

PyDesigner: A Pythonic Implementation of the DESIGNER Pipeline

for Diffusion Tensor and Diffusional Kurtosis Imaging

Siddhartha Dhimana, Joshua B Tevesb, Kathryn E Thorna, Emilie T McKinnona,c, Hunter G

Mossa,c, Vitria Adisetiyoa, Benjamin Ades-Arond, Jelle Veraartd, Jenny Chend, Els Fieremansd,

Andreana Benitezc,e, Joseph A Helperna,c, Jens H Jensena,c,f

a Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA

b Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute

of Mental Health, Bethesda, MD, USA

c Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA

d Center for Biomedical Imaging, Department of Radiology, New York University School of

Medicine, NY, USA

e Department of Neurology, Medical University of South Carolina, Charleston, SC, USA

f Department of Radiology and Radiological Science, Medical University of South Carolina,

Charleston, SC, USA

ne

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

ABSTRACT

PyDesigner is an open-source and containerized Python software package, adapted from the

DESIGNER pipeline, for diffusion weighted magnetic resonance imaging preprocessing and

tensor estimation. PyDesigner combines tools from FSL and MRtrix3 to reduce the effects of

signal noise and imaging artifacts on multiple diffusion measures that can be derived from the

diffusion and kurtosis tensors. This publication describes the main features of PyDesigner and

highlights its ease of use across platforms, while examining its accuracy and robustness in

deriving commonly used diffusion and kurtosis metrics.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

INTRODUCTION

Diffusion MRI (dMRI) is widely applied for the noninvasive study of microstructural properties

in the brain. While many dMRI methods have been proposed, two of the most commonly used are

diffusion tensor imaging (DTI) and diffusional kurtosis imaging (DKI). These techniques are closely

related, with DKI being a generalization of DTI that includes quantification of diffusional non-

Gaussianity (Jensen and Helpern, 2010). Both provide a variety of scalar diffusion measures and enable

the construction of white matter fiber tractography. An important advantage of DTI and DKI is that they

have a solid foundation in diffusion physics so that their validity does not rely on detailed assumptions

regarding tissue microstructure (Basser, 2002; Jensen et al., 2005). This allows DTI and DKI to be

applied throughout the brain and body for both healthy and diseased subjects of any age.

Because raw diffusion weighted images (DWIs) are degraded by multiple factors, including

signal noise, motion, Gibbs ringing, and eddy current distortion, preprocessing should be employed prior

to calculation of any diffusion quantities (Le Bihan et al., 2006). Preprocessing of DWIs is now highly

developed, and several popular software packages are freely available for performing the various

preprocessing steps. However, combining these steps into a single pipeline that gives consistent results is

challenging both because there are a number of user defined settings that must be adjusted depending on

the details of the dMRI acquisition and because the order in which the preprocessing steps are performed

affects the outcome. For this reason, the Diffusion parameter EStImation with Gibbs and NoisE Removal

(DESIGNER, GitHub: NYU-DiffusionMRI/DESIGNER) pipeline was proposed in order to optimize,

standardize, and streamline the preprocessing for DWIs. DESIGNER relies on FSL, MRtrix3, MATLAB,

and Python to create a seamless and complete DWI processes – one that encompasses image correction

through preprocessing and diffusion/kurtosis tensor estimation (Ades-Aron et al., 2018). With control

flags to toggle preprocessing steps on or off, DWI corrections can be performed selectively. DESIGNER

always preprocesses in a specific manner – (i) Marchenko-Pastur principal component analysis (MP-

PCA) denoising, (ii) Gibbs ringing correction, (iii) echo-planar imaging (EPI) distortion correction, eddy

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

current correction, motion correction, and outlier replacement, (iv) B1 bias field correction, (v) brain

mask generation, (vi) smoothing, (vii) Rician noise bias correction, and (viii) b0 normalization.

