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Abstract Interactive biorobotics provides unique experimental potential to study the10

mechanisms underlying social communication but is limited by our ability to build expressive11

robots that exhibit the complex behaviours of birds and small mammals. An alternative to12

physical robots is to use virtual reality (VR). Here, we designed and built a modular, audio-visual13

virtual reality environment that allows online, multi-modal, multi-agent interaction for social14

communication. We tested this system in songbirds, which provide an exceptionally powerful15

and tractable model system to study social communication. We show that zebra finches16

(Taeniopygia guttata) communicating through the VR environment exhibit normal call timing17

behaviour, males sing female directed song and both males and females display high-intensity18

courtship behaviours to their mates. These results suggest that the VR system provides a19

sufficiently natural environment to elicit normal social communication behaviour. Furthermore,20

we developed a fully unsupervised online song motif detector and used it to manipulate the21

virtual social environment of male zebra finches based on the number of motifs sung. Our VR22

setup represents a first step in taking automatic behaviour annotation into the online domain23

and allows for animal-computer interaction using higher level behaviours such as song. Our24

unsupervised acoustic analysis eliminates the need for annotated training data thus reducing25

labour investment and experimenter bias.26

27

Introduction28

Social communication involves multiple individuals that interact in networks, typically through29

multi-modal signals, such as vision and sound. Deciphering themechanisms underlying social com-30

munication requires experimental manipulation of the complex multi-modal interactions within31

the social network. The field of interactive biorobotics provides unique experimental possibilities32

by letting animals interact with robots to understand, for example, mating behaviours (Patricelli33

et al., 2006; Reaney et al., 2008; Partan et al., 2011; Klein et al., 2012), the underlying rules of34

shoaling behaviour (Marras and Porfiri, 2012; Polverino et al., 2013; Kopman et al., 2013; Bonnet35

et al., 2016) and communication signals (Partan et al., 2010; Benichov et al., 2016). This approach36

is limited by our ability to build expressive robots that exhibit complex behaviours. What passes37

for an expressive robot is species and hypothesis dependent, but many animals will readily accept38

a robot as part of their social network (Michelsen et al., 1992;Halloy et al., 2007; deMargerie et al.,39

2011; Romano et al., 2017). Building and controlling a small expressive robot might be possible in40
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some cases (Simon et al., 2019) but is often not a viable solution for small model animals due to41

the mechanical and computational complexity involved in fully mimicking natural behaviours.42

An alternative to physical robots is to use virtual reality (VR) (Dombeck and Reiser, 2012), de-43

fined as "a real or simulated environment in which a perceiver experiences telepresence" (Steuer,44

1992). Current VR setups used in larval zebra fish (Ahrens et al., 2012), fruit flies (Reiser and Dickin-45

son, 2008) and mice (Harvey et al., 2009) virtualise the position of the agent in the environment by46

providing computer-generated visual feedback. The visual stimulus is generated bymeasuring the47

real-world movements of the agent and apply the same translation to its virtual position (Reiser48

and Dickinson, 2008; Harvey et al., 2009; Ahrens et al., 2012; Kaupert et al., 2017; Stowers et al.,49

2017; Cong et al., 2017). To provide a sufficiently natural virtual environment to interact with and50

drive the behaviour of an agent, the system needs to be fast enough to analyse, compute and51

generate the virtual environment within the perceptual real-time of the agent. We refer to this52

requirement as online operation (Larsen et al., 2021). Studying social communication in a virtual53

environment in most cases also requires multi-modal signals, such as vision and sound and inter-54

action between multiple agents (Rychen et al., 2021), but so far VR environments have, to the best55

of our knowledge, only been used to study single agents. Taken together, to experimentally ma-56

nipulate social communication, we need amulti-agent VR setup that supports online manipulation57

of multi-modal signals.58

A potentially excellent system for studying social behaviour in a VR context is vocal interaction59

in songbirds. Zebra finches (Taeniopygia guttata) live in societies and form interactive networks60

through calls (Zann, 1996; Ter Maat et al., 2014; Anisimov et al., 2014; Benichov et al., 2016; Elie61

and Theunissen, 2016). The male song is a learned complex behaviour and is part of the mating62

ritual where both visual and auditory cues play crucial roles in the natural behaviour (Zann, 1996).63

To situate a zebra finch in virtual reality requires at least sound and vision but is likely also in-64

fluenced by gaze (Davidson and Clayton, 2016) and orientation relative to other agents (Ljubičić65

et al., 2016). Previous work has shown that zebra finches interact vocally with an immobile phys-66

ical decoy providing audio from a built-in speaker (Benichov et al., 2016; Benichov and Vallentin,67

2020) and are physically attracted to more life-like actuated zebra finch robots (Simon et al., 2019).68

Furthermore, adult finches can recognize and discriminate between conspecifics from live video69

feeds (Galoch and Bischof, 2006, 2007) and sing song to still images (Adret, 1997) or live video70

feeds of females (Ikebuchi and Okanoya, 1999; Adret, 1997). Also, juvenile males can learn song71

from video and audio playback of a tutor (Chen et al., 2016; Carouso-Peck and Goldstein, 2019).72

