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Abstract

Near surface cameras, such as those in the PhenoCam network, are a common source of

ground truth data in modelling and remote sensing studies. Despite having locations across

numerous agricultural sites, few studies have used near surface cameras to track the unique

phenology of croplands. Due to management activities, crops do not have a natural vegetation

cycle which many phenological extraction methods are based on. For example, a field may ex-

perience abrupt changes due to harvesting and tillage throughout the year. A single camera can

also record several different plants due to crop rotations, fallow fields, and cover crops. Current

methods to estimate phenology metrics from image time series compress all image information

into a relative greenness metric, which discards a large amount of contextual information. This

can include the type of crop present, whether snow or water is present on the field, the crop

phenology, or whether a field lacking green plants consists of bare soil, fully senesced plants,

or plant residue. Here we developed a modelling workflow to create a daily time series of crop

type and phenology, while also accounting for other factors such as obstructed images and snow

covered fields. We used a mainstream deep learning image classification model, VGG16. Deep

learning classification models do not have a temporal component, so to account for temporal cor-

relation among images our workflow incorporates a hidden markov model in the post-processing.

The initial image classification model had out of sample F1 scores of 0.83-0.85, which improved

to 0.86-0.91 after all post-processing steps. The resulting time series show the progression of

crops from emergence to harvest, and can serve as a daily, local scale dataset of field states and

phenological stages for agricultural research.
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1 Introduction

The timing of planting, emergence, maturity, and harvest of crops affects the yield and long-term

sustainability of croplands, thus tracking crop phenology has numerous interested parties from local

to national levels. Remotely sensed data is an important data source for tracking crop phenology, and

other attributes, from the field to global scales (Weiss et al., 2020). Estimating crop phenology from

remotely sensed data is difficult since crops do not follow the same patterns as natural vegetation.

Harvest may happen when crops are still green, and multiple harvests in a single year will result

in several ”peaks” in greenness. Crop rotations result in different crop types year to year, which

affects the relative greenness and derived phenology metrics (Gao et al., 2017). A primary limitation

for improving satellite remote sensing based crop phenology models is a lack of widespread ground

truth data (Gao and Zhang , 2021). Near-surface cameras used in the PhenoCam network offer a

novel solution to this need for local-scale crop management information. Images from near-surface

cameras can document the date of emergence, maturity, harvest, and tillage at the field scale with

a daily temporal resolution (Hufkens et al., 2019).

Automatically extracting cropland attributes and phenological information from PhenoCam im-

agery is difficult. The primary method to estimate phenological metrics with PhenoCam data uses

the direction and amplitude of a greenness metric (the green chromatic coordinate, Gcc) of regions

of interest in the camera field of view (Richardson et al., 2018b; Seyednasrollah et al., 2019). These

metrics are well correlated with crop emergence and maturity, but cannot be used to directly iden-

tify other attributes such as crop type, flowering, or the presence of crop residue (Browning et al.,

2021). Deep learning models provide a straightforward method for identifying information in im-

ages, and can potentially identify phenological states directly as opposed to inferring them from

relative greenness in the images. Studies have successfully used deep learning image classification

models to identify and count animals (Weinstein, 2018; Norouzzadeh et al., 2018), classify animal

movement (Conway et al., 2021), and identify the phenological stage (Correia et al., 2020), species

(Jones, 2020), or stressors (Ghosal et al., 2018) of individual plants. Deep learning has been used

previously with PhenoCams to identify images with snow cover with up to 98% accuracy (Kosmala

et al., 2016).

In agriculture, deep learning classification of near surface images, either from fixed or handheld

cameras, has primarily been used for weed and crop disease detection (Benos et al., 2021). Few

studies have used deep learning for the classification of crop and field attributes (e.g. Yalcin (2017);

Han et al. (2021)) and to our knowledge no study has applied deep learning methods at cropland

sites in the PhenoCam image archive (Richardson, 2019).