Preprocessing in this specific order improves both accuracy and the effective signal-to-noise ratio (SNR)

(Ades-Aron et al., 2018).

Implementing DESIGNER across platforms is challenging because of differences in operating

systems and environment settings. In particular, the fact that DESIGNER is mainly written in MATLAB

creates significant portability issues arising from complicated configuration requirements needed to

enable Python-MATLAB interfacing. Moreover, reproducibility of outputs can be compromised from

different combinations of MATLAB, Python and dependency versions. For this reason, we have

developed PyDesigner, which is entirely Python based. Not only does this allow for seamless

preprocessing, but it also allows PyDesigner to be incorporated into a Docker container that greatly

enhances portability and reproducibility. Moreover, by replacing the MATLAB code, PyDesigner avoids

all licensing fees and improves accessibility.

 The purpose of this paper is to describe the main features of PyDesigner and its implementation.

PyDesigner augments the hands-free approach introduced by DESIGNER, adds several new features, and

incorporates tools from FSL and MRtrix3 to perform preprocessing. Standard mathematical Python

libraries such as Numpy (Harris et al., 2020), SciPy (SciPy 1.0 Contributors et al., 2020), and CVXPY

(Agrawal et al., 2018; Diamond and Boyd, 2016) were used to replace the MATLAB portions of

DESIGNER with Python code. All PyDesigner software is open source and available at:

https://github.com/m-ama/PyDesigner.

While alternative software such as Diffusion Kurtosis Estimator (DKE, Tabesh et al., 2011) and

Diffusion Imaging in Python (DIPY, Henriques et al., 2021) are also available, they do not combine

image correction and tensor fitting into a single-command pipeline. The DIPY package is a Python-based

image correction and tensor fitting tool, whereas DKE is largely a tensor fitting tool that runs in

MATLAB. Here, the core calculation of tensor fitting and associated diffusion parameter estimation of

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

PyDesigner is compared with that of DESIGNER, DKE, and DIPY to examine computational differences

and illustrate the relative performance of these four DKI analysis programs. In making this comparison,

the PyDesigner preprocessing is applied in all four cases so that any differences are entirely attributable to

the tensor fitting step.

METHODS

Workstation. All processing was performed on a custom-built workstation, equipped with 8-cores AMD

Ryzen 2700x, 16 GB system memory, and Nvidia GTX 1080 running on CUDA v10.1.

OS Information. Ubuntu 20.04 (Focal Fossa) was used with the software packages FSL v6.0, MRtrix3

v3.0.1-24-g62bb3c69, and Conda 4.8.3 with a custom Python 3.6 environment containing PyDesigner

v1.0-RC8 and all dependencies.

DWI Acquisition. An acquisition from a cognitively healthy subject in their 20s was acquired using the

Siemens Prismafit 3T scanner (Siemens Healthineers, Erlangen, Germany). DTI and DKI sequences were

acquired with 3 b-values (b = 0, 1000, 2000 s/mm2) for 10 images acquired at b = 0 (b0) and 30

isotopically distributed diffusion encoding directions for b = 1000 and 2000 s/mm2. This protocol was

performed using single-shot, twice refocused echo-planar sequence at 3 mm isotropic resolution with

echo time (TE)/repetition time (TR) = 95/4800 ms, 74×74 acquisition matrix, 42 axial slices, bandwidth

of 1648 Hz/px, slice acceleration factor = 2, parallel imaging factor = 2, and anterior (A)>>posterior (P)

phase encoding direction. A separate �0 volume in P>>A phase encoding direction was acquired for

distortion correction using TOPUP (Andersson et al., 2003). All acquisitions were acquired with full

Fourier coverage.

Staging. Acquired images were converted from DICOM to NifTi-standard with dcm2niix v1.0

.20181125 (Li et al., 2016) to generate 4D NifTi image volumes (.nii), gradient (.bvec) files, b-value

(.bval) files, and accompanying BIDS sidecars (.json). PyDesigner seeks JSON tags PartialFourier,

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

PhaseEncodingSteps, AcquisitonMatrixPE and EchoTime to automatically determine ideal image

correction steps.