Finally, online perturbation of virtual auditory environments can drive active error correction of73

song (Sober and Brainard, 2009; Hoffmann et al., 2012). Taken together, these studies suggest74

that zebra finches allow studying social behaviour in a VR context. However, no multi-agent VR75

setup currently exists that supports online, multi-modal manipulation of social communication in76

zebra finches, and we do not know if zebra finches exhibit normal vocal behaviour when placed in77

VR environments.78

Results79

We present amodular, audio-visual VR environment able to experimentally manipulate social com-80

munication. Our system allows for online, multi-modal, multi-agent interaction and focuses on81

songbirds. Our VR setup is implemented in a box placed inside a cage and the cage is placed in a82

sound attenuating isolator box. We record and present a high-speed (60 fps) visual environment83

through a teleprompter system that allows direct eye contact and ensures a realistic visual perspec-84

tive of the video (Fig 1A). The cage has two perches with presence sensors (Fig 1A); one in front of85

the teleprompter screen (front perch) and one behind an opaque divider that does not allow visual86

contact with the screen (back perch). Connecting two VR setups provides the visual impression that87

the other animal is located 20 cm away (Fig 1B). We furthermore record the acoustic environment88

and present audio from a speaker located behind the teleprompter to provide the cue that sound89

and video have the same spatial origin. Data from all sensors is streamed on a network, translated90
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Figure 1. A modular multi-agent multi-modal VR setup for social communication in birds. A: The cage equipped with the VR setup and anopaque divider. On the front perch the bird is able to see the screen, while not when it sits on the back perch. B: Connecting two VR setupsprovides the visual impression of the other animal being twice the distance between the bird and the camera away; in this case 20cm. C: Thedistributed hardware architecture of the setup based on Larsen et al. (2021). See Methods for more detail. D: Perch and acoustic eventsproduced during two hours of communication through the VR setup and a 10-minute zoom of the area with yellow overlay. For complex eventdefinitions see main text. E: The perch preference in four different experimental conditions. Different letters denote significant difference(two-proportion z-test, 1 % significance level, n=24).

online into events using cloud-based event processing (Larsen et al., 2021) and is captured for of-91

fline processing by a node connected to storage (historian, Fig 1C). This modular and distributed92

design allowed for scaling of individual parts of the system (e.g., to add sensors or online software93

analyses) and can be extended to connect multiple VR setups.94

Event Processing (Cugola and Margara, 2012) was used to represent onset and offset of be-95

havioural features and event streams frommultiple producers were combined to form new events96

(Fig 1D). The position of a single bird generated three different events for absence/presence on the97

front or back perch or other location (Fig 1D, cyan, yellow and magenta lines). When connecting98

two VR setups with one bird in each cage, a visual contact event was defined as both birds perched99

in front of the screen and thus able to see each other. To detect and identify vocal signals, the au-100

dio stream from the male was analysed online (see methods) to generate events based on power101

and entropy threshold-crossings (Fig 1D, green lines). A bout of song was detected by combining102

power and entropy with hysteresis thus suppressingmost noise. Finally, a directed song (DS) event103

was generated when bout and contact were active at the same time (Fig 1D, bottom line) in other104

words, when a male was singing while both male and female were sitting on the front perch.105

To investigate the animals’ motivation for social interaction through the VR setup, wemeasured106

the perch preference of twelve pair-bonded male-female couples in four different audio-visual107

modality combinations of speaker/screen on and off. Our data showed that birds spent signifi-108

cantly more time on the front perch when one modality (either sound or video) from the other109

bird was on (Fig 1E). When both video and audio modalities were on, birds also spent more time110

on the front perch than video-only but not when compared to live audio (two-proportion z-test,111

1 % significance level, n=24). This demonstrates that the birds were attracted to both audio and112
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Figure 2. Zebra finches communicating through the VR setup exhibit natural call timing behaviour. A: Sound oscillograms andspectrograms for the stack calls of a male and a female communicating through VR setups. Detected onsets are indicated by vertical lines on theoscillograms. The arrow denotes that the playback of the male call can be seen in the recording of the female. We measure the time dt fromplayback to answer. B: Histogram of the elapsed time between the playback of the mate’s call until next call in one pair. The peak of the kerneldensity estimate is marked. Bottom plot shows a histogram of time differences for the same pair with the system off. C: Summary showing thepeak for all 8 birds. The black lines show the range of values reported in (Benichov et al., 2016).

visual signals of another individual supplied by the virtual reality system.113

To demonstrate that the VR setup provided a sufficiently natural environment for social com-114

munication, we exploited two key behaviours in communication between pair-bonded individuals:115

call timing and directed song. Coordinated call production between partners is a well described116

behaviour in birds, where it is thought to influence pair-bondmaintenance andmate guarding (Elie117

et al., 2010). Zebra finches show time-locked call behaviour using two types of calls: Tet and118

stack calls (Ter Maat et al., 2014). Both are short, low power vocalizations used when the birds119

are physically close together (Zann, 1996; Elie and Theunissen, 2016). We quantified the call tim-120

ing of stack calls between established pair bonded couples communicating through our VR envi-121

ronment (Fig 2A) and identified calls using a supervised random forrest classifier (see Methods).122