Here we use images from 55 agricultural cameras in the PhenoCam network to build a classifi-

cation model for identifying cropland phenological states. A variety of crops are used to generalize

the states into 21 classes across 3 mutually exclusive categories, ranging from emergence to harvest.

We also included classes for crop type and factors such as flooded or snow covered fields. Deep

learning models designed for image classification do not have a temporal component, so we use a

hidden markov model in the classification post-processing to account for the temporal correlation

of daily camera time series. Results show the feasibility of a daily, local scale dataset of field states
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and phenological stages for agricultural research.

2 Methods

2.1 Data

We used PhenoCam images from agricultural sites to train an image classification model (Figure S1,

Table S1). To obtain a representative sample of images across all potential crops and crop stages we

used seasonal transition dates provided by the PhenoCam Network. Based on the transition date

direction (either rising or falling) and threshold (10%, 25%, and 50%) we partitioned each calendar

year into distinct periods of senesced, growth, peak, and senescing (Richardson et al., 2018b). We

chose 50 random days from each site, year, and period, for a total of 8,270 images. We annotated

each image by hand using the imageant software into the 21 classes described below (Barve et al.,

2020).

Initial image classifications were organized into 21 classes across three categories of Dominant

Cover, Crop Type, and Crop Status (Table 1). The categories are each mutually exclusive such that

any single image can be independently classified into a single class within each category. This allows

finer grained classification given an array of Crop Types, and more flexibility in classifying crop

phenological stages. For example, it would be informative for remote sensing models to know the

exact date of crop emergence, but also that on the specified date and for several days to weeks after

the feld is still predominantly bare soil. The first category, Dominant Cover, is the predominant

class within the field of view. The Crop Type category represents the four predominant crops in the

dataset (corn, wheat/barley, soybean, and alfalfa). Wheat and barley are combined into a single

category as they are difficult to discern in images. The unknown Crop Type class is used during

emergence when an exact identification is impossible. The other Crop Type class represents all other

crops, including fallow fields, besides the four predominant ones. The stages of the Crop Status

category are loosely based on BBCH descriptions (Meier , 1997), but generalized to be applicable

across a variety of crops and what is discernible. The Flowers stage is used for identifying tassels

on corn or seed head on wheat or barely since no other reproductive structures were visible in the

images. Thus, crop types other than corn and wheat/barley do not have any images annotated as

Flowers.

After annotation we excluded some images based on low prevalence of some category combi-

nations. For example, only 8 images had the combined combination of Soil, Unknown Plant, and

Senescing for the Dominant Cover, Crop Type, and Crop status categories, respectively. When a

unique combination of the three categories had less than 40 total images, all images representing

that combination were excluded from the model fitting. This resulted in 255 annotated images,

from the original 8,270, being excluded. A total of 8,015 annotated images were available for model

fitting.

We used mid-day images in the annotation stage and leveraged more of the PhenoCam archive

to increase sample size for model fitting. The 8,015 images that we annotated represent the mid-

day image for a single date, though phenocams record images up to every 30 minutes. For each
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Category Class Used in final
product

Description

Dominant
Cover

Blurry No Image blurry, out of focus, or otherwise
obscured.

Vegetation Yes Live or senesced vegetation
Residue Yes Post-harvest plant residue
Bare soil Yes
Snow Yes
Water Yes

Crop Type Blurry No Image blurry, out of focus, or otherwise
obscured.

Unknown Plant Yes Plants are present but cannot be confi-
dently identified

Corn Yes
Wheat/Barley Yes
Soybean Yes
Alfalfa Yes
Other Yes Any other crop or a fallow field.
No crop Yes No crop present (eg. a plowed field or

completely snow covered)
Crop Status Blurry No Image blurry, out of focus, or otherwise

obscured.
Emergence Yes First shoots and/or leaves are visible.
Growth Stage Yes Plants have several distinct leaves

and/or tillers visible, but no visible tas-
sels,flowers,or fruit.

Tassels/Flowering Yes Plants have distinct tassels, flowers, or
fruit.

