frequently relied on diagnostic local features 95

and, crucially, this dependence on local features increased when the features were made 96

more predictive, (v) CNNs were highly adaptable in the feature they used for learning – 97

even when they were trained to have a shape-bias, this bias was lost as soon as they 98

were trained on a new dataset with a different bias. 99

In two follow-up studies, we investigated whether human participants can overcome 100

their bias for global features by (a) learning in an environment where there is no 101

concurrent shape at all, or (b) being told what type of local feature to look for. In both 102

cases, we observed that participants still failed to learn these tasks based on local 103

features. Thus, the reason why participants ignore some clearly visible features is not 104
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simply due to the competition from shape, or to the difficulty in discovering these types 105

of features. Rather, participants seem to struggle with the computational demands of 106

learning the task based on certain features. 107

These results highlight important differences in how human participants and CNNs 108

learn to extract features from objects and the role that existing biases play in adapting 109

to novel learning environments. In general, CNNs are highly adaptable in learning new 110

information, with the statistical structure of their learning environment driving their 111

learning. While performing statistical learning is also clearly important for humans, 112

their behaviour is much more strongly constrained by prior biases. Models of visual 113

object recognition need to explain how such strong biases can be acquired and how they 114

constrain learning in order to adequately capture human object recognition. The 115

training and test sets developed in this study can be used to constrain and falsify 116

models towards this end. 117

Results 118

Behavioural tasks and Simulations 119

The behavioural tasks mimicked the process of learning object categorisation through 120

supervised learning. In each experiment, participants were trained to perform a 5-way 121

classification task, where they had to categorise artificially generated images into one of 122

five categories. Each image consisted of coloured patches that were organised into 123

segments. These segments were, in turn, organised so that they appeared to form a 124

solid structure. Within each figure, the relative location, size and colour of patches as 125

well as segments was perturbed (within some bounds) from image to image, making 126

each stimulus unique and avoiding any unintentional diagnostic features, such as local 127

features where segments intersect. In order to successfully perform the task, the 128

participants and CNNs had to generalise over all these variables and discover the 129

invariant shape or non-shape feature. See Fig 1 for some example images. 130

For each experiment, we constructed a dataset of images where one or more 131

generative factors – features – predicted the category labels. In Experiments 1 to 4, 132

images were drawn from datasets with two predictive features. One of these features 133

was shape (the global configuration of segments) while the other feature was different in 134

each experiment. In Experiment 1, the second feature was the location of a single patch 135

in the image – that is, all images of a category contained a patch of a category-specific 136

colour at a particular location (and none of the images from other categories contained 137

a patch at this location). In Experiment 2, this feature was the colour of one of the 138

segments – that is, all images assigned to a category contained a segment of a particular 139

colour (and none of the images from other categories contained a segment of this 140

colour). In Experiment 3, the second feature was the average size of patches – all 141

patches in an image had similar sizes and the average size was diagnostic of the category. 142

In Experiment 4, this feature was the colour of patches – all patches in an image had 143

the same colour and images of different categories had different colours. In 144

Experiment 5 and 6, all images had only one predictive feature. This was either patch 145

location, segment colour, patch size or overall colour; but none of the categories had a 146

predictive shape. 147

Table 1 summarises the different combinations of features that were examined in the 148

behavioural tasks in this study. Examples for all Experiments are shown in Figs S9 149

Fig–S13 Fig and two movies illustrating the predictive features in Experiments 1 and 2 150

can be seen in Movies S1 and S2 in Supporting Information. 151

In Experiments 1 to 4, training blocks were interleaved with test blocks which 152

presented novel images that had not been seen during training. Each test block 153

March 29, 2022 4/35

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2021.10.20.465074doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465074
http://creativecommons.org/licenses/by-nc/4.0/


Fig 1. Example training images from Experiments 1 and 2. (a) Two features
predict stimulus category: global shape and location (xcat, ycat) of one of the patches.
For illustration, the predictive patch is circled. Stimuli in the same category (middle
row, reduced size) have a patch with the same colour at the same location, while none
of the stimuli in any other category (bottom row) have a patch at this location. (b)
Global shape and colour of one of the segments predict stimulus category. Only stimuli
in the same category (middle row) but not in any other category (bottom row) have a
segment of this colour (red). The right-most stimulus in the middle row shows an
example of a training image containing a non-shape feature (red segment) but no shape
feature. For further illustration of stimuli used in these and other experiments, see
Figs S9 Fig–S13 Fig and Movies S1 and S2 in Supporting Information.

contained four types of test trials – Both, Conflict, Shape and Non-shape – that 154

were designed to reveal the feature(s) used by the participant to categorise images. 155

Trials in the Both condition contained the same combination of features that predicted 156

an image’s category during training. Conflict trials contained images with shape 157

feature from one category and the second feature was swapped from another category. 158

Shape trials contained images with only the shape feature and a non-predictive value of 159

the second feature. Finally, the Non-Shape trials contained images where the five 160

segments were placed at random locations on the canvas, giving the stimulus no 161

coherent shape, but each image contained the second predictive feature (see Figs S9 162

Fig–S13 Fig for some examples). An illustration of the four test conditions is shown in 163

Fig 2. We measured accuracy in the Both, Conflict and Shape test trials based on the 164

category predicted by the shape feature and accuracy in the Non-shape trials based on 165

the category predicted by the non-shape feature. 166

We can infer the features that a participant uses by looking at the pattern of 167

performance across the test conditions. There are four possible patterns. If a 168

participant relies on shape, they should perform well in trials where shape predicts the 169
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Table 1. Feature combinations examined in different experiments

Experiment Features % Shape

Global
Shape

Patch
Location

Segment
Colour

Average
Size

Global
Colour

Exp 1a 100%

Exp 1b 80%

Exp 2a 100%

Exp 2b 80%

Exp 3a 100%

Exp 3b 80%

Exp 4a 100%

Exp 4b 80%

Exp 5 0%

Exp 6 0%
Rows correspond to experiments and columns correspond to features. A shaded cell indicates
that the feature in that column was used in the experiment in that row. The last column
shows the proportion of training trials that contain a diagnostic shape. In Experiments 1–4
each participant saw stimuli that consisted of the combination of features shown in that row.
Experiments 5 and 6 were between-subject designs so that participants were allocated to four
(Experiment 5) or three (Experiment 6) groups and each participant saw stimuli with only one
non-shape diagnostic feature.

image category. Thus their pattern of performance should be high, high, high, and low 170

in the Both, Conflict, Shape, and Non-shape conditions, respectively. In contrast, if 171

the participant relies on the non-shape feature, this pattern should be high, low, low, 172

high. If a participant uses both (shape and non-shape) features, the pattern should be 173

high, medium, high, high, where a “medium” performance in the Conflict condition is 174

indicative of the fact that the two cues (features) learnt by the participant will compete 175

with each other in these trials. Finally, if a participant does not learn either feature, 176

their performance should be low in all four conditions. For a similar methodological 177

approach for determining features used to categorise novel stimuli see [41]. 178

In each experiment, we compared the behaviour of participants with two statistical 179

inference models: an ideal inference model and a CNN. The ideal inference model 180

computes what should a participant do if they had no prior biases and wanted to be 181

statistically as efficient as possible, using all the information available during training 182

trials. This model uses a sequential Bayesian updating procedure to compute the 183

probability distribution over category labels given the training data and a test image. 184

Similarly, the CNN computes the most-likely category-label for an image by learning a 185

mapping between images in the training set and their category labels. Thus, it makes 186

an approximate statistical inference by approximating a regressive model [42, p85–89], 187

but additionally has constraints built in through the choice of its architectural 188

properties, such as performing convolutions and pooling. Both models are described in 189

Materials and Methods below. 190
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Fig 2. An illustration of the four types of test conditions. Each category has two
diagnostic features: here, the overall shape and the colour of one of the segments. In the
training images, features are mapped to categories using the following mapping:
{(Shape A, Red) → Category 1; (Shape B, Blue) → Category 2}, where Shape A and
Shape B are the shapes on the left and right, respectively. In the Both test condition,
both types of features (shape and colour) have the same mapping as training. In the
Conflict condition the mapping of the non-shape feature is swapped – i.e., the new
mapping is {(Shape A , Blue) → Category 1; (Shape B, Red) → Category 2}. In the
Shape condition, images have only one diagnostic feature – the overall shape – which
has the same mapping as training: {Shape A → Category 1; Shape B → Category 2}.
In the Non-shape condition, images have no coherent shape, but contain the same
diagnostic colours as the training images: {Red → Category 1; Blue → Category 2}.