With both audio and visual modalities on, the delay from hearing a call to producing one was uni-123

modally distributed (Fig 2B) with a peak delay at 291 ms (median: 271 ms, range: 231-431 ms,124

N=8, Fig 2BC). This data is consistent with call timing delay measured between free-moving pairs in125

colonies (1̃91 ms (Ter Maat et al., 2014), 249-466 ms (Benichov et al., 2016) and 68-283 ms (Anisi-126

mov et al., 2014)). Because calls were synchronized and contingent on the call of the mate, we127

conclude that the birds displayed natural call timing behaviour through the VR setup.128

Next, we studied whether the VR setup provided a sufficiently natural environment for males129

to exhibit natural singing behaviour to their virtual mate. Male zebra finches sing both to females130

(directed song, DS) and not directed towards any particular conspecific (undirected song, US) (Zann,131

1996). The song consists of introductory notes and a stereotyped sequence of syllables, called the132

motif, that is often repeated several times to form a song bout (Zann, 1996; Sossinka and Böhner,133

1980). Although the DS and US motif consist of the same syllable sequence, several key acoustic134

features are different between DS and US. The DS motif is delivered faster and is preceded by135

more introductory notes (Jarvis et al., 1998). It also has more repetitions of the motif in each bout,136

increased sequence stereotopy (Sossinka and Böhner, 1980) and DS syllables exhibit less variation137

in the fundamental frequency of harmonic stacks (Kao et al., 2005).138

We studied five established pair-bonded couples communicating through our VR environment139

and we isolated candidate DS events as the simultaneous occurrence of bout and contact events,140

i.e., when both animals were perched in front of the screen and the male was vocalizing. The141

video segments of potential DS events were subsequently scored for accompanied behaviour by142

experienced observers (IA, CPHE). All (5/5) males sang directed song to their virtual mates and143
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Figure 3. Adult male zebra finches sing directed song to their mate through the VR system. A:Male (left) and female (right) displayingbehaviours associated with directed song. The full video is available in the supplementary materials (Movie M1). B: Spectrogram of a stack callused to estimate fundamental frequency. The vertical lines indicate the part of the syllable used to estimate fundamental frequency C: Kerneldensity estimates for the fundamental frequency of the syllable above based on 30 renditions with the system on (DS) and 30 with the systemoff (US). D: The Coefficient of Variance of the fundamental frequency is significantly lower when the VR system is on (Wilcoxon signed rank test,5 % significance level, n=5) indicating DS.

displayed courtship behaviours, such as fluffing, beak wipes and jumping, that are indicative of144

DS (Fig 3A; Movie M1) at high intensity. The coefficient of variance of the fundamental frequency145

(Fig 3BC) was significantly lower (Wilcoxon signed rank test, 5 % significance level, n=5, Fig 3D) when146

the VR system was on compared to off further indicating DS. Taken together our data strongly147

suggest that all males sang DS to their virtual mates.148

In summary, call timing between individuals was comparable to that of freely communicating149

animals and males sang DS to their virtual mates, which showed that our VR system provided a150

sufficiently natural environment for multi-modal, multi-agent social communication in songbirds.151

A final crucial component in the design of an online VR system is the ability to manipulate an152

agent’s environment and thereby drive its behaviour within its perceptual real-time. When zebra153

finch males sing DS to a female, they typically habituate to its presence, which leads to a reduction154

in the number of motifs perminute (Jarvis et al., 1998). In experiments requiring extended periods155

of DS and/or a high number ofmotifs, this effect is typically countered by introducing novel females156

to reinvigorate the male (Jarvis et al., 1998; So et al., 2019). Here we aimed to drive DS behaviour157

and increase the number of produced motifs by presenting different virtual females based on the158

online measured song performance of the male.159

Driving song behaviour based on song performance requires online detection of the stereo-160

typed syllable sequence, i.e., the motif. Therefore we developed a novel, unsupervised online mo-161

tif detector (see Methods). The detector is based on dimensionality reduction of feature vectors162

generated from the spectrogram of sound segments (Fig 4A-E). Training of the model was based163

on 60,000 feature vectors per animal, each representing a segment of sound. The feature vectors164

were embedded in a 2D space using t-distributed Stochastic Neighbor Embedding (Maaten and165

Hinton, 2008) and the watershed transform (Meyer, 1994) was used to cluster the space into a be-166

haviour map (Berman et al., 2014). Next, we computed the transition probability matrix between167

all syllables in the training data (Fig 4H) and used it to detect the most stereotyped sequence of syl-168

lables by starting at the globally most likely transition and following the path of locally most likely169

transitions (Fig 4H). In all the males, this path contained a cycle that we defined as the motif of the170

individual and it was confirmed by experienced observers (IA, CPHE) to be the correct motif.171