Senescing/browning Yes 10% or more of visible plants are
brown/browning.

Fully senesced Yes 90% or more of visible plants are fully
senesced.

No crop Yes No crop present (eg. a plowed field or
completely snow covered)

Table 1: Class descriptions used in the classification model.
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annotated image date we also downloaded all images between 0900 and 1500 local time, resulting

in an additional 83,469 images. We applied the annotation of the midday image to all images of

that date, resulting in 91,484 total images used in the model fitting. This allowed us to increase

training image data by a factor of 10 with minimal effort, and include more variation in lighting

conditions. While it’s possible some of these non-midday images were annotated incorrectly (e.g., a

blurry camera becoming cleared, or a field being plowed after midday) these are likely minimal and

did not have a large effect on model accuracy (Norouzzadeh et al., 2018).

2.2 Image Classification Model

We used the VGG16 model in the Keras python package to classify images into the 21 classes (Table

1)(Simonyan and Zisserman, 2014; Chollet , 2018). The model allows us to specify the hierarchical

structure of the three categories, such that the predicted class probabilities for any image sum to

one within each category. We held out 20% of the images as a validation set. The validation set

included all images from three cameras: arsmorris2, mandani2, and cafboydnorthltar01 totaling

10,172 images. It also included 8,124 randomly selected images from the remaining locations to

obtain the full 20%. This resulted in a validation sample size of 18,296 and a training sample size

of 73,188. The VGG16 classification model was trained fully, as opposed to using transfer learning

(Norouzzadeh et al., 2018). We experimented with transfer learning, where a pre-trained model is

fine-tuned using our own data, but found that training the model fully had better results.

We resampled the 73,188 training images to 100,000 using weights proportional to the unique

combinations among the three categories. For example, there were 4,407 images annotated as Vege-

tation, Corn, and Flowers for the three categories, but only 1,074 images annotated with Vegetation,

Wheat, and Flowers. The images in the former class were given a lower weight in the resampling to

reach 100,000 total training images. This allows for even sample sizes among classes and protects

against the model being biased toward common classes. During model fitting the images are shuffled

and transformed using random shifts and rotations such that the exact same image is never seen

twice, which protects against over-fitting. We trained the model with an image resolution of 224x224

pixels using the Adams optimizer with a learning rate of 0.01 for 15 epochs, and an additional 5

epochs with a learning rate of 0.001.

2.3 Post-processing

After fitting, the VGG16 model was used to classify 55k midday images from all agricultural

PhenoCam sites , totalling approximately 170 site-years (Milliman et al., 2019). These classified

images were then put through a post-processing routine to produce a final classification for each day

(Table 2). First, for all dates marked as Snow in the Dominant Cover category, the Crop Type and

Crop Status predictions were removed and gap-filled using linear interpolation from surrounding

non-snow dates as long as the gap was 60 days or less. The reasoning behind this is during the

constant snow cover of winter the crop, if any, likely remains unchanged. Next, any image marked

as blurry was removed and the associated image date marked as missing across all three categories

(Dominant Cover, Crop Type, Crop Status). Gaps of missing dates, up to 3 days, in the time series
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1. Predict probabilities for each of the 55k daily images.
2. For snow days remove Crop Type and Crop Status and gap-fill up to 60
days.
3. For blurry images remove all predictions for that date and gap fill up to 3
days.
4. Apply HMM to Dominant Cover and Crop Status categories.
5. Identify each unique crop sequence. A crop sequence is all dates between
two non-consecutive “no crop” dates of the Crop Status category.
6. For each crop sequence identify the Crop Type using the highest cumulative
probability excluding the unknown class.
7. Mark crop sequences as unknown for sequences 60 days or less, where the
most common Crop State was emergence.
8. Mark crop sequences as unknown when the highest cumulative probability
within the sequence was No Crop.

Table 2: The post-processing steps performed on the VGG16 model predictions.

for each site were filled with a linear interpolation of the two bounding date probabilities for each of

the remaining 18 classes. Probabilities across all dates were normalized across the remaining classes

to account for removing the “Blurry” class. After this initial filtering the classification time series

from the 55k images were input into an hidden markov, and several additional post-processing steps,

to produce the final time series.