Both features equally predictive 191

Fig 3A shows the pattern of performance in the final test block in Experiments 1a, 2a, 192

3a, and 4a. In these tasks, both shape and non-shape features perfectly and 193

independently predict the category label during training. Thus the learner could use 194

either (or both) features to learn an image’s category. The top row shows the pattern of 195

performance for the ideal inference model. In all four tasks, this model predicts that the 196

probability of choosing the correct category is high in the Both, Shape and Non-shape 197

conditions and significantly lower in the Conflict condition1. This indicates that there 198

is enough information in the training trials for all four experiments to predict the 199

category label based on either the shape or the non-shape feature. 200

The middle row shows the pattern of performance for the CNN model. In all four 201

tasks, the network showed high accuracy in the Both condition – showing an ability to 202

generalise to novel (test) stimuli, as long as both shape and non-shape features were 203

preserved in the stimuli. It showed a low accuracy in the Conflict condition, but high 204

accuracy in the Non-shape condition. Its performance in the Shape condition was 205

above chance in Experiments 1a, 2a and 3a and at chance in Experiment 4a. The 206

above-chance performance in the Shape condition implies that this network is able to 207

pick up on shape cues. However, its performance is significantly lower in the Shape 208

condition compared to the Non-shape condition. When these two cues competed with 209

each other, in the Conflict condition, the network favoured the non-shape cue and the 210

1The shape and non-shape cues are equally competitive in Experiments 2a, 3a and 4a. Consequently
the probability of choosing the correct (shape-based) category is around 0.50 in the Conflict condition
in these experiments. However, the results in Fig 3A show that the non-shape cue dominates the shape
cue in the Conflict condition in Experiment 1a. This is because an image with a diagnostic patch at
one of the diagnostic locations contains two types of information: (i) a diagnostic colour at one of the
diagnostic locations, and (ii) white (background) patches at all the other diagnostic locations. These
two signals together dominate the shape signal in Conflict trials in Experiment 1.
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Fig 3. Results in Experiments 1–4. Each column corresponds to an experiment
and each row corresponds to the type of learner (ideal inference model, CNN or human
participants). The top row shows the posterior probability of choosing the labelled class
for a test trial given the training data. The bottom two rows show categorisation
accuracy for this labelled class. Panel A shows results for experiments where both
features are equally predictive (1a, 2a, 3a and 4a), while Panel B shows results for
experiments where the non-shape feature is more predictive (1b, 2b, 3b and 4b). Each
plot shows four bars that correspond to the four types of test trials. Patch, Segment,
Size and Colour refer to the Non-shape test trials in Experiments 1, 2, 3 and 4,
respectively. Error bars show 95% confidence and dashed black line shows chance
performance. In any plot, a large difference between the Both and Conflict conditions
shows that participants rely on the non-shape cue to classify stimuli. Both models show
this pattern while humans show no significant difference.

accuracy was at or below chance. These results indicate that the CNN learns to 211

categorise using a combination of shape and non-shape features. 212

It is also worth noting that, unlike the ideal inference model, the CNN showed a bias 213

towards relying on non-shape features in all experiments, even though it would be ideal 214

(from an information-theoretic perspective) to learn both features in parallel. A similar 215

result was observed by Hermann et al. [40], who found that when multiple features 216

predict the category, CNNs preferentially represent one of them and suppress the other. 217

The bottom row shows the average accuracy in the four experiments for human 218

participants (N=25 in each task). Like the ideal inference model and the neural network 219

model, participants showed high accuracy in the Both condition (mean accuracy was 220

between 70% (in Experiment 1a) and 89% (in Experiment 4a). This indicates an ability 221

to generalise to novel (test) stimuli as long as shape and non-shape features were 222

preserved. However, their pattern of performance across the other three conditions were 223

in sharp contrast to the two models. In Experiments 1a, 2a, and 3a, participants showed 224

a high-high-high-low pattern in the Both-Conflict-Shape-Non-shape conditions, 225

indicating that they strongly preferred the shape cue over the non-shape cue. In fact, 226

performance in the Non-shape trials was at chance in all three tasks with mean 227

accuracy ranging from 20% to 24%. Single sample t-tests confirmed that performance 228

was statistically at chance in all three tasks (largest t(24) = 0.99, p > .05). Thus, unlike 229

the ideal inference model, which learnt both predictive cues, participants chose one of 230

these cues. And unlike the neural network model, which favoured the non-shape cue, 231

participants preferred to rely on shape. 232

The behaviour of participants was different in Experiment 4a, where the non-shape 233

cue was the colour of the entire figure. Performance was again high in the Both 234
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condition, but significantly lower in the Conflict, Shape and Non-shape conditions 235

(F (3, 72) = 8.18, p < .01, η2p = .25). So, on average, participants seemed to be using 236

both shape and non-shape (colour) cues to make their decisions, but neither feature was 237

strongly preferred over the other. This behaviour seemed to be qualitatively similar to 238

the ideal inference model, which learnt to use both predictive cues simultaneously. 239

However, examining each participant separately, we found that participants could be 240

grouped into two types, those that primarily relied on shape (N=12) and those that 241

relied on colour (N=13). Participants were categorised as relying on colour if 242

performance in the Non-shape condition was above performance in the Shape 243

condition. Fig S4 Fig in Supporting Information shows the average pattern of 244

performance for each of these groups. The first group shows a high-low-low-high 245

pattern, indicating that they were predominantly using the colour cue to classify test 246

images. The second group shows a high-high-high-low pattern, indicating that they 247

were predominantly using the shape cue. Mixing these two groups of participants results 248

in the high-medium-medium-medium pattern shown in Fig 3A. 249

One feature more predictive than the other 250

Our next step was to check what happens when one of the features predicts the 251

category better than the other. If the nature of shape-bias is similar in humans and 252

CNNs, we expect both systems will adapt in a similar way to a new statistical 253

environment, which favours a non-shape feature. In Experiments 1b, 2b, 3b, and 4b the 254

shape feature predicted the category label in only 80% of the training trials. The 255

remaining 20% images contained horizontal and vertical segments placed at random 256

locations on the canvas so that these images contained no coherent shape. The second 257

feature (patch location, segment colour, patch size or overall colour) predicted the 258

category label in 100% of training trials. See Figs 1 and S13 Fig for some examples of 259

training images that do not contain a shape feature but contain a non-shape feature. 260