Next, we extended the method to detect motifs online (Fig 5A). We detected syllable events172

by analysing the audio stream and post-embedding the sound segments into the previously com-173

puted 2D space (Fig 5B). Syllable events were then collected in sequence events that were screened174

for ordered subsets of the motif (see Methods) to create the motif event (see example in Fig 5C).175
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Figure 4. Unsupervised training of motif detector pipeline. A: The raw sound signal is received as a continuous stream. B:When theabsolute value of the samples crosses the high threshold, we search back and forth for onset and offsets based on crossing of the low threshold.
C: The segmented signal. D: A spectrogram of the sound is generated and two vectors are computed by summing the rows and columns,respectively. E: The two vectors are normalised and concatenated to a 746-dimensional feature vector. F: Dimensionality reduction of 60kfeature vectors into a 2D space shows that sound segments cluster together. G: Regions of stereotyped sounds are labelled. Examples ofrandomly picked sounds from three different regions are indicated by white dots on the density plot and with oscillograms and spectrogramson the right. Each column is a different region. H: The most common song motif is extracted by forming the transition probability matrix andfollowing the most likely transitions forming a loop. The loop represents the most stereotyped sequence and is defined as the motif.
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Figure 5. Pipeline for online analysis and event generation. A: The pipeline for online analysis uses the methods described in fig. 4A-E forsegmentation and feature extraction. The resulting feature vector is post-embedded in the 2D space and classified based on which region it fallswithin. Syllables are collected in sequences and screened for motifs. B: The behaviour map annotated manually based on sample soundsegments from each region C: Song spectrogram with vertical lines indicating onset (green) and offset (red) events of automatically detectedsyllables. The letters indicate the class of the syllable.

The entire process was parallelised to achieve online detection.176

Next, we exposedmales to oneminute audio-visual recordings of one female in an excited state177

from the DS experiments, as long as motifs were detected (see Methods). After three minutes178

without motif detection, we switched to the audio-visual recordings of another female. Driving179

the behaviour over two hours, males sang significantly more motifs (Wilcoxon signed rank test,180

5 % significance level, n=9) compared to the control period (Fig 6AB). To confirm that the birds181

sang DS motifs, we computed the CV of FF in a motif syllable containing a harmonic stack. The182

CV was significantly lower during the driving period compared to the control period (Wilcoxon183

signed rank test, 5 % significance level, n=6), which strongly suggest that the males sang DS to the184

virtual females (Fig 6C). Taken together, our VR system made the birds sing more directed motifs185

in two hours compared to undirected motifs in the control, thus demonstrating the ability to drive186

directed song behaviour.187

Discussion188

Wepresent a VR environment to study social communication that allows online, multi-modal, multi-189

agent interaction. Zebra finches communicating within the modular VR environment emitted calls190

that were synchronized and contingent on the call of the mate with response latencies as in real191

life situations (Benichov et al., 2016; Ter Maat et al., 2014; Anisimov et al., 2014). Furthermore,192

our data show that males exhibited high-intensity courtship behaviour and sang directed song to193

their virtual females. To detect DS events, we used an easily implemented definition of DS as song194

that occurs while the birds had visual contact. Previous studies also defined DS as song when195

the male was singing oriented towards a conspecific female (Adret, 1997; Chen et al., 2016), but196

did not confirm this classification by further acoustic analysis such as decreased DS motif dura-197

tion (Jarvis et al., 1998), or decreased variation in the fundamental frequency of harmonic stacks198

in DS syllables (Kao et al., 2005). Ikebuchi and Okanoya (1999) classified each song rendition as199

either directed or undirected based on dance behaviour but did not indicate their criteria for this200

classification. Using both behavioural and acoustic analysis we confirmed that song elicited under201

our definition was indeed DS. Taken together, these data strongly suggest that the VR environment202
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Figure 6. Number of directed motifs can be increased with the help of online motif detection. A: Cumulative sum of detected motifs forone bird during a two-hour period of driving the behaviour by switching virtual female individuals and the same two hours on the following daywithout video. Background colours show which video was playing during that time. Videos change dynamically based on number of motifs. B:The number of motifs sung was significantly higher (Wilcoxon signed rank test, 5 % significance level, n=9) during the two hours with videocompared to the two-hour control without video demonstrating that the video drives them to sing more. C: The coefficient of variance for thefundamental frequency was significantly lower (Wilcoxon signed rank test, 5 % significance level, n=6) during the two hours with video comparedto the two-hour control confirming that they sing directed song to the video.

is sufficiently realistic to elicit the full spectrum of courtship behaviours.203