Out-of-the box image classification models such as VGG16 have no temporal component. Ev-

ery image is treated as an observation independent of temporally adjacent images. Thus mis-

classification of images can lead to noisy time series and improbable transitions between classes. To

correct for this we used a hidden markov model (HMM) to reduce the day-to-day variation and re-

move improbable transitions (Esmael et al., 2012; Wehmann and Liu, 2015). HMM’s are state-space

models which combine a latent “true” state of a process with an observation model. The latent state

evolves dynamically where every timestep is a discrete state which depends only on the state of the

previous timestep, and where the probability of moving from one state to another is decided by a

transition matrix. The observation model is a timeseries of the same length where every observed

state depends only on the latent state of the same timestep. Given a latent state, all observed states

have a non-zero probability of being observed.

We used two HMMs, one for Dominant Cover and another for Crop Status, each with a daily

timestep. Only sequences with at least 60 continuous days, after the gap-filling from Snow and

Blurry dates described above, were processed with the HMM. For the observation model within each

HMM we used the direct output from the classification step, which for each image date consisted of

probabilities of the image belonging to each class in the respective category. The transition matrix

describing the probabilities of the hidden state changing states from one day to the next was created

manually for each HMM (Table S2-3). The probability of the hidden state staying the same between

two dates was set as the highest (0.90 - 0.95) in all cases. In this way the hidden state only changes

when there is strong evidence in the observation model, represented by continuous and high observed

probabilities of a new state. Within the Dominant Cover category, transitions to other states besides

the current one were set to equal values with one exception. Transition from Soil to Residue was

6

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465168doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465168


set to 0 probability since residue can only be present after a crop has been harvested. Within

Crop Status transitions between states were constrained to be biologically possible. Improbable

transitions (e.g., from Emergence to Senescing in a single day) had probabilities of 0. Reproductive

structures were not visible on all crops in images, so transitioning from the Growth stage directly to

Senescing was allowed. Transitioning from either Senescing or Senesced to Growth was also allowed

since this represents dormancy exit in overwintering crops such as winter wheat. Given observation

probabilities and the transition matrices the most likely hidden state was predicted using the viterbi

algorithm to produce the final time series across the Dominant Cover and Crop Status categories.

For the Crop Type category the HMM methodology is less useful, since no day-to-day transitions

between Crop Types are expected. Here we used the HMM output of Crop Status to identify each

unique crop sequence, defined as all dates between any two “No Crop” classifications. For each unique

crop sequence, we identified the associated Crop Type with the highest total probability within that

sequence, and marked the entire sequence as that Crop Type. In this step we considered all Crop

Type classes except “Unknown Plant”, which is used during the emergence stage when a plant is

present but the exact type is unclear. This allows information later in the crop cycle, when Crop

Type is more easily classified, to be propagated back to the emergence stage. Finally, we marked

the final Crop Type as Unknown for some crop sequences in two instances: 1) when the length of a

crop sequence is less than 60 days and the sequence was predominantly in the emergence stage, and

2) when the “No Cop” class was selected as the final Crop Type with the highest probability within

a sequence. These two scenarios tended to occur when volunteer plants are growing sparsely on an

otherwise bare field.

2.4 Evaluation

We calculated three metrics to evaluate the performance of the image classifier: precision, recall,

and the F1 score. All three metrics are based on predictions being classified into four categories of

true positive (TP ), false positive (FP ), true negative (TN), and false negative (FN). Precision is

the probability that an image is actually class i, given that the model classified it as class i. Recall

is the probability that an image will be classified into class i, given that the image is actually class

i. The F1 score is the harmonic mean of precision and recall. All three metrics have the range 0-1,

where 1 is a perfect classification.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2 ∗ Precision ∗Recall

Precision + Recall
(3)

where TP , FP , FN are the number of true positive, false positive, and false negative classi-

fications, respectively. Using only the mid-day images we calculated all three metrics for the 21

original classes to evaluate the performance of the VGG16 model. For this step the predicted class

7

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465168doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465168


for each category on a single date was the one with the maximum probability. We re-calculated all

three metrics again after all post-processing steps. The second round of metrics does not include

two classes removed during post-processing: the Blurry class across all categories and the Unknown

Plant class in the Crop Type category.