Fig 3B shows the performance for the two models as well as human participants (N=25 261

in each task). The ideal inference model (top row) showed a very similar performance, 262

again predicting that a participant should learn both features simultaneously. Its 263

accuracy on non-shape feature was slightly better. This is a consequence of larger 264

number of samples containing non-shape cues. In contrast, the performance for the 265

CNN model was significantly different. In all experiments, the model now showed a 266

high–low–low–high pattern, with performance in the Shape condition close to chance in 267

most experiments. Thus, the CNN model started relying almost exclusively on the 268

(more predictive) non-shape feature. 269

In contrast to both models, participants continued showing a high–high–high–low 270

pattern in Experiments 1b, 2b, and 3b, indicating a clear preference for relying on shape. 271

It should be noted that this happens even though shape is not the most predictive 272

feature. In fact, performance in the Non-shape condition was at chance (mean accuracy 273

ranged from 18% to 24%, largest t(24) = 1.74, p > .05 when compared to chance level), 274

showing that participants completely ignored the most predictive feature. 275

The behaviour of participants was again different in the experiment using colour of 276

entire figure as the non-shape cue (Experiment 4b). Average accuracy across 277

participants was high in the Both condition, but significantly lower in the Conflict, 278

Shape, and Non-shape conditions (F (3, 72) = 22.68, p < .01, η2p = .49). Like 279

Experiment 4a, examining each participant separately in Experiment 4b showed that 280

participants could be divided into two groups – those that learnt to rely on shape and 281

those that learnt to rely on colour. However, the ratio of participants in these groups 282

changed. While 12 participants (out of 25) relied on shape in Experiment 4a, 7 283

participants (out of 25) relied on it in Experiment 4b (see Fig S5 Fig in Supporting 284

Information). 285
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Exp 1b Exp 2b Exp 3b Exp 4b

Fig 4. Results for pre-training on a dataset with a shape-bias. The first row
shows results when the CNN was pre-trained on the Style-transfer ImageNet [37] and
allowed to learn throughout the network. The second row shows results of the same
network when weights for all convolution layers are frozen. First column shows results
when both features are equally likely (Experiments 1a, 2a, 3a and 4a) while the second
column shows results when the non-shape cue is more predictive (Experiments 1b, 2b,
3b and 4b). In all panels, we again observed a large difference between the Both and
Conflict conditions, indicating that despite pre-training, models relied heavily on the
non-shape cue to classify stimuli.

Effect of previous training on CNN behaviour 286

In the above experiments, we observed that the participants systematically deviated 287

from the two statistical inference models. This contrast was particularly noteworthy in 288

Experiments 1b-4b. Here, the non-shape feature was more predictive than shape but 289

participants still focused on global features like shape. In contrast, the CNN preferred 290

to rely on the more predictive (non-shape) feature. So we wanted to explore whether 291

CNNs can be made to behave like humans through training. A recent set of studies 292

have suggested that CNNs indeed start showing a shape-bias if they are pre-trained on 293

a dataset that contains such a bias [37,38]. However, after the network had been 294

pre-trained on the first set with a shape-bias, these studies did not systematically 295

manipulate how well each feature predicted category membership in the new set of 296

images. This is a crucial manipulation in the above studies that allowed us to more 297

directly assess the feature biases of CNNs, and our results suggest that the CNN learns 298

to rely on the most diagnostic feature in this new set. 299

To test the effect of pre-training, we used the same CNN as above – ResNet50 – but 300

this time pre-trained on the Style-transfer ImageNet database created by [37] to 301

encourage a shape-bias. We then trained this network on our task under two settings: 302

(i) the same setting as above, where we retuned the weights of the network at a reduced 303

learning rate, and (ii) an extreme condition where we froze the weights of all convolution 304

layers (that is 49 out of 50 layers) limiting learning to just the top (linear) layer. 305

The results under these two settings are summarised in Fig 4. In line with previous 306

results [37,38], we observed that this network had a larger shape-bias – for example, it 307

predicts the target category better in the Shape condition than the network pre-trained 308

on ImageNet (compare with the middle row in Fig 3). In some cases, this makes the 309

network behave more like the ideal inference model, where it is able to predict the 310

category based on either shape or non-shape features. But this pattern is still in 311

contrast with participants who were at chance when predicting based on non-shape 312

features in Experiments 1–3. Crucially, when the non-shape feature is made more 313

predictive, the network shows a bias towards this feature, showing the same 314

high-low-low-high pattern observed above (Fig 4, top right). Even under the extreme 315

condition, where we froze the weights of all except the final layer, the network preferred 316

the non-shape feature as long as this feature was more predictive (Fig 4, bottom right). 317
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That is, CNNs do not learn to preferentially rely on shape when learning new categories 318

even when pre-trained to have a shape bias on other categories. 319

Dynamics of learning 320

We probed the learning strategy used by models and participants by examining 321

performance at regular intervals during training. If a participant (or model) learns 322

multiple features in parallel, they should show an above-chance performance on both 323

the Shape and Non-shape test trials at the probed interval. If they focus on a single 324

feature, their performance on that feature should be above-chance and match the 325

performance on the Both trials. If they switch between different features over time, 326

their relative performance on Shape and Non-shape trials should also switch over time. 327

Fig 5A shows the performance under the four test conditions over time for 328

Experiments 1b, 2b, 3b and 4b (results for Experiments 1a, 2a, 3a and 4a show a similar 329

pattern and are shown in Fig S6 Fig in Supporting Information). The ideal inference 330

model shows an above-chance performance on the Shape as well as Non-shape trials 331

throughout learning. This confirms the expectation that the ideal inference model 332

should keep track of both features in parallel. However, this is neither what the CNN 333

nor what human participants do. The CNN shows a bias towards learning the most 334

predictive (non-shape) feature from the outset, with performance on the Non-shape 335

trials closely following performance on the Both trials. Human participants showed the 336

opposite bias, with performance on the Shape trials closely following performance on 337

the Both trials. We did not observe any case where the relative performance on the 338

Shape and Non-shape trials switched over time. This suggests that participants did not 339

systematically explore different features and choose one – rather they continued learning 340

a feature as long as it yielded enough reward. Even in Experiment 4b, where some 341

participants used the colour cue while others used the shape cue, no participant in 342

either group showed any evidence for switching form one feature to the other. 343

Learning in the absence of shape 344

The above experiments always pit a highly predictive feature against shape. We wanted 345

to know whether participants struggle to learn the predictive local feature even when a 346

diagnostic shape was absent. If participants only fail to learn this feature when a 347

diagnostic shape is present, it indicates a difference in the bias between participants and 348

CNNs (humans prefer global shape, while CNNs prefer more local features). On the 349

other hand, if participants struggle to learn this feature even when it is clearly visible 350

and a diagnostic shape is absent, it indicates a more fundamental limitation in human 351

(but not CNN) capacity to extract these features. To test this, we designed a 352

behavioural task (Experiment 5) where a shape feature was absent from the training set. 353

Like the above experiments, each training stimulus still contained a set of patches and 354

segments, but the segments were not consistently organised in a spatial structure (see 355

Fig S13 Fig in Supporting Information for examples of this stimuli). Instead, every 356

training trial contained a non-shape predictive feature. We used the same features as 357

above – patch location, segment colour, patch size or overall colour. Participants were 358

divided into four groups based on the type of predictive feature they were shown in the 359

training trials. The test block consisted of novel images (that were not seen in training) 360

but had the same diagnostic feature as training (equivalent to the Non-shape condition 361

in the above experiments). 362

The average accuracy in test trials for each type of diagnostic feature is shown in 363