We present and implemented a syllable-based unsupervised audio classifier which we think204

will be widely applicable in bioacoustics. Unsupervised clustering methods have been used in the205

analysis of vocalisations (Tchernichovski et al., 2000) but are typically based on a few dozen acous-206

tic features. A more data-driven approach is to use spectrograms directly as high dimensional207

features (Kollmorgen et al., 2020), which however imposes extensive computational costs. Here,208

we compressed the spectrograms to arrive at a manageably sized feature vector thereby keep-209

ing computational costs low. Especially for stereotyped behaviours, unsupervised methods like210

t-SNE (Maaten and Hinton, 2008) excel because clusters of repeated behaviours stand out from211

noise (Berman et al., 2014). Furthermore, we parallelized a variation of the post-embedding algo-212

rithm described in Berman et al. (2014) to achieve online classification. Lastly, we could determine213

each individual’s motif in an unsupervised way by assuming only that the motif is the most re-214

peated syllable string, thus exploiting the fact that zebra finch song is highly stereotyped. Our215

unsupervised method eliminates the need for annotated training data and thereby reduce labour216

investment and the risk for experimenter bias.217

Our setup represents a first step in taking automatic behaviour annotation into the online do-218

main. We used events to represent behaviour and event-processing and microservices to achieve219

online capabilities (Larsen et al., 2021). Several studies have demonstrated the power of online220

processing in closed loop assays in neuroscience (Grosenick et al., 2015; Nourizonoz et al., 2020),221

to manipulate pitch in songbirds (Lohr et al., 2003; Brumm and Slabbekoorn, 2005; Riedner and222

Adam, 2020) or to provide virtual reality (Ahrens et al., 2012; Reiser and Dickinson, 2008; Harvey223

et al., 2009). Those studies take advantage of computationally attractive features, such as action224

potentials or acoustic features, to allow near real time system response. Our approach is slower225

but allows system response to target higher levels of behavioural organisation, such as syllables226

or motifs in the audio domain. The limiting factor is the ability to infer online the behaviour of the227

animal, in other words to parallelise and optimise algorithms for behaviour annotation.228

Our VR system is modular and can be extended to multiple setups or to add more sensors, ac-229

tuators, and computational units. We expect our online, modular setup to be applicable to other230

species of social birds and mammals. We deliberately based the setup on cheap distributed com-231

puters, free and open-source software, and cloud computing to ease the reuse of hardware and232

software modules in other projects, and make it easier for multiple developers to contribute. The233
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distributed architecture complicates the system and increases the minimum latency, but allows234

it to scale linearly, makes it easier to maintain, and makes it resilient to single node failures. The235

system can be deployed anywhere with network and thereby enables global-scale social commu-236

nication experiments. VR setups situated around the globe could thus be connected and allow for237

unique long-term communication experiments between labs that are physically far apart.238

Methods239

The VR setup240

The VR-setup was built on the teleprompter principle, where a slanted one-way mirror allows the241

camera to record the bird through the mirror while the bird sees the reflection of a screen below242

(Fig 1A).243

A microphone is placed outside the cage above the perch in front of the screen while the rest244

of the system is placed inside a painted wooden box placed in the cage. The one-way mirror is245

constructed from a sheet of 3 mm transparent acrylic plexiglass coated by 0.02 mm silver one-way246

film with 70 % light admittance and 99 % reflectance.247

The screens are trichromatic 7” LCD displays in 800x480 pixel resolution. Although birds pos-248

sess at least tetrachromatic or even pentachromatic vision (Emmerton, 1983), previous studies249

showed that males sing when presented with live video of conspecific females on trichromatic250

screens (Adret, 1997; Ikebuchi and Okanoya, 1999; Galoch and Bischof, 2006). However, critical to251

eliciting courtship behaviour was the use of 100 Hz screens (Ikebuchi and Okanoya, 1999; Galoch252

and Bischof, 2006) that are above the flicker-frequency of birds (Emmerton, 1983; Nuboer et al.,253

1992) or non-flickering liquid-crystal displays (LCD). Therefore, we decided to use 60Hz LCD screens254

that present slower, but continuous, flicker-free images to the birds. The video is recorded with a255

Raspberry Pi Camera V2 in 800x480 pixel resolution at 60 frames per second (fps) and streamed256

to the network from a Raspberry Pi 3. The video delay was measured by simultaneously turning257

on an LED in both boxes and recording a video with an external camera showing both the LED and258

the screen. By counting the number of frames from the local LED turns on to the remote LED from259

the other box can be seen on the screen the delay can be calculated. This delay was measured to260

383 ms (23 frames at 60 fps).261

The audio playback comes from a 1.5 W mini-speaker placed behind the mirror and had to262

be slightly attenuated (-6dB) to avoid acoustic feedback. The sound was recorded and streamed263

from amulti-channel recording array (Andreassen et al., 2014) using Knowles FG23329-PO7micro-264

phones. The recording equipment is not part of the developed VR setup and it could be replaced265

by any system capable of streaming audio. The audio delay wasmeasured bymaking a loud sound266