Software packages used throughout the analysis include keras (Chollet , 2018), tensorflow (Abadi

et al., 2016), pandas (McKinney , 2010), numpy (Harris et al., 2020), and pomegranate (Schreiber ,

2018) in the python programming language (Python Software Foundation, 2003). In the R language

(R Core Team, 2017) we used the zoo (Zeileis and Grothendieck , 2005), tidyverse (Wickham et al.,

2019), and ggplot2 (Wickham, 2016) packages. All code for the analysis, as well as the final model

predictions, are available in a Zenodo repository (https://doi.org/10.5281/zenodo.5579797).

3 Results

The overall F1 score, a summary statistic which incorporates recall and precision, was 0.90-0.92

for the training data across the three categories of Dominant Cover, Crop Type, and Crop Status

(Figure 1). The overall F1 score for validation data, which was not used in the model fitting, was

0.83-0.85 for the three categories. In the Dominant Cover category the vegetation class was the best

performing overall with recall and precision of 0.97 and 0.93, respectively. Thus the classification

model has a strong ability to discern when the camera field of view is or is not predominantly

vegetation. When vegetation is not dominant the classifier is still moderately accurate, though

there is confusion between soil and residue classes indicated by their recall scores (0.64-0.68). The

precision of soil and residue was 0.61 and 0.82 for validation data, indicating that the classifier leaned

toward residue.

Excluding the blurry class, the worst precision for Crop Type was soybeans, with a precision of

0.53 on the validation data. This indicates that if an image was classified as Soybean, then there is

a 53% chance it is actually soybean. The recall for Soybean was high, 0.97 with the validation data,

indicating that there is a high amount of false positives from non-Soybean images being classified

as Soybean. Conversely the Wheat/Barley and Other classes have high precision (0.86 and 0.86,

respectively), and low recall (0.60 and 0.65, respectively). This indicates a high amount of false

negatives, where images of Wheat/Barley and Other Crop Types are being classified as other Crop

Type classes.

The blurry class had low recall and precision across all three categories, with values of 0.29-0.43

and 0.33-0.50 for validation data recall and precision, respectively. Combined with training data

recall scores of 1.0, this indicates likely over-fitting of the blurry class in the classification model.

We did not attempt to improve this further since the blurry image prevalence was extremely low.

Additionally, when images were marked as blurry in the final dataset the final state was interpolated

in the HMM post-processing step by accounting for the surrounding images.

Figure 2 shows the classification statistics after post-processing of the image time series, where

the HMM was used for Dominant Cover and Crop Status and the Crop Type was set to the highest

total probability within any single crop series. The blurry class is not shown here since it was removed

in the post-processing routine. The Unknown Plant class for Crop Type is also excluded since in
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Figure 1: Accuracy metrics for the VGG16 image classifier. The black and grey bars represent the
validation and training datasets, respectively. The text indicates the respective metric value for
validation, training, and class sample size in parentheses. The training and validation sample sizes
are 80% and 20% of the total sample size, respectively. Overall indicates the average metric value
for the respective category, weighted by sample size. All three metrics have a range of 0-1 where 1
equals a perfect prediction.

the post-processing the Crop Type category is assigned to the highest probability class seen in each

crop sequence, thus performance metrics for the Unknown Plant class would be uninformative.