Fig 5B. There was a large difference in performance depending on the type of diagnostic 364

feature. When the colour of the entire figure predicted the category, accuracy on test 365

trials was high (M = 98.67%). The responses collected for training trials indicated that 366
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Fig 5. Each plot in Panel A shows how accuracy on the four types of test trials
changes with experience. The top, middle and bottom row correspond to ideal inference
model, CNN and human participants respectively. Columns correspond to different
experiments. The scale on the x-axis represents the number of training trials in the top
row, the number of training epochs in the middle row and the index of the test block in
the bottom row. The two plots in Panel B show accuracy in test blocks for humans and
CNN, respectively, when they are trained on images that lack any coherent shape. Each
bar corresponds to the type of non-shape feature used in training.

participants learned this feature quickly (performance reached 94.40% after 100 training 367

trials). Accuracy in the test block was lower (though still significantly above chance) 368

when the size of patches predicted the category (M = 52.40%) and participants learned 369

this feature at a slower rate. In contrast to these two conditions, participants were 370

unable to learn the other two diagnostic local features. Performance was at chance in 371

test trials both when the colour of a segment predicted the category (M = 21.47%) and 372

when the location and colour of a single patch predicted the category (M = 17.47%). 373

Thus participants seemed sensitive to the computational complexity of the diagnostic 374

feature. They extracted simple features like the colour of the entire figure or the size of 375

patches, but did not extract more complex features like colour of single segment or 376

patch. Fig 5B also shows the performance of the CNN on this task. In contrast to 377

human participants, the network learnt all four types of non-shape stimuli and showed 378

high accuracy on test trials in all four conditions. 379

Identifying versus Learning features 380

In order to discover the correct diagnostic features in the experiments above, a 381

participant must perform two distinct operations: they must identify a diagnostic 382

feature (from a list of all possible features) and match the correct value of this feature 383

to each category. For example, in Experiment 2, the participant must first realise that 384

the diagnostic feature is the colour of each segment. That is, they must find this feature 385

in the space of all possible features (shape, number of patches, location, size, etc.). 386

Secondly, they must map the stimulus on a given trial to the correct category, 387

extracting the colour of all five segments, working out which segment is diagnostic and 388

what the mapping is between the diagnostic colour and category. The second operation – 389

mapping a diagnostic value to a category – is a computationally demanding task as it 390
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Fig 6. Results of telling participants the diagnostic cue. Each bar shows mean
accuracy across 10 participants in the test block. Participants were divided into three
groups based on the diagnostic cue – patch location, segment colour, or average size –
used to train the participants.

requires the participant to remember several pieces of information, comparing the 391

features observed in a given stimulus with the features and outcomes of past stimuli. 392

One reason why participants might fail when the CNN succeeds is that humans and 393

CNNs have very different computational resources available to them. For example, 394

while humans are limited by the capacity of their working memories (the number of 395

features they can process at the same time), CNNs have no such limitations. If this was 396

the case – i.e., if participants were failing because of their limited cognitive resources 397

and not because they were unable to identify the correct feature – we hypothesised that 398

helping the participants identify the diagnostic feature will not improve their 399

performance on these tasks. 400

We checked this hypothesis in Experiment 6 that repeated the design of 401

Experiment 5, where participants saw stimuli that had only the non-shape diagnostic 402

feature and no coherent shape. Instead of letting participants figure out which feature 403

was diagnostic, we informed them of the diaganostic feature in each task and showed 404

them two examples of stimuli with the diagnostic feature (see Materials and Methods 405

for details). Additionally, we increased the duration of each stimulus from 1s to 3s to 406

ensure that participants do not underperform because of the time constraint. Finally, 407

we gave participants an added incentive to learn the task, increasing the possible bonus 408

reward based on their performance in the test block. Participants then completed 6 409

training blocks (50 trials each) where they saw random samples of stimuli from each 410

category. We already know that participants can solve the task when the diagnostic 411

feature was the colour of the entire figure (see Fig 5B above). Therefore, we tested three 412

groups of participants, where each group was trained on stimuli with one of the other 413

three non-shape features – patch location, segment colour or average size – being 414

diagnostic of the category. 415

The results of Experiment 6 are shown in Fig 6. Like Experiment 5, mean 416

performance across participants was above chance in the Size condition but at chance in 417

the Patch and Segment conditions. The overall pattern of results for the three 418

conditions was statistically indistinguishable from the results of Experiment 5. In other 419

words, even when participants were told the diagnostic features and given additional 420

time and incentive to learn the task, they struggled to classify stimuli based on patch 421

location or segment colour. These results confirm the hypothesis that the difficulty of 422

these tasks for human participants is not limited to identifying the diagnostic features. 423

Instead, the cognitive resources required to extract the diagnostic feature value and 424
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mapping it to the correct category may play a critical role in how humans select 425

features for object classification. 426

Discussion 427

In a series of experiments we repeatedly observed that participants learned to classify a 428

set of novel objects on the basis of global features such as overall shape and colour even 429

when local non-shape features were more predictive of category (Fig 3B). This behaviour 430

is in keeping with psychological studies which show that humans prefer to categorise 431

objects based on shape [32–34,43] but, additionally, shows that this shape-bias is 432

retained in novel learning environments where the statistics favoured learning based on 433

a different feature. This observation is consistent with category-learning studies which 434

show that participants overlook salient cues when multiple cues can be used to solve the 435

task [44] and especially in high-dimensional classification tasks [45]. 436

We found that one cannot explain human behaviour using a simple statistical model 437

that infers the category of a test stimulus based solely on the evidence observed in the 438

training trials and no prior biases. We also found that human behaviour was 439

inconsistent with the behaviour of CNNs as the the predictive value of features play a 440

key role in how CNNs learns to classify novel objects. Unlike human participants, 441

previous biases of the network (either learnt through training or built-in through 442

architectural constraints) were not sufficient to overcome this reliance on predictive 443

features. If humans indeed learn in novel environments through a process of statistical 444

learning, these results motivate an exploration of why humans do not quickly adapt to 445

the novel environment in the same way the statistical models presented in this study do. 446

Note that this may be a challenging problem to solve for CNNs and statistical inference 447

models as in Experiment 5 and 6 participants struggle to learn some features even when 448

there is no concurrent shape feature. 449

Our results were robust across a range of experimental and simulation conditions. Of 450

course, this does not mean that we have controlled for all differences between human 451

experiments and CNN simulations, but our study shows that our findings are robust 452

across multiple CNN architectures, a range of hyper-parameters, different types of 453

pre-training and different types of predictive features (patch location, segment colour, 454

patch size). While we believe that there is unlikely to be a set of experiment conditions 455

that will make humans behave like CNNs, we acknowledge that we do not control for all 456

possible differences in the experimental setup. 457

Another difference between human participants and CNNs is that participants in our 458

studies had a life-time of exposure to a natural world where shape may be the most 459

diagnostic feature. Indeed, some longitudinal studies have shown that it is possible to 460

create a shape-bias in very young children by intensively teaching them new categories 461

but keeping the statistical properties of their linguistic environment [46]. Accordingly, it 462

is possible that our participants had acquired a shape-bias early on in life [35,47] that 463

constrained how the new objects in our experiments were learned. But we observed that 464