Preprocessing. Staged files were processed with PyDesigner using the flags --standard for standard

preprocessing; and --rpe_pairs 1 since a single pair of reverse phase-encoded b0s were acquired for EPI

correction. The full command parsed was

1 pydesigner

2 --standard \

3 --rpe_pairs 1 \

4 --verbose \

5 -o [PATH TO OUTPUT DIRECTORY] \

6 $DKI_PROTOCOL.nii,$FBI_PROTOCOL.nii

These flags yield the following preprocessing steps, in order of appearance: (1) MP-PCA denoising, (2)

Gibbs ringing correction, (3) EPI distortion correction using one pair of reverse phase-encoded b0s, (4)

eddy current, motion and outlier correction, (5) brain masking, (6) smoothing at 1.25 × FWHM, (7)

Rician noise bias correction, (8) mean b0 volume extraction, (9) iterative reweighted linear least squares

(IRLLS) outlier rejection, (10) brute-forced tensor correction, (11) constrained tensor fitting, (12) DTI

and DKI scalar map extraction, in order of appearence. A visual representation of these preprocessing

steps can be found in Figure 1. These steps can be grouped into image correction and tensor fitting, where

the former aims to minimize noise and correct artifacts, and the latter performs computations to derive

useful dMRI metrics.

Image Correction

• MP-PCA Denoising. Preprocessing is initiated with MP-PCA denoising, using the MRtrix

function dwidenoise, to retain noncorrelation between spatial and successive volume voxels

(Veraart et al., 2016a, 2016b). Preprocessing is initiated with denoising, as the following steps

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

introduce interpolation or reduced entropy, which can skew the underlying Marchenko-Pastur

distribution and inhibit accurate noise estimation.

• Gibbs ringing correction. Next, Gibbs ringing correction is introduced using the MRtrix function

mrdegibbs, which resamples the DWI at zero-crossings of the sinc-function to remove ringing

artifacts with minimal smoothing (Kellner et al., 2016). Readers should note that this correction is

only applied if a DWI is acquired with full k-space coverage (full Fourier) so that sub-voxel shifts

can be accurated predicted. PyDesigner automatically detemines the k-space coverage of an

image using image metadata and will disable this correction if partial coverage is found. Of

interest for future updates to PyDesigner, recently, a Removal of Partial-fourier Gibbs (RPG)

ringing artifact method has been proposed by (Lee et al., 2021) extending the original sub-voxel

shift method.

• Susceptibility-induced and Eddy current correction. After the two preceding low-pass filters,

susceptibility-induced distortion is corrected using a single pair of reverse phase-encoded b0s to

allow rapid EPI correction without the risk of overestimating the distortion field. This is followed

by motion, b-matrix rotation, eddy current and outlier correction, which results in a co-registered

DWI free of outlier voxels (Andersson et al., 2016; Andersson and Sotiropoulos, 2016). This

correction is applied through MRtrix’s dwifslpreproc function, which is a wrapper for FSL’s

topup and eddy functions. Phase encoding information in the image metadata is read by

PyDesigner to automate this step, so users are not required to manually specify phase encodings.

• Brain mask. With all DWI volumes co-registered, a mean b0 volume is used to create a brain

mask using FSL’s bet at 0.25 threshold for subsequent steps. Users can adjust bet threshold with

the --maskthr flag or supply their own brain mask with the --user_mask flag.

• Smoothing. Smoothing with a Gaussian kernel 1.25 × full-width half maximum (FWHM) of the

voxel size is then applied to attenuate residual noise or artifacts that may have remained after

prior corrections. While not entirely necessary because of smoothing-free algorithms used in

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

previous preprocessing steps, it diminishes effects of outlier voxels. While PyDesigner defaults to

1.25 × FWHM, users are able to adjust the size of the Gaussian kernel with the --fwhm flag.