The validation data performance metrics after the post-processing steps either improved or re-
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Figure 2: Accuracy metrics for the classifications after post-processing. The black and grey bars
represent the validation and training datasets, respectively. The text indicates the respective metric
value for validation, training, and class sample size in parentheses. The training and validation
sample sizes are 80% and 20% of the total sample size, respectively. Overall indicates the average
metric value for the respective category, weighted by sample size. All three metrics have a range of
0-1 where 1 equals a perfect prediction. Differences between this and Figure 1 is the exclusion of
the blurry and unknown plant classes, with total sample sizes reflecting this.

mained the same across all classes except four: the Snow class in Dominant Cover, the Alfalfa Crop

Type, and Flowers and Senescing Crop status classes. Overall F1 scores using validation data in-

creased from 0.85 to 0.88, 0.83 to 0.91, and 0.85 to 0.86 for Dominant Cover, Crop Type, and Crop

Status categories, respectively.

Next we present four examples of the full classification and post-processing results using a single

calendar year from four sites. They show the initial output of the classification model, as well as
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the capability of the HMM in removing high variation in the original VGG16 model prediction.

The original VGG16 predictions are obtained by choosing the class with the maximum probability

(MaxP) for each category and day. We compare them with insight gained from the full image time

series available on the PhenoCam data portal https://phenocam.sr.unh.edu. For example at the

arsmorris2 site in central Minnesota, in the months March through June of 2020, there is uncertainty

in whether the Dominant Cover of the field is Residue or Soil (Figure 3A, MaxP). The HMM model

resolved it to the Residue class for the three month period. From mid-June thru October there is

high certainty that that vegetation is present, reflected in both the initial classifications (MaxP)

and resulting HMM. The HMM model resolved the Crop Type as Corn (Figure 3B). During June to

October, the Crop Status progresses naturally through the different stages, and uncertainty arises

only in October when fully senesced vegetation is confused with plant residue (Figure 3C).

Cropping systems with multiple harvests per season are challenging for remote sensing models.

There were multiple harvests for the bouldinalfalfa site in northern California for the year 2018.

Here an alfalfa field was persistent for the entire year with several harvests (Figure 4A). During the

intervals of regrowth after each harvest the Dominant Cover of the field was classified as Residue with

emergence of an Unknown crop type (Figure 4B). Once the plants matured then it was identified

consistently as Alfalfa, which in the post-processing was back propagated in time for each crop

sequence.

At the site cafcookeastltar01 in eastern Washington in the year 2018 there was a short residual

crop of wheat in April (Figure 5A). Since the plants were not allowed to grow into the summer, due

to a new crop being planted, they were not positively identified and instead marked as Unknown

Plant. From manual image interpretation, we know a crop of chickpeas was planted in May which

grew until harvest in early September. Throughout the summer the model initially classifies this

crop as wheat, soybean, or alfalfa. The post-processing correctly chose the Other Crop Type as the

final class. In October and November there is confusion in the Dominant Cover category between

soil and residue, even after post-processing. From the images we can conclude there was likely no

activity in the field during this time, thus confusion likely stems from a moderate amount of residue

on the field combined with low light conditions of this northern (47.7° latitude) site.

Crops going into dormancy in the winter and resuming growth in the spring are accounted for in

the post-processing routines as demonstrated by the Konza Agricultural site in the NEON network

in 2017 (NEON.D06.KONA.DP1.00042, Figure 6). A winter wheat crop (Figure 6B), which was

planted in the fall of 2016, resumed growth in February. The remainder of that crop life cycle

proceeded normally until harvest in July (Figure 6B). The crop type here is correctly classified as

Unknown Plant by the classifier from January thru March here, since the plants were relatively small

at this time. The correct classification of wheat began in March when the plants were large enough

to confidently identify, and this was propagated back to the initial emergence in 2016. Additionally,

the primary field at this site was harvested at the end of June 2017 (as seen in the original images),

though the classification model indicated it happened mid-July (Figure 6A). This was due to the