CNNs did not retain a shape-bias even when we induced a shape-bias in pre-training 465

and when we froze the weights in an attempt to preserve the shape-bias when classifying 466

our new objects. Instead they simply learned whatever features of new object categories 467

were most diagnostic. In other words, even if one assumes that CNNs adequately 468

capture why humans learn to classify objects based on their shape, they do not capture 469

why humans continue to look for certain features (like shape) and are agnostic to other 470

features when learning about new objects. 471

Note, we do not want to claim that humans could never learn to use features other 472

than shape. In Experiment 4, many participants learn to rely on another global feature – 473

the overall colour of objects. And in some of our experiments (for example, where the 474
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size of the patches predicted category membership) it is possible that if participants 475

were given a lot more training, some participants may switch to using the more 476

predictive feature. If this were the case, the pattern would be that participants prefer 477

relying on global features early in learning, then switch to more predictive features. The 478

dynamics of the ideal inference model and the CNN (Fig 5A) show that neither of the 479

models predict this behaviour. 480

It should also be noted that the behaviour of participants observed here highlights a 481

more extreme form of shape-bias than has been reported before. In a typical shape-bias 482

experiment, the term shape-bias indicates the inductive-bias to rely on shape in the 483

presence of alternative features that are equally good at predicting the target 484

category [34,35]. In our experiments, we observed that participants relied on shape even 485

in the presence of features that were better at predicting the target category. 486

Furthermore, in two of our experiments (Experiments 5 and 6) there was no consistent 487

shape at all that could be used to predict category membership. In these experiments, 488

participants failed to pick some perfectly predictive statistical features (like location of 489

patch or colour of segment) even in the absence of a diagnostic shape. This functional 490

blindness towards certain features cannot necessarily be explained as a shape-bias as 491

there is no competing shape feature to learn. 492

These findings are consistent with a recent study conducted by Shah et al. [48], who 493

found that CNNs learn to classify images on the basis of simple diagnostic features and 494

ignore more complex features. The focus of Shah et al. [48] was not on comparing CNNs 495

to humans, but rather, showing how a simplicity bias limits generalisation in CNNs. 496

Nevertheless, their study may shed light on another key difference between human and 497

CNN vision, namely, humans are much better at generalising to out-of-distribution 498

image datasets compared to CNNs, such as identifying degraded and distorted 499

images [31,49]. It may be that that the shape bias we observed in humans but lacking 500

in CNNs plays a role in more robust human visual generalisation. 501

An important outstanding question is why participants in our study relied on global 502

features such as shape or overall colour and struggled to learn salient features that were 503

highly diagnostic. Some of the observations made in our experiments provide clues to 504

the reasons underlying participant behaviour. In Experiment 6, we observed that even 505

when the relevant features are pointed out, participants still could not learn to classify 506

objects based on patch location and segment colour. This shows that the inability to 507

learn these local features is not limited to the difficulty of discovering the type of 508

feature, but may be due to the computational demand of learning how features map to 509

categories. For example, consider the Segment condition in Experiment 6, where the 510

colour of a segment predicted the object category. One strategy to learn this task is to 511

simultaneously store colours of all five segments in memory during each trial and 512

compare these colours across trials of the same category, eliminating colours that do not 513

overlap. This type of strategy will have strained or exceeded the visual capacity of 514

humans, leading them to ignore this predictive cue and focus on shape, even though it is 515

less diagnostic. 516

Similarly, we also observed that participants frequently selected only one of several 517

possible features available to learn an input-output mapping (e.g. in Experiment 4 518

participants chose to classify either based on colour or shape but almost never both, 519

even though this was the optimal policy in the task). Learning multiple features may 520

lead to better prediction in certain circumstances, however it also requires using more 521

cognitive resources. The fact that participants generally rely on only one feature 522

suggests that participants trade off their performance in the task with the mental 523

effort [50,51] required to learn how each feature maps to the object category. 524

By contrast, CNNs do not suffer from the same resource limitations as humans. A 525

striking example of this is that CNNs not only succeed in learning to classify millions of 526
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images in ImageNet into 1000 categories, they can also learn to classify the same 527

number of random patterns of TV static-like noise into 1000 different categories [52], 528

something far beyond the capacity of humans [53]. This capacity was no doubt 529

exploited by the CNNs in the current learning context. By contrast, our participants 530

had to learn the object categories in the face of many well documented cognitive 531

limitations of humans, such as limited capacity of visual short-term memory [54], visual 532

crowding [55,56] and selective attention [57,58]. 533

Whatever the origin of the shape-bias, the results here should give pause for thought 534

to researchers interested in computational models of visual object recognition. These 535

results show that humans are blind to a wide range of non-shape predictive features 536

when classifying objects, and if models are going to be used as theories of human vision, 537

they should be blind to these features as well. This may result not only in models that 538

are more psychologically relevant, but also capture the robustness and generalisability of 539

the human visual system that is lacking in current models [28, 31,59]. 540

Materials and Methods 541

Ethics Statement All studies adhered to the University of Bristol ethics guidelines 542

and obtained an ethics approval from the School of Psychological Science Research 543

Ethics Committee (approval code 10350). For all behavioural experiments, we obtained 544

formal written consent from participants to use their anonymised data for research. 545

Experimental Details 546

Materials We constructed nine datasets of training and test images. There were 2000 547

training images and 500 test images in each dataset. Each image consisted of 30–55 548

coloured patches on a white background. The colours of patches were sampled from a 549

palette of 20 distinct colours so that they were clearly discernible. These patches were 550

organised into five segments. There were four short segments (consisting of 5–10 551

patches) and one long segment (consisting of 10–15 patches). Each segment was 552

oriented either vertically or horizontally. Images were grouped into five target categories 553

and each category was paired with a unique spatial configuration of segments. It is this 554

spatial configuration of segments that we refer to as shape. These shapes were chosen 555

such that the five shapes were clearly distinct from one another. A pilot experiment 556

showed that most participants could learn to categorise based on the chosen shapes 557

within 300 trials. All images in a category also contained a second diagnostic feature, 558

which was the location and colour of a patch in Experiment 1, the colour of a segment 559

in Experiment 2, the average size of patches in Experiment 3 and the colour of all the 560

segments in Experiment 4. 561

Within each category, images were randomly generated and varied in the number, 562

colour, location and size of patches. This variability ensured that (i) participants 563

(human and CNN) had to generalise over images to learn the category mappings, and 564

(ii) there were no incidental local features that could be used to predict the category. 565

The exact number of patches in each segment was sampled from a uniform distribution; 566

the size and location of each patch was jittered (around 30%); and the colour of each 567

patch (Experiments 1 and 3) or each segment (Experiment 2) was randomly sampled 568

from the set of (non-diagnostic) colours. In addition, each figure was translated to a 569

random location on the canvas and could be presented in one of four different 570

orientations (0, π/2, π and 3π/4 radians). 571

The original size of images was 600x600 pixels. This was reduced to 224x224 pixels 572

for the simulations with CNNs. For the behavioural experiments, the stimuli size was 573

scaled to 90% of the screen height (e.g. if the screen resolution was 1920x1080 the image 574
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Fig 7. Procedure for human experiments. Time course for a single training trial
in human experiments. The test trials followed an identical procedure, except
participants were not given any feedback on their choices.

size would have been 972x972). This ensured that participants could clearly discern the 575

smallest feature in an image (a single patch) which we confirmed in a pilot study (see 576

Procedure below). 577

Participants Participants were recruited and reimbursed through Prolific. In 578

Experiments 1–4, S1 and S2 there were N = 25 participants per experiment (total N = 579