• Rician noise bias correction. The final image correction is another low-pass filter to dampen the

Rician noise bias generated by taking the magnitude of the raw DWIs during scanner

reconstruction. The noise map derived from MP-PCA denoising is used to estimate the unbiased

noise standard deviation, thus enabling an estimation of the true signal voxel intensity (Koay and

Basser, 2006).

Tensor Fitting

• IRLLS outlier detection. Diffusion tensor fitting is initiated with IRLLS to undermine skewness

of data distribution, so voxels demonstrating hypo- and hyperintensities can be marked as outliers

(Collier et al., 2015).

• Outlier-excluded constrained tensor fitting. Voxels unmarked by IRLLS undergo a constrained

and log-linearized (Veraart et al., 2013) diffusion and kurtosis tensor fitting through a quadratic

program (QP), where positive apparent kurtosis (���� � 0) is defined as the default constraint

(Tabesh et al., 2011). There are a total of three constraints that can be toggled on or off with the --

fit_constraints flag to limit tensor fitting such that ���� � 0, ���� � 0, or ���� �
�

����·����
,

where ����is apparent diffusion coefficient, ���� is apparent kurtosis coefficient, and ���� is

the maximum b-value of the data.

• Brute-forced apparent kurtosis coefficient (AKC) correction. Fitted tensors undergo additional

refinement by brute-forcing them across 100,000 pre-defined gradient directions to compute AKC

values, where tensor voxels with AKC less than �2 or more than 10 are median filtered. Users

are cautioned that this method is not yet validated and can introduce outliers in some instances.

While future updates to PyDesigner are expected to deprecate AKC correction, current users may

disable it with the --noakc flag.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

• Parameter extraction. Culmination of IRLLS, constrained tensor fitting, and brute-forced AKC

correction yield biologically plausible tensors suitable for microstructural evaluation via DTI,

DKI, fiber ball imaging (FBI, Jensen et al., 2016; Moss et al., 2019; Moss and Jensen, 2021) and

fiber ball white matter modelling (FBWM, McKinnon et al., 2018). PyDesigner speeds up the

tensor fitting regime by limiting computations within voxels that only contain brain tissue by

using a brain mask. All aforementioned preprocessing steps are executed as part of the standard

pipeline run.

Users can enable or disable image correction steps by parsing corresponding image correction

flags instead of the --standard flag. Additional control flags are available to specify granularity of image

corrections and tensor fitting. Information on all control flags is available at PyDesigner – List of Flags. A

completely pre-processed DWI using PyDesigner possesses minimal thermal noise and outliers and is co-

registered to minimize motion. PyDesigner populates subject output directories with standard PyDesigner

outputs.

DESIGNER1. Preprocessed file from PyDesigner was first converted to MRtrix image format (.mif) using

the function MRtrix3 function mrconvert. Then, all DKI-compatible b-value shells less than 3000 s/mm2

were extracted with dwiextract and parsed into DESIGNER’s tensor fitting function tensorfitting.m with

the same tensor fitting parameters as PyDesigner (including IRLLS outlier detection and AKC correction)

to generate standard DESIGNER output metrics. Fitting was performed with the default constraint

���� � 0.

PyDesigner’s tensor fitting is adapted from DESIGNER by a straightforward Python translation

of MATLAB code. Any differences seen in resulting maps are likely due to program dependent

differences in the implementation of mathematical operations.

DKE. Preprocessed images from PyDesigner (dwi_preprocessed.nii) were parsed through the MATLAB

function des2dke.m (found in PyDesigner repository). This function extracts all b-value shells less than b

1
 PyDesigner and DESIGNER rely on the same MRTrix3 and FSL tools and command syntax to perform image

correction.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

= 3000 s/mm2, averages b0 volumes and concatenates them to form a DKE-compatible 4D NifTi file.