(with a clicker) in one box and timing the difference between that signal in one box and the version267

played back in the other box. This delay was measured to be 308 ms ± 4 ms.268

Figure 1 C shows the architecture of the system. Each VR-box contains two Raspberry Pi 3269

model B connected to a gigabit switch. One is connected to the camera and is only responsible270

for streaming video. The other, connected to display and speaker, is responsible for playback of271

sound and image. A third Raspberry Pi 3 is placed on top of the cage responsible for polling the272

perch sensor at 20 Hz and emitting state changes as events. It also measures temperature and273

humidity in the box and emits those as events every minute. The multi-channel microphone array274

is placed outside the isolator box with a microphone placed in each cage. All computers on the275

network are synchronised to within milliseconds using the Network Time Protocol (Martin et al.,276

2010) implemented with chrony (Lichvar, 1999).277

Data is streamed to IPv6multi-cast groups following the publish-subscribe pattern (Birman and278

Joseph, 1987). A PC in the bird room acts as historian, saving the data streams. Data is offloaded279

to a Ceph (Weil et al., 2006) persistent storage cluster placed in our data centre. Several event pro-280

cessors continuously analyse the data streams, producing events. These are running in a docker281

swarm (Merkel, 2014) cluster also in our data centre.282
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The two-layered architecture is based on data streams and event streams (Larsen et al., 2021).283

An event is an association between a specific time and a specific property, in this case a behaviour.284

A data stream contains sampled data from sensors such as cameras and microphones while an285

event stream consists of events produced by data stream processors or by asynchronous sensors286

such as contacts.287

The continuous audio stream is analysed online to produce the power and entropy events.288

This analysis is based on estimating the power by squaring the sample values and the entropy as289

the ratio of the geometric mean to the arithmetic mean. The analysis is implemented as plug-ins290

to the media-streaming framework gstreamer (Gstreamer, 2001). The estimates are thresholded291

with hysteresis (Larsen et al., 2021) and published as kafka events (Vohra, 2016). A perch sensor292

installed in the cage directly generates a perch event every time the bird changes location in the293

cage. Based on those three events, three complex events are generated, namely bout, contact and294

directed song. The bout event is active when both power and entropy events are active, and the295

contact event is active when both birds are perched in front of the screen. The directed song event296

is active when the bout and contact events are active (Fig 1D). Event processing was implemented297

as microservices in docker containers (Merkel, 2014) for high modularity and was running in our298

data centre.299

Animals and husbandry300

Adult male and female zebra finches (Taeniopygia guttata) were kept pairwise in breeding cages at301

the University of Southern Denmark, Odense, Denmark on a 12 h light:dark photoperiod and given302

water and food ad libitum. All experiments were conducted in accordance with the Danish law303

concerning animal experiments and protocols were approved by the Danish Animal Experiments304

Inspectorate (Copenhagen, Denmark).305

Weused adult zebra finches (> 100 days post hatch) that were established breeding pairs (mean-306

ing that they had produced at least one clutch of offspring together) in the animal-animal com-307

munication experiments and additionally also single males for the animal-computer experiments.308

When not in experiment, the birds were kept pairwise in breeding cages or in aviaries containing309

hundreds of individuals. Under experiment the birds were isolated in sound-attenuated boxes310

for a maximum of ten days before returning to their usual surroundings. The birds had access to311

food and fresh water ad libitum served at the bottom of the cage and from feeders at the side of312

the cage. In the VR setup, the birds were kept on a 12 h light:dark photoperiod. The temperature313

was kept between 22 and 28 °C and the relative humidity at 50-60 %. The temperature difference314

between the position in front of the screen (front perch) and behind the blind (back perch) was315

measured with the system fully on to be 0.4 °C (± 0.3 % accuracy). The isolator boxes attenuated316

sounds in the 200–8,000 Hz range by 40dB (measured by playing back sound in the isolator and317

record sound levels both inside and outside the box. A fan ensured air flow in the box and provided318

cooling for the equipment located inside.319

Sound segmentation320

Segmentation was based on the silence between syllables and was calculated from the amplitude321

of the signal (Fig 4B). We used two threshold values for discriminating between sound and silence.322

The input signal (Fig 4A) was normalised to range [-1;1] but otherwise not pre-processed. Starting323

from the ionth sample where the absolute value of the sample si surpasses the on-threshold ton (0.5)324

ion ∶ ||si|| > ton (1)
we searched backwards in time to find the onset sample number ionset defined as the sample325

where the peak-to-peak amplitude over w samples (325) was below the off-threshold toff (0.5).326

ionset ∶ max(si−w ∶ si) − min(si−w ∶ si) < toff (2)
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Similarly we searched for the offset sample number ioffset as new samples arrived.327

ioffset ∶ max(si ∶ si+w) − min(si ∶ si+w) < toff (3)
As soon as the last sample was received the segment was passed on to the next stage of the328

pipeline. Segments shorter than 30 ms or longer than 300 ms were discarded since the duration329

of zebra finch syllables is expected to be within that range. We implemented both an online and330

offline version of this segmentation algorithm and used it for all the experiments presented in this331

paper.332

Perch preference protocol333

The same data was used for all the animal-animal communication experiments. The VR-setup was334

powered down for at least 2 hours before the birds were moved to the isolator box (day 0) and left335

off for at least 24 hours before it was turned on for another full day (day 1). Experiments ran on the336

following days starting when the cage lights were turned on and for two hours thereafter. Day 2337

was always with black screen and no sound and the following days the system cycled through per-338

turbations of two speaker states (off, on) and two screen states (off, on) in randomised order. After339

the experiments the birds were returned to their home cages. To investigate the motivation for340

using the VR setup, we looked at the perch preference in different states of the system. Based on341

the perch sensor, an event was emitted every time the bird changed position in the cage and sum-342

ming the duration of the events gives a measure of the proportion of time spent in each position343