250), and in Experiments 5, 6, S3 and S4 there were N = 10 participants per 580

experimental condition (total N = 100). In Experiments 1–5 as well as S1-S3 581

participants received 4 GBP for participating in the experiment and could earn an 582

additional 2 GBP depending on average accuracy in the test blocks. In Experiment 6 583

and S4 the incentive was increased to 5.30 GBP and a possible bonus of 3 GBP based 584

on performance in the test block. Calculated as payment per hour, the average payout 585

per participant in our experiments was 7.62 GBP per hour. 586

Procedure All experiments consisted of blocks of training trials, where participants 587

learned the categorisation task, followed by test trials, where their performance was 588

observed. During training trials participants saw an image for a fixed duration and were 589

asked to predict its category label (see Fig 7). In Experiments 1–5, this duration was 590

1000 ms, but we experimented with both longer durations (Experiments 6 and S4) and 591

shorter durations (Experiments S1–S3, see below) and obtained a similar pattern of 592

results. After each training trial, participants were told whether their choice was correct 593

and received feedback on the correct label if their choice was incorrect. In 594

Experiments 1 to 5, participants had to discover the predictive features themselves, 595

while in Experiment 6, they were explicitly told what the predictive feature was at the 596

beginning of the experiment. In this experiment, they were given textual instructions 597

describing the target feature and shown exemplars where the target feature was 598

highlighted. Participants saw 5 blocks of 60 training trials in Experiments 1–4 and 10 599

blocks of 50 trials in Experiments 5 and 6. The number of training trials was chosen 600

based on a pilot experiment and ensured that participants learnt the behavioural task. 601

In Experiments 1 to 4, each training block was followed by a test block containing 40 602

trials (10 per condition). In Experiments 5 and 6, one test block was presented at the 603

end of training consisting of 75 trials. Test trials followed the same procedure as 604
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training, except participants were not given any feedback. As we were interested in 605

object recognition rather than visual problem solving, all trials (training as well as test) 606

used a short presentation time of 1000ms. In a follow-up experiment (as well as 607

Experiment 6), we also tried a longer presentation time of 3000ms and observed a 608

similar pattern of results (see Fig S8 Fig in Supporting Information). 609

All experiments were designed in PsychoPy and carried out online on the Pavlovia 610

platform. We ensured that participants could clearly see the location of each patch by 611

conducting a pilot study. In this study, participants were shown an image from one of 612

our datasets and asked to attend to a highlighted patch. After a blank screen they were 613

shown a second image from the same dataset and asked to click on the patch which was 614

in the same position as the highlighted patch in the first image. We found that the 615

median location indicated by participants deviated from the center of the target patch 616

by only a quarter of the width of a patch - meaning that participants were able to 617

attend, keep in working memory and point out a specific patch location. This indicates 618

that even the smallest of the local features used in this study was perceivable for human 619

participants. 620

In order to ensure that our results are not affected by the presentation time or field 621

of view, we conducted three control experiments. The results of our main experiments 622

(see Fig 3) showed that be biggest contrasts between participants and humans were in 623

Experiment 1 and 2, where the diagnostic non-shape feature was the location of a patch 624

or the colour of a segment. Therefore, we conducted three control experiments, 625

reproducing the setup of Experiments 1, 2 and 5 (Patch and Segment conditions). All 626

details of these control experiments were the same as above, except (i) presentation time 627

of stimulus was reduced to 100ms, (ii) the stimulus was re-scaled so that it was always 628

within 10◦ visual angle, (iii) instead of testing participants in between every training 629

block, we tested participants only at the end, and (iv) in order to ensure that 630

participants are able to learn the task despite the shorter presentation time, we 631

increased the number of training trials from 300 to 450. We re-scaled the stimulus by 632

using the ScreenScale script https://pavlovia.org/Wake/screenscale, which 633

has been shown to give good estimates of visual angle in online experiments [60]. 634

Participants were asked to adjust the size of a displayed rectangle to the size of a credit 635

card. To ensure that participants did this correctly, we asked participants to measure 636

the size of a second rectangle and rejected all participants whose measurements did not 637

match the correct size. To compute the visual angle, we asked participants to sit at an 638

arm’s length from the screen and asked them to measure the distance between their 639

eyebrow and a fixation cross on the screen. Based on this measurement and how 640

participants re-scaled the displayed rectangle, we re-scaled the stimulus so that the 641

entire image subtended a visual angle of 10◦. Participants were reminded to sit at an 642

arm’s length at the end of every training block. The results of these control experiments 643

are shown in Fig S7 Fig in Supporting Information. 644

Data Analysis In all experiments chance performance was 20% since there is a 1 in 5 645

chance of randomly picking the correct category. Single sample t-tests were conducted 646

in order to determine whether participants were above chance level performance. 647

Repeated measures analyses of variance (ANOVA) were conducted when determining 648

whether there was an effect of condition (Both, Conflict, Shape, Non-shape) on 649

performance in an experiment. Follow-up comparisons were conducted with the Tukey 650

HSD correction for multiple comparisons. 651

March 29, 2022 18/35

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2021.10.20.465074doi: bioRxiv preprint 

https://pavlovia.org/Wake/screenscale
https://doi.org/10.1101/2021.10.20.465074
http://creativecommons.org/licenses/by-nc/4.0/


Simulation Details 652

Neural Network model During a supervised learning task (like the task outlined in 653

this study), a neural network performs an approximate statistical inference by 654

constructing an input-output mapping between a random vector X and a dependent 655

variable Y . The training set consists of N realisations of this random vector, 656

{x1 . . . ,xN} and N category labels {c1 . . . , cn}. For a CNN, the vectors xi can simply 657

be an image (i.e. a vector of pixel values). That is, X lies in a high-dimensional image 658

space. The neural network learns a non-linear parametric function ĉi = F (xi,w) by 659

finding the connection weights w which minimise the difference between the outputs 660

produced by the network ĉi and the given category labels, ci. During a test trial, the 661

network performs an approximate statistical inference by deducing the class of a test 662

vector xtest by applying the learnt parametric function to this vector: c = F (xtest,w). 663

Since our task involved image classification, we evaluated three state-of-the-art deep 664

convolutional neural networks, ResNet50 [61], VGG-16 [62] and AlexNet [63] which 665

performs image classification on some image datasets to a near-human standard. We 666

obtained the same pattern of results with all three architectures. Therefore, we focus on 667

the results of ResNet50 in the main text and describe the results of the other two 668

architectures in Figs S1 Fig–S3 Fig in the Supporting Information. Since evolution and 669

learning both play a role in how the human visual system classifies natural objects, we 670

used a network that was pre-trained on naturalistic images (ImageNet) rather than 671

trained from scratch. However, we observed the same pattern of results for a network 672

that was trained from scratch. In each experiment, this pre-trained network was 673

fine-tuned to classify the 2000 images sampled from the corresponding dataset into 5 674

categories. This fine-tuning was performed in the standard manner [64] by replacing the 675

final (fully-connected) layer of the network to reflect the number of target classes in 676

each dataset. The models learnt to minimise the cross-entropy error by using the Adam 677

optimiser [65] with a mini-batch size of 32 and learning rate of 10−5, which was reduced 678

by a factor of 10 on plateau using the Pytorch scheduler function ReduceLROnPlateau. 679

In one simulation study (Fig 4), we used a network that was pre-trained on a variation 680

of ImageNet that induces a shape bias [37] and then froze the weights in all but the 681

final classification layer to ensure that the learned bias was present during the training 682

on the new images. In all simulations, learning continued till the loss function had 683

converged. Generally this meant that accuracy in the training set was > 99%, except in 684

the case where we froze all convolution weights where accuracy converged to a value 685