foreground plants being removed in mid-July, while the primary field was harvested in June.
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Figure 3: Classification results for the arsmorris2 site for the year 2020. The top two rows of each
panel represent the final classification for either the daily maximum probability (MaxP) or the hidden
markov model (HMM). The remaining rows in each panel represent the initial model classification
for the respective class, where larger sizes represent higher probability.
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Figure 4: Classification results for the bouldinalfalfa site for the year 2018. The top two rows of
each panel represent the final classification for either the daily maximum probability (MaxP) or
the hidden markov model (HMM). The remaining rows in each panel represent the initial model
classification for the respective class, where larger sizes represent higher probability.
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Figure 5: Classification results for the cafcookeastltar01 site for the year 2018. The top two rows
of each panel represent the final classification for either the daily maximum probability (MaxP) or
the hidden markov model (HMM). The remaining rows in each panel represent the initial model
classification for the respective class, where larger sizes represent higher probability.
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Figure 6: Classification results for the NEON.D06.KONA.DP1.00042 site for the year 2017. The
top two rows of each panel represent the final classification for either the daily maximum probability
(MaxP) or the hidden markov model (HMM). The remaining rows in each panel represent the initial
model classification for the respective class, where larger sizes represent higher probability.
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4 Discussion

Daily images from the PhenoCam network contain a wealth of information beyond just vegetation

greenness, and here we showed they are also a novel source of cropland phenological information.

Using a deep learning-based image classification model we identified the daily field state, crop type

and phenological state from PhenoCam images in agricultural fields. Since mainstream classification

models do not have a temporal component we applied a hidden markov model as a post-classification

smoothing method which accounts for temporal correlation. This improved classification metrics and

removed improbable transitions. Improvements would be beneficial to better classify field and crop

states outside the primary growing season, and to better account for crops which go through a period

of dormancy.

The classification model here was developed to simultaneously identify several crop and field

attributes and has a variety of potential uses. For example the United States Department of Agri-

culture currently monitors crop status throughout the USA using surveys (USDA-NASS , 2012). An

array of PhenoCams positioned in representative fields could enable a real-time crop status moni-

toring system using the methodologies outlined here. Remote sensing models for monitoring crop

progression would benefit from the large temporal and spatial extent of PhenoCams in agricultural

fields as a source of verification data (Gao and Zhang , 2021). The on-the-ground daily crop status

data could also be used to parameterize or validate earth system models, where crop phenology is a

primary source of error for crop yields (Lombardozzi et al., 2020).

Numerous studies have used Gcc from PhenoCams to study various biological processes (Richard-

son et al., 2018a; Richardson, 2019). Yet compressing images down to a single greenness index dis-

cards large amounts of information, especially in agricultural fields which are constantly managed

(Browning et al., 2021). Our approach here allows us to extract more relevant data from images,

such as the crop type or the state of the field after vegetation is removed. These image-based metrics

of crop type and stage from PhenoCam time series can complement Gcc as opposed to replacing

it though. For example, Gcc, and other greenness metrics, can be used to derive the date of peak

greenness or the rate of greenup or greendown, which reflects important plant properties not present

in our image classification approach such as water stress and plant vigor (Sakamoto et al., 2010;

Aasen et al., 2020). Added insight from complementary metrics enrich interpretation and offer

decision-makers flexibility in crop management (Browning et al., 2021).

Most studies using deep learning methods to identify cropland attributes use satellite or aerial

imagery (Benos et al., 2021), though several studies have used near-surface imagery similar to the

work here. Yalcin 2017 used a CNN to classify crop types and had F1 scores of 0.74-0.87. Han et

al. 2021 used a CNN to classify development stages in rice with F1 scores ranging from 0.25-1.0.

The high accuracy seen here and in other studies shows the capability of tracking crop and field

attributes with near-surface cameras. This approach is advantageous since the cameras are not

affected by cloud cover and, after initial installation, do not have significant labor costs.

We identified several areas of our approach which could be improved. Firstly, the VGG16 model

used here could be replaced with either a more advanced or a customized neural network model.

Though the initial accuracy of the VGG16 model was relatively high, it was originally designed for
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classification of common objects as opposed to croplands. It could likely be improved through model

customization or fine-tuning of parameter estimation. Improving the initial image classification

would improve the final results without any other adjustments to the post-processing routines.