This is done as DKE requires only a single b0 volume placed at the beginning of an input DWI for tensor

fitting. This requirement limits accuracy of DKE’s linear least squares tensor fitting because a single data

point is used to initialize the fit. DKE processed this file to generate standard diffusion and kurtosis

parameter outputs. Additionally, DKE’s robustness in tensor estimation is limited as it does not perform

any outlier detection or tensor correction. Fitting was performed with the default constraint ���� � 0.

DIPY. The same files used for DESIGNER processing were parsed into DIPY within a Python Jupyter

Notebook. A DKI model was fitted to the data with dipy.reconst.dki.DiffusionKurtosisModel() using the

default weighted least squares (WLS) and parameter values were extracted. DIPY is the only software

among those tested that performs unconstrained tensor fitting.

Postprocessing. A cerebral spinal fluid (CSF) excluded brain mask was created using FMRIB’s

Automated Segmentation Tool (FAST) and fslstats with a brain-masked average b0 volume. This mask

was applied to mean diffusivity (MD), fractional anisotropy (FA), and mean kurtosis (MK) maps to

extract metrics values in non-CSF tissue. Voxels with MD � 0, MK � 0, and MK � 10 were excluded as

these are considered biologically implausible parameter values. These metrics were then compared across

the four software to report on tensor fitting differences.

Results

All three commonly studied diffusion parameters (MD, FA, and MK) were found to be nearly

identical in most voxels, especially for the FA and MD images, as seen in Figure 2 and 3. Differences

between the software tools are more apparent with MK, particularly for the highly aligned fibers of the

corpus callosum. Note that the PyDesigner MK appears to have more uniform intensity along the

splenium of the corpus callosum, in comparison to the DESIGNER, DKE and DIPY estimates.

 Distribution plots of MD, FA, and MK, shown in Figure 3, display minimal differences between

metrics across all four software. The MD, FA, and MK values are biologically plausible, except for a

small number of voxels with MD exceeding the diffusivity of free water at 37 °C (3.0 µm2/ms), which

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

likely reflects CSF partial volume effects. Inter-parametric correlations of MD vs. FA and MK vs. FA are

shown in Figure 4 andFigure 5, respectively. The MD and FA are nearly identical, with only minor

discrepancies likely owing to differences in implementation of linear least squares fitting. For the MK vs.

FA correlations of Figure 5, PyDesigner and DESIGNER again yield highly similar results, but deviations

can be seen for DKE because, by default, it limits MK values to lie below 3 and with DIPY because it

does not impose the ���� � 0 constraint, resulting in more points with high FA together with low MK.

Table 1 lists the Pearson correlation coefficients for the various comparisons. These again are quite

similar, although the MD vs. FA correlation coefficient for DKE is somewhat larger than for the other

three. Overall, the diffusion parameter estimates obtained from PyDesigner are consistent with those

obtained with the other tensor fitting programs, thus providing supporting evidence of its accuracy and

robustness.

DISCUSSION AND CONCLUSION

The primary motivation for developing PyDesigner was to implement the key elements of

DESIGNER with all MATLAB code being replaced with Python, thereby allowing greater portability and

accessibility. As our numerical results demonstrate, PyDesigner and DESIGNER yield nearly identical

outputs. Nonetheless, there are a few additional options and default settings along with some minor bug

fixes introduced while coding PyDesigner. These are described in detail in the online PyDesigner

documentation (https://github.com/m-ama/PyDesigner). At the time of this writing, not all preprocessing

features of DESIGNER such as B1 bias correction and DWI intensity normalization have been fully

implemented in PyDesigner but are planned in future updates.