> 70%. Each model was tested on 500 images drawn from Both, Conflict, Shape and 686

Non-Shape conditions outlined above. The results presented here are averaged over 10 687

random seed initialisations for each model. All simulations were perfomed using the 688

Pytorch framework [66] and we used torchvision implementation of all models. 689

Ideal inference model In order to understand how prior biases affect human and 690

CNN classification in the new task environment, we compared their classification to a 691

statistical inference model that computes the ideal category label for a stimulus based 692

solely on the information observed in a sequence of trials. In all our experiments, a trial 693

presented a mapping between a group of features and a category label. The goal of the 694

Ideal Inference model was to accumulate this information over a sequence of trials to 695

predict the mapping in a future trial. It does this by creating a generative model that 696

predicts the probability of observing each feature, given a category label. For example, 697

in Experiment 2, each trial presents a shape, five segment colours and a category label. 698

Based on this information, we can update the generative model, assigning a higher 699

probability for observing the shape and segments observed in the trial, given the class 700

label. Over a sequence of trials, a participant will observe more colours, shapes and 701

category labels and in each trial we can keep adjusting the generative model predicting 702
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shapes and colours given the class labels. In a test trial, we can then use the generative 703

model and Bayes’ rule to infer the probability of all category labels given the observed 704

shape and colours. We now describe this sequential Bayesian updating procedure 705

formally. 706

The goal of this model is to answer the following question: what class, 707

Y ∈ {1, . . . , C}, should a decision-maker assign to a test image, given a set of mappings 708

from images to class labels (training trials). For the purpose of statistical inference, 709

each image can be treated as a vector of features and each training trial assigns a 710

feature vector, xi = (x1i , . . . , x
F
i ), to a class label, Y = c. In our behavioural task, each 711

feature (colour / location / size) can take a discrete set of values, so we treat each 712

feature as a categorical random variable, Xf ∈ {1, . . . ,K}. The decision-maker infers 713

the class label for a test image, xtest, in two steps. Like the neural network, it first 714

learns a set of parameters θ that encode the dependencies between class labels and 715

feature values in the training data. It then uses these parameters to predict class label 716

for a given test image, xtest. 717

We start at the end. Our goal is to compute p(Y = c|X = xtest,D), the probability
distribution over class labels given the training data, D, and a test image, xtest. Using
Bayes’ law, we have:

p(Y = c|X = xtest,D) ∝ p(X = xtest|Y = c,D) p(Y = c) (1)

where p(Y = c) is the class prior and p(X = xtest|Y = c,D) is a joint class-conditional
density – the probability of observing the set of features, xtest, for a given class, c. In
our behavioural tasks, each feature is independently sampled. This means that the joint
distribution factorises as a product of class-conditional densities for each feature:

p(X = xtest|Y = c,D) =

F∏
f=1

p(Xf = xftest|Y = c,D)

Our approach is to estimate these class-conditional densities by constructing a 718

generative model p(Xf = xftest|Y = c,θ). Here θ are the parameters of the model that 719

need to be estimated based on training data. Since Xf is a categorical variable, a 720

suitable form for this parametric distribution is the multinomial distribution, 721

Mult(xftest|1,θ). The Bayesian method of estimating these parameters is to start with 722

the prior distribution p(θ) and update it based on training data, D, to obtain the 723

posterior p(θ|D). An appropriate prior for the multinomial is the Dirichlet distribution, 724

Dir(θ|α), where α are the hyper-parameters of the Dirichlet distribution. Here we 725

assume the flat prior, α = 1, which corresponds to Laplace smoothing. For this 726

Dirichlet-multinomial model, the update step involves counting the number of times 727

each feature value occurs in the training data and adding these counts to the 728

hyper-parameters [67]. 729

Once we have a posterior distribution on the model parameters, p(θ|D), we can
obtain the required class-conditional densities, p(Xf = xftest|Y = c,D) by integrating
over these parameters. This leads to the following expression (see [68]):

p(Xf = xftest|Y = c,D) =
Nk + αk∑
v Nv + αv

Here Nk is the number of times Xf takes the value k in the training data and the sum 730

in the denominator is carried out over all possible values {1, . . . ,K} of Xf . Thus this 731

model predicts that the class-conditional density of observing a feature value during a 732

test trial depends on the relative frequency with which the given feature value occurs 733

during the training data. These class-conditional densities can be plugged back into 734
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Equation 1 to give the probability distribution over all classes given the test image, 735

xtest. In our Results, we report this probability for the labelled class averaged over all 736

the test images in a test condition. 737

In all experiments, the class label, Y can take one of five possible values, that is 738

Y ∈ {1, . . . , 5}. In Experiment 1, where the location and colour of a single patch is 739

diagnostic, the feature vector on any trial, xtrial, is (xshape, x1loc, . . . , x
F
loc), where 740

xshape ∈ {1, . . . , 5} is a multinomial random variable for the shape feature that can take 741

one of five values, and each of the xfloc ∈ {1, . . . 20} is multinomial random variable for a 742

location that can take one of twenty possible colour values (we restricted the number of 743

colours to 20 to make sure colours are clearly discernible by human participants). In 744

Experiment 2, where the colour of one of the segments is diagnostic, the feature vector 745

on a trial, xtrial is (xshape, x1colour, . . . , x
20
colour), where xshape is again a multinomial 746

variable for the shape feature that can take one of five values and each 747

xfcolour ∈ {0, . . . , 5} is a count variables that represents the number of segments of 748

colour, f , in the image. In Experiment 3, where the average size of patches is diagnostic, 749

xtrial = (xshape, xsize), where xsize ∈ {1, . . . , 5} is a multinomial random variable for 750

the average size of patches in the image. In Experiment 4, where the global colour of 751

the figure is diagnostic, xtrial = (xshape, xcolour), where xcolour ∈ {1, . . . , 5} is a 752

multinomial random variable representing the global colour of the figure. 753
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Supporting Information
S1 Movie. A short movie illustrating the task in Experiment 1.

S2 Movie. A short movie illustrating the task in Experiment 2.
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S1 Fig. Results when both features are equally predictive. Each panel shows
the accuracy under the four test conditions for AlexNet (top row) or VGG-16 (bottom
row). Each column corresponds to a different experiment. Both models were pre-trained
on ImageNet and fine-tuned by reshaping the final layer to reflect the number of target
classes in each experiment and trained on 2000 images from the training set (see
Materials and Methods for details). A comparison with Fig 3A shows that both
architectures showed the same pattern of results as ResNet50: models were able to learn
the task (high accuracy in the Same condition), learned both the Shape and Non-shape
features (above chance accuracy in Shape and Non-shape conditions) and preferred to
rely on the Non-shape feature (low accuracy in the Conflict condition).
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S2 Fig. Results when non-shape feature is more predictive. Each panel again
shows the accuracy under the four test conditions for AlexNet (top row) or VGG-16
(bottom row). Each column corresponds to a different experiment. A comparison with
Fig 3B shows that both architectures showed the same pattern of results as ResNet50:
models showed a strong preference to rely on the non-shape feature in this case (a
high-low-low-high pattern in the Same-Conflict-Shape-Non-shape conditions) and this
preference became larger than the experiments where both features were equally
predictive (compare with Fig S1 Fig above).
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S3 Fig. Results for learning without shape feature. The two panels show
accuracy in test blocks for AlexNet and VGG-16, respectively, when these models were
trained on images that lack any coherent shape (Experiment 5). Each bar corresponds
to the type of non-shape feature used in training. Like ResNet50, but unlike human
participants (compare with Fig 5B), both models were able to learn all types of
non-shape features.
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Shape group Colour group