Our approach here worked best during continuous periods where crops were present on the field.

Once crops were removed, the dominant cover state could be difficult to discern due to soil, plant

residue, and fully senesced plants having similar visual characteristics (Figures S2-S9). Improvements

could potentially be made here by using a zoomed-in or cropped photo of the field. Since the images

were compressed from their full resolution to 224x224 pixels, it is likely important details were lost.

Han et al. 2021 showed that zoomed-in images, used simultaneously with full resolution images in

a custom neural network model, greatly improved accuracy of rice phenology classification. Using

zoomed-in images may also help with identifying the reproductive structures of crops. Though this

may be limited by camera placement since even during manual annotation we could only identify

reproductive structures of corn, wheat, and barley. Residue versus Soil classification may also be

improved by classifying the amount of residue (e.g., the fractional cover of plant residue or soil) as

opposed to using two distinct classes.

Our use of an HMM is an ideal solution to account for temporal correlation in the classified

image time series. The progression of crops at a daily time step is constrained by plant biology,

and these constraints are easily built into the HMM using the transition matrix. Additionally, the

predicted probabilities from the classification model can be used directly in the HMM observation

model, resulting in a straightforward data workflow. Since we used a basic HMM we had to create

separate models for the Dominant Cover and Crop Status categories, which resulted in occasional

inconsistencies. For example the Dominant Cover HMM may occasionally identify a time period

as being predominantly vegetation, while the Crop Status HMM identifies the same time period as

having no crop present (Figure 6). A multi-level, or layered, HMM may be able to overcome this by

modelling the joint probabilities of classes across the two categories (Fine et al., 1998). Temporal

segmentation, a newer deep learning approach which is under active development, could model the

joint probability of classes across the different categories in addition to having better performance

than seen here (Lea et al., 2016). A downside to temporal segmentation is that it would require

fully annotated training sequences (i.e., annotations for all images in a year for numerous sites) as

opposed to the random selection of training images used here.

We observed some mis-classifications when field management activities are not uniformly applied

to all parts of a field in the camera field of view. In the NEON-KONA example (Figure 6) the final

classification showed vegetation present due to foreground plants remaining even though the primary

field was harvested. This could be improved by having a pre-processing step which identifies distinct

agricultural fields within the camera field of view. Each agricultural field could then be classified

independently. This would also allow the inclusion of PhenoCam sites focused on one to several

experimental plots, which were excluded from this study. This step could be done automatically

through image segmentation models, or manually as in the region of interest (ROI) identification in

the current PhenoCam Network data workflow (Richardson et al., 2018b).

Instead of discarding blurry or obscured images we accounted for them directly in the modelling.

This is ideal since real-time applications must account for such images without human intervention.
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The Blurry class across all three categories had high performance metrics for the training images, but

with validation images it had the lowest performance among all classes. There are two possibilities for

this low performance of this class. One is that the classification model was confident in classifying

some partially obscured images as non-blurry where the human annotator was not (Figures S10-

S11). Second was the low sample size of the blurry image class, which had less than 70 total

mid-day images. This likely resulted in the over-fitting of the blurry class on the training images

and resulting low performance among validation images. Obtaining more PhenoCam images which

are blurry or where the field of view was obscured in some way would be beneficial, and could be

obtained from the numerous non-agricultural sites. Regardless, the low accuracy of blurry images

had little effect on the final results, since the final classification of any single day is determined by

the joint classifications of all surrounding days in the post-processing.

Monitoring and assessing crop extent and status using a consistent, data-driven approach is

essential to meeting the growing demand for food while meeting our sustainability goals in light

of climate change. We formulated a workflow using a deep learning model applied to PhenoCam

time series to generate a daily crop phenology time series for locations across the continental U.S.

The workflow uses an HMM to account for the temporal correlation of daily images. The resulting

outputs offer a ground truth to calibrate and refine existing models for mapping crop status and

yield using satellite remote sensing.
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