Here we also compared the PyDesigner tensor fitting calculations to those of the commonly used

DKE and DIPY DKI analysis tools, showing that PyDesigner again yields similar results. Regarding the

small differences that are found between PyDesigner and DESIGNER, on the one hand, relative to DKE

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

and DIPY, on the other, we believe the two DESIGNER-based programs to be more accurate since they

employ a more sophisticated fitting algorithm as discussed by Ades-Aron et al. (Ades-Aron et al., 2018).

Combining constrained tensor fitting, outlier detection, and AKC correction yield robust and accurate

tensor fitting seen in PyDesigner and DESIGNER.

A key advantage of PyDesigner over DESIGNER is that it is available in a Docker container

called NeuroDock (dmri/neurodock), which greatly enhances portability and simplifies installation. This

container runs across all major OS platforms compatible with Docker, including Microsoft Windows,

Mac OS, and various Linux distributions. Docker’s container technology also enables straightforward

deployment to high performance clusters (HPCs) for batch processing DWIs quickly on Docker-

compatible local clusters, Amazon AWS, or Microsoft Azure.

PyDesigner also includes microstuctural modeling calculations that go beyond DKI, including

White Matter Tract Integrity (WMTI) (Fieremans et al., 2011), FBI, and FBWM. For WMTI, a standard

DKI dataset is adequate, and the associated microstructural parameters are calculated by default.

However, it should be emphasized that the validity of WMTI is restricted to white matter regions with

high FA (i.e., FA � 0.4) and with some WMTI metrics having a limited accuracy due to assuming

parallel alignment of axons in any given voxel. FBI (Jensen et al., 2016; Moss et al., 2019; Moss and

Jensen, 2021) is a distinct dMRI method applicable throughout the cerebral white matter, which requires

high b-value (i.e., � � 4000 s/mm2) dMRI data sampled with a minimum of about 64 diffusion encoding

directions (along with data for b = 0). The main outputs of FBI are the fiber orientation density function

(fODF) for each white matter voxel, which can be used for white matter tractography and serves as an

input for FBWM, as well as the intra-axonal fractional anisotropy (FAA). FBWM utilizes the dMRI data

from both DKI and FBI to estimate the same parameters as WMTI but with improved accuracy. Thus, if

this additional data is available, then FBWM estimates are preferred over those from WMTI (McKinnon

et al., 2018). As with FBI, FBWM has only been validated in adult cerebral white matter.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

Another notable feature of PyDesigner is multi-file input, which allows it to handle various file

inputs - NifTi (.nii), compressed NifTi (.nii.gz), DICOM (.dcm), and MRtrix file format (.mif).

PyDesigner is able to automatically identify acquisition information from header metadata regardless of

input format and perform corrections accordingly, thereby supporting a hands-off approach. Regardless of

differences in protocols, the same command (see above) can be used to process a wide variety of DWIs.

PyDesigner thus saves time and effort by minimizing manual preprocessing steps and commands. In a

recently released update (v1.0-RC10), this has been enhanced by introducing compatibility for multiple

echo-time (multi-TE) datasets. This allows PyDesigner to run image preprocessing steps, which are

largely independent of TE, on a multi-TE DWI to yield an image with minimal noise and artifacts. TE-

dependent tensor calculations are then performed on each TE separately to produce diffusion or kurtosis

metrics.

PyDesigner is still under development and improvements in existing features and the addition of

new features are both expected in new updates. These will be detailed on the PyDesigner website

(https://github.com/m-ama/PyDesigner), which provides both documentation and source code. Readers

are encouraged to consult this website for the most up-to-date version of PyDesigner prior to beginning a

new analysis. PyDesigner’s GitHub page also hosts a discussion forum where questions regarding

PyDesigner can be submitted (https://github.com/m-ama/PyDesigner/discussions). The Docker

implementation for portability is called NeuroDock (https://hub.docker.com/r/dmri/neurodock), which

contains PyDesigner and its dependencies to enable processing across a wide array of platforms.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