S4 Fig. Two groups in Experiment 4a. Each panel shows the accuracy under the
four test conditions for a subgroup of participants. Participants were split based on
whether they performed better in the shape or colour conditions. The first group
contained N=12 participants and the second group contained N=13 participants.
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Shape group Colour group

S5 Fig. Two groups in Experiment 4b. Each panel again shows accuracy under
the four test conditions for the subgroups of participants who prefer to rely on shape
and colour, respectively. In this case, the first group consisted of N=7 participants and
the second group consisted of N=18 participants.
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S6 Fig. Change in test performance with training in Experiments 1a, 2a,
3a, and 4a. Fig 5A in the main text shows the change in performance under the four
test conditions in Experiment 1b, 2b, 3b and 4b, where the non-shape feature and more
predictive than shape features in training. Here we have plotted how performance
changes in Experiments 1a, 2a, 3a and 4a, where both features are equally likely. Each
panel shows how accuracy on the four types of test trials changes with experience. The
top, middle and bottom row correspond to optimal decision model, CNN and human
participants respectively. Columns correspond to different experiments. The scale on
the x-axis represents the number of training trials in the top row, the number of
training epochs in the middle row and the index of the test block in the bottom row. A
comparison of Fig S6 Fig and Fig 5A from the main text shows a very similar pattern in
all experiments and for humans as well as the two types of models. The two models
predict that a difference between Both and Conflict conditions emerges early and
grows with learning. In contrast, human participants show no difference in the two
conditions throughout the experiment in Experiments 1a, 2a and 3a. Further analysis of
individual participants showed that, like Experiments 1b, 2b, 3b and 4b, no participant
switched from using one feature to another during the experiment.
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S7 Fig. Results for Experiments S1, S2 and S3. In three experiments, we
tested how participant behaviour changed when we presented the stimuli for a shorter
duration (100ms) and restricted the field of view, such that the stimulus was always
presented within 10◦ of fixation (see Materials and Methods in main text). (a – Fig S7a)
Accuracy of N=25 participants in the four test conditions in an experiment that mirrors
Experiment 1b – i.e., all training images contain a diagnostic patch and 80% images
contain a diagnostic shape, (b – Fig S7b) Accuracy of N=25 participants in the four test
conditions in an experiment mirroring Experiment 2b – i.e., all training images contain
a diagnostic segment and 80% images contain a diagnostic shape, (c – Fig S7c)
Accuracy of two groups of N=10 participants in test block where the training images
contained only non-shape cues. Performance of participants in all experiments was
consistent with their performance observed in other experiments. Though the overall
accuracy of participants in this control experiments was slightly lower (mean accuracy
in the Both condition was M = 59.60% in (a) and M = 57.20% in (b)), which is
understandable given the faster presentation time, there was statistically no difference
in their performance in the Both, Conflict and Shape conditions and their
performance in the Non-shape condition was at chance. In Experiment (c), where there
was no shape features in the training set, performance of both the Patch and Segment
groups was statistically at chance. That is, participants consistently learned based on
shape cues; when a diagnostic shape was not present during training, no participant
managed to learn the task. (Compare results with Figs 3B and 5B)
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S8 Fig. Results for Experiment S4. Accuracy in the four conditions when
participants are shown the stimuli for 3s instead of 1s. In this experiment, every trial
has two diagnostic features – global shape and average size. Despite the increase in the
duration of the stimulus, participants performed well in the Both, Conflict and Shape
conditions, but performed at chance in the non-shape (Size) condition, indicating that
they still preferred to learn based on shape. Notice, we used Experiment 3 (non-shape
cue = average size) to test this because this is experiment in which the participants
were most likely to pick on the non-shape (Size) cue based on results in Experiment 5,
where mean performance in the Size condition was above chance, while mean
performance in Segment or Patch conditions was at chance, even when there was no
competing shape feature.
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S9 Fig. Examples of stimuli in Experiment 1 (patch). In each row we show
(from left to right) an example image from the training set, Both condition, Conflict
condition, Shape condition and Non-shape (Patch) condition for a category. Each
image in the training set contains a diagnostic patch of a certain colour that is present
at a category-specific location. Additionally, all training images in Experiment 1a and
80% of images in Experiment 1b have a diagnostic shape. Images in the Both condition
contain both these features. Images in the Conflict condition contain the shape from
one category but diagnostic patch from another category. Images in the Shape condition
contain the shape feature but none of the diagnostic patches. Images in the Patch
condition contain the diagnostic patch but none of the shapes from the training set.
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Train Both Conflict Shape Segment

C
a

te
g

o
ry

 1
C

a
te

g
o

ry
 2

C
a

te
g

o
ry

 3
C

a
te

g
o

ry
 4

C
a

te
g

o
ry

 5

S10 Fig. Examples of stimuli in Experiment 2 (segment). In each row we
show (from left to right) an example image from the training set, Both condition,
Conflict condition, Shape condition and Non-shape (Segment) condition for a
category. Each image in the training set contains a diagnostic segment of a
category-specific colour. Only images of this category have a segment of this colour.
Additionally, all training images in Experiment 2a and 80% of images in Experiment 2b
have a diagnostic shape. Images in the Both condition contain both these features.
Images in the Conflict condition contain the shape from one category but diagnostic
segment from another category. Images in the Shape condition contain the shape
feature but none of the diagnostic segments. Images in the Segment condition contain
the diagnostic segment but none of the shapes from the training set.
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S11 Fig. Examples of stimuli in Experiment 3 (size). In each row we show
(from left to right) an example image from the training set, Both condition, Conflict
condition, Shape condition and Non-shape (Size) condition for a category. The
average size of all images in the training set is diagnostic of the category. That is,
different categories have images that have different average size of patches. Additionally,
all training images in Experiment 3a and 80% of images in Experiment 3b have a
diagnostic shape. Images in the Both condition contain both these features. Images in
the Conflict condition contain the shape from one category but diagnostic size from
another category. Images in the Shape condition contain the shape feature and the
average size of patches is larger than the diagnostic size of any category in the training
set. Finally, the Size condition contains images where the average size of patches is
diagnostic but shape is not.
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S12 Fig. Examples of stimuli in Experiment 4 (colour). In each row we show
(from left to right) an example image from the training set, Both condition, Conflict
condition, Shape condition and Non-shape (Size) condition for a category. All patches
in an image have the same colour. This colour is diagnostic of an image’s category in
the training set. Additionally, all training images in Experiment 4a and 80% of images
in Experiment 4b have a diagnostic shape. Images in the Both condition contain both
these features. Images in the Conflict condition contain the shape from one category
but diagnostic colour from another category. Images in the Shape condition contain the
shape feature and a colour that is not diagnostic of any category in the training set.
Finally, the Colour condition contains images with no coherent shape but where the
colour of segments is diagnostic of the category.
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S13 Fig. Examples of stimuli in Experiment 5 and 6 (no shape). Each row
shows four examples from the training set that have the same category label as well as
one example from the test set with the same label. The four rows correspond to the four
conditions. In row 1, the predictive feature is patch location. In row 2, the predictive
feature is colour of one of the segments. In row 3, the predictive feature is average size
of patches. And in row 4, the predictive feature is colour of all patches.
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