(Fig 1E).344

Call-timing protocol345

The audiowas segmented as described above and combined into onebig dataset covering 12hours346

a day for all 12 pairs. To provide training data, we then hand-annotated for each bird the first347

30 minutes with both video and audio on. To ease annotation, we used pre-clustering based348

on cross-correlation, so the observer was presented with oscillograms, spectrograms and sound349

from one minute at a time that had already been clustered into groups of sounds with high cross-350

correlation maximum. The observer then had to name the groups and correct mistakes made by351

the pre-clustering algorithm. The classes found were song, stack calls, distance calls, echo (loud352

sounds from the other bird triggering the segmentation), wing flapping and noise. Classification of353

vocalisations followed the descriptions in Zann (1996). Based on the annotations a random forest354

classifier (Breiman, 2001) with 100 estimators was trained for each bird ranging in mean accuracy355

(10 % hold out) from 0.82 to 0.96. To investigate call timing, we measured the time difference from356

the playback of a stack call (onset + delay) to the next stack call emitted by the animal of interest357

up to amaximum of 2 seconds. Histogram of the time differences were constructed (200 bins) and358

plotted with Gaussian Kernel Density Estimates (KDE, bandwidth=100, fig 2B).359

Directed song protocol360

To confirm directed song in the animal-animal communication experiments, we selected videos361

with potential female directed song based on the definition that both birds were on the front perch362

and the male was vocalising. The videos were then scored by experienced observers (IA, CPHE)363

for the display of hopping, jumping, beak wiping, looking at the mate and fluffing plumage (see364

figure 3D for examples). As a quantitative measure, we calculated the coefficient of variance of365

the fundamental frequency, which is lower in DS compared to US (Kao et al., 2005). However, this366

measure is extracted from stack syllables without frequency modulation such as the one shown367

in figure 3B. The motif of five birds contained a suitable syllable. From spectrograms of the motifs368

identified by the online motif detector, we manually selected the same place in the stack syllable369

(Fig 3B) in 30 motifs from each individual. The fundamental frequency was estimated from 2048370

(4̃2 ms) samples using the YIN algorithm (De Cheveigné and Kawahara, 2002).371
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Animal-computer communication experiments372

For the driving experiments, the male was left to habituate to the new surroundings until he pro-373

duced at least 10 motif repetitions during the first two hours after lights on (day 0). On the fol-374

lowing day (day 1) we ran the driving experiment, meaning that videos were displayed showing375

excited females. Three videos of different females were used, each one minute long, taken from376

the animal-animal communication experiments. In case of pair-bonded males, the established377

mates of the focal animals were not among the female videos. In case of single males the 60,000378

training samples were recorded over three days prior to the experiment. The logic of the system379

is that every time a motif is detected, a timer is reset. If the timer ran out (3 minutes since last380

motif) the next video was displayed and otherwise the same video kept getting looped. On day 2381

we recorded the control without video playbacks.382

Online motif detector383

The feature extraction is based on summing the rows and columns of the spectrogram (Fig 4D) and384

concatenating them to form a feature vector (Fig 4E).385

First a spectrogram of the segment is formed by applying Short-Time Fourier Transform (STFT)386

with FFT size of 1440 and stride of 25 samples. The parameters are all based on the sampling387

frequency of 48 kHz, the duration of sounds (30-300ms) and the desired number of time bins. The388

smallest spectrogram we can make has just one time bin and thus the maximum FFT size is:389

FFT = 30ms ∗ 48kHz = 1440bins (4)
The stride parameter can then be calculated:390

stride = ((300ms ∗ 48kHz) − 1440bins)∕512bins) = 25.3125 ≈ 25 (5)
The spectrogram is cropped to the approximate audible range for zebra finches 200 Hz to 8 kHz391

(234 bins) and the time dimension is cropped to the first 512 time bins corresponding to 300 ms392

(zero-padded if the segment duration is shorter). The rows and columns of the spectrogram are393

summed and the two resulting vectors Ft and Ff are concatenated to form a 746-dimensional394

feature vector F (Fig 4E).395

Ft =
∑

t
STFT (t, f ) (6)

396

Ff =
∑

f
STFT (t, f ) (7)

397

F =
[

Ft Ff
] (8)