References

Ades-Aron, B., Veraart, J., Kochunov, P., McGuire, S., Sherman, P., Kellner, E., Novikov, D.S.,
Fieremans, E., 2018. Evaluation of the accuracy and precision of the diffusion parameter
EStImation with Gibbs and NoisE removal pipeline. NeuroImage 183, 532–543.
https://doi.org/10.1016/j.neuroimage.2018.07.066

Agrawal, A., Verschueren, R., Diamond, S., Boyd, S., 2018. A rewriting system for convex optimization
problems. J. Control Decis. 5, 42–60. https://doi.org/10.1080/23307706.2017.1397554

Andersson, J.L.R., Skare, S., Ashburner, J., 2003. How to correct susceptibility distortions in spin-echo
echo-planar images: application to diffusion tensor imaging. NeuroImage 20, 870–888.
https://doi.org/10.1016/S1053-8119(03)00336-7

Basser, P.J., 2002. Relationships between diffusion tensor and q-space MRI. Magn. Reson. Med. 47, 392–
397. https://doi.org/10.1002/mrm.10052

Collier, Q., Veraart, J., Jeurissen, B., den Dekker, A.J., Sijbers, J., 2015. Iterative reweighted linear least
squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters:
IRLLS for Estimation of Diffusion MR Parameters. Magn. Reson. Med. 73, 2174–2184.
https://doi.org/10.1002/mrm.25351

Diamond, S., Boyd, S., 2016. CVXPY: A Python-Embedded Modeling Language for Convex
Optimization. J. Mach. Learn. Res. JMLR 17.

Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White Matter Characterization with Diffusional Kurtosis
Imaging. NeuroImage 58, 177–188. https://doi.org/10.1016/j.neuroimage.2011.06.006

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M.,
Haldane, A., del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E., 2020. Array programming with
NumPy. Nature 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2

Henriques, R.N., Correia, M.M., Marrale, M., Huber, E., Kruper, J., Koudoro, S., Yeatman, J.D.,
Garyfallidis, E., Rokem, A., 2021. Diffusional Kurtosis Imaging in the Diffusion Imaging in
Python Project. Front. Hum. Neurosci. 15, 390. https://doi.org/10.3389/fnhum.2021.675433

Jensen, J.H., Helpern, J.A., 2010. MRI Quantification of Non-Gaussian Water Diffusion by Kurtosis
Analysis. NMR Biomed. 23, 698–710. https://doi.org/10.1002/nbm.1518

Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K., 2005. Diffusional kurtosis imaging: the
quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn.
Reson. Med. 53, 1432–1440. https://doi.org/10.1002/mrm.20508

Jensen, J.H., Russell Glenn, G., Helpern, J.A., 2016. Fiber ball imaging. NeuroImage 124, 824–833.
https://doi.org/10.1016/j.neuroimage.2015.09.049

Koay, C.G., Basser, P.J., 2006. Analytically exact correction scheme for signal extraction from noisy
magnitude MR signals. J. Magn. Reson. 179, 317–322. https://doi.org/10.1016/j.jmr.2006.01.016

Le Bihan, D., Poupon, C., Amadon, A., Lethimonnier, F., 2006. Artifacts and pitfalls in diffusion MRI. J.
Magn. Reson. Imaging 24, 478–488. https://doi.org/10.1002/jmri.20683

Lee, H.-H., Novikov, D.S., Fieremans, E., 2021. Removal of partial Fourier-induced Gibbs (RPG) ringing
artifacts in MRI. Magn. Reson. Med. 86, 2733–2750. https://doi.org/10.1002/mrm.28830

Li, X., Morgan, P.S., Ashburner, J., Smith, J., Rorden, C., 2016. The first step for neuroimaging data
analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264, 47–56.
https://doi.org/10.1016/j.jneumeth.2016.03.001

McKinnon, E.T., Helpern, J.A., Jensen, J.H., 2018. Modeling white matter microstructure with fiber ball
imaging. NeuroImage 176, 11–21. https://doi.org/10.1016/j.neuroimage.2018.04.025