Each vector is normalised to have a sum of one before concatenation.398

A training set is created consisting of 60,000 feature vectors from the same individual, each399

representing one sound segment. We embed each of these high-dimensional points in a two-400

dimensional space (Fig 4F) using the t-SNE method introduced in Maaten and Hinton (2008). The401

method minimises the relative entropy between two distributions, one representing the high-di-402

mensional points and one representing the low-dimensional points, so that close points in the403

high-dimensional space are also close in the low dimensional space.404

Since we are interested in stereotyped behaviour, we then loosely follow themethod described405

in Berman et al. (2014) placing a Gaussian kernel (bandwidth=15) on each embedded point we406

generate a density plot (Fig 4G), and we find all peaks that are separated by a distance of 15 or407

more. Using the watershed algorithm (Meyer, 1994) on the inverted density plot, we get a set of408

clusters, each representing roughly a stereotyped syllable. Examples from three different regions409

can be seen in figure 4G. The further a point is from the peak of the region themore likely it is to be410

mis-classified and thus distance from peak could be used to indicate certainty of the classification.411
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We found that some regions represent a merge of two syllables while some represent part of a412

split syllable. For higher accuracy in detecting the syllables this information could be used for post413

processing or better means of segmentation could be introduced.414

After the training phase a newdata point z is embedded based on the already embedded points,415

largely using themethoddescribed inBerman et al. (2014) appendixD. The perplexity parameter of416

the t-SNE algorithm can be interpreted as ameasure of the number of nearest neighbours (Maaten417

and Hinton, 2008) and therefore we only consider the ’perplexity’ nearest points X in the high418

dimensional space found using the ball tree algorithm (Omohundro, 1989).419

We then choose an embedding z′ of the new point z such that conditional probabilities in the420

low-dimensional space qj|z′ are similar to those in the high-dimensional space pj|z. The conditional421

probability of a point xj ∈ X given the new point z is:422

pxj |z =
DKL(z||xj)2∕2�2z )

∑

x∈X DKL(z||x)2∕2�2z )
(9)

where X is the vector of nearest points in the high-dimensional space, z is the new point in the423

high-dimensional space, sigma is found by a binary search for the value that produces a conditional424

probability with the perplexity set by the user and DKL is the relative entropy given by:425

DKL(P ||Q) =
∑

x∈X
P (x)log

(

P (x)
Q(x)

)

= −
∑

x∈X
P (x)log

(

Q(x)
P (x)

)

(10)
The conditional probability of a point x′j in the low-dimensional embedding X′ given the new426

embedding z′:427

qj|z′ =
(1 + Δ2j,z′ )

−1

∑

x′∈X′ (1 + Δ2x′ ,z′ )
−1

(11)
where Δa,b is the euclidean distance between the points a and b. Since z′ is the only unknown,428

we can find it by minimising −DKL between the conditional probability distributions:429

z′ = argmin
z′
(−DKL(px|z||qx′|z′ )) (12)

using the Nelder-Mead simplex algorithm (Nelder and Mead, 1965) and a start guess being the430

centroid of the embedding X′ of the nearest points X. If the start guess is not in the basin of431

attraction of the global minimum, it means that the new point is not like any points presented432

during training and the embedded point will shoot towards infinity (Berman et al., 2014).433

One instance of the segmentation algorithm was running for each of the two audio channels434

used in the experiment and a new feature vector was formed for each detected segment and435

placed in a queue. A pool of 6 workers (containers running in the cluster) processed feature vec-436

tors from the queue using the post-embedding algorithm described above and emitted events437

containing onset, bird ID, the low dimensional point, a letter representing the region it belonged438

to and the latency measured from the end of the segment until the event was emitted. The me-439

dian latency over 3 million syllables was 1.089 s (percentiles: 5th=0.356, 25th=0.945, 75th=1.304,440

95th=2.500). We found that 95 % of the segments were classified and the remaining 5 % were441

marked as unclassified.442

Sequence events were generated, by event-processors in the cluster, based on the timing of443

the syllable events. If the onset of the next segment was within a window of 0.5 s after the offset444

of the previous, it was added to the sequence and otherwise it was assigned to a new sequence.445

Within 3 s after the end of a sequence an event was emitted containing onset, offset, bird id and446

the sequence.447

To find the motif of the bird we formed a transition probability matrix based on the training448

data. Since the transitions in the motif were by far the most frequent, the syllables in the motif449

already stood out. Because the motif was repeated several times in a bout, they formed cycles450
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in the transition matrix (Fig 4H). We found the cycle by starting from the globally most frequent451

transition and following the locallymost frequent transitions until getting back to an already visited452

element. If the motif contained repeated syllables or if the bird sang a lot of introductory notes,453

there was a possibility for dead ends, but they could be detected and solved programmatically.454

The birds often sing variations of the long motif so we found the ten most common substrings455

of the motif and looked for those in the sequence events. We counted the number of occurrences456

of each substring in the sequence and if a motif was present, we emitted a motif event (based457

on the most frequent substring in the sequence) containing onset, motif, number of occurrences458

and bird id. The motif detector was implemented as an event-processor running in the cluster. To459

verify the motif detector, an observer (LBL) looked at the spectrograms of all the motifs generated460

online during the two hours of experimentation for one bird (96 motifs) and confirmed that all of461

them were indeed motifs.462
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