Moss, H.G., Jensen, J.H., 2021. High fidelity fiber orientation density functions from fiber ball imaging.
NMR Biomed. e4613. https://doi.org/10.1002/nbm.4613

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

Moss, H.G., McKinnon, E.T., Glenn, G.R., Helpern, J.A., Jensen, J.H., 2019. Optimization of data
acquisition and analysis for fiber ball imaging. NeuroImage 200, 690–703.
https://doi.org/10.1016/j.neuroimage.2019.07.005

SciPy 1.0 Contributors, Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett,
M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E.,
Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van
Mulbregt, P., 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat.
Methods 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011. Estimation of tensors and tensor-derived
measures in diffusional kurtosis imaging. Magn. Reson. Med. 65, 823–836.
https://doi.org/10.1002/mrm.22655

Veraart, J., Fieremans, E., Novikov, D.S., 2016a. Diffusion MRI noise mapping using random matrix
theory. Magn. Reson. Med. 76, 1582–1593. https://doi.org/10.1002/mrm.26059

Veraart, J., Novikov, D.S., Christiaens, D., Ades-aron, B., Sijbers, J., Fieremans, E., 2016b. Denoising of
diffusion MRI using random matrix theory. NeuroImage 142, 394–406.
https://doi.org/10.1016/j.neuroimage.2016.08.016

Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., Jeurissen, B., 2013. Weighted linear least squares
estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls. NeuroImage 81, 335–
346. https://doi.org/10.1016/j.neuroimage.2013.05.028

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1: Visual representation of the PyDesigner pipeline; order of processing is clockwise. Preprocessing begins by providing an input 4D
diffusion weighted image (DWI) to PyDesigner (top left), which then undergoes MP-PCA denoising to yield a noise-free 4D DWI and a 3D noise
map. The noise-free 4D DWI then undergoes Gibbs ringing correction, TOPUP, eddy current correction and outlier correction. A brain mask is
then computed for subsequent steps to speed up computations by performing them within the brain mask only.

se

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade

T
he copyright holder for this preprint

this version posted O
ctober 21, 2021.

;
https://doi.org/10.1101/2021.10.20.465189

doi:
bioR

xiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2: Commonly analyzed diffusion tensor and kurtosis imaging maps derived from PyDesigner, DESIGNER, DKE and DIPY. Tensor fitting
was performed with constraint in PyDesigner, DESIGNER, and DKE, whereas unconstrained fitting was used in DIPY due to software
limitations. The units for the MD scale bar are in µm2/ms, while the other scale bars are dimensionless.

g

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade

T
he copyright holder for this preprint

this version posted O
ctober 21, 2021.

;
https://doi.org/10.1101/2021.10.20.465189

doi:
bioR

xiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3: Distribution of computed values for FA, MD, and MK from PyDesigner, DESIGNER, DKE, and DIPY in cerebral spinal fluid (CSF)-
excluded brain are similar across most voxels

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade

T
he copyright holder for this preprint

this version posted O
ctober 21, 2021.

;
https://doi.org/10.1101/2021.10.20.465189

doi:
bioR

xiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4: Plots of FA (x-axis) vs MD (y-axis) to illustrate the consistency of these diffusion parameters
across the four software tools. Plots are sorted by software. The lines are best fits from linear regression.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5: Plots of FA (x-axis) vs MK (y-axis) to illustrate consistency. Plots are sorted by software. The
lines are best fits from linear regression. Note that the MK for the DKE calculations are restricted to be
less than or equal to 3.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

Software Correlation

 FA with MD FA with MK

PyDesigner -0.3786 0.5097

DESIGNER -0.3843 0.5153

DKE -0.4288 0.5156

DIPY -0.3854 0.5049

Table 1: Pearson correlation coefficients between FA and MD, and FA and MK across all four DKI
analysis programs evaluated.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465189doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

