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Abstract

I demonstrate theoretically that calcium waves in astrocytes can compute anything neurons can. A founda-
tional result in neural computation was proving the firing rate model of neurons defines a universal function
approximator. In this work I show a similar proof extends to a model of calcium waves in astrocytes, which I
confirm in a series of computer simulations. I argue the major limit in astrocyte computation is not their
ability to find approximate solutions, but their computational complexity. I suggest some initial experiments
that might be used to confirm these predictions.

I. Introduction

We’ve known for sometime astrocytes
generate elaborate calcium waves,
and that somehow these waves are

important for learning [54, 23]. But two recent
experiments offer an intriguing new possibil-
ity for computation in these cells. Mu et al
(2019) showed direct signal integration by astro-
cytes leading to motor control in zebrafish [45].
Slezack et al (2019) showed direct integration
of visual information, and behavioral state, in
mice [55]. While it is was well known that astro-
cytes generate calcium waves [37, 26, 17], their
role was thought to be limited to tuning neu-
rons as part of the tripartite synapse [8, 59, 47].
These new results from [45] and [55], along
with older speculations [48], however suggest a
direct role for astrocytes in computation.

Inspired by these experimental results, the
aim of this paper is to use theoretical analysis
to “rule in” a large range of computations as
mathematically possible for astrocytes, reach-
ing well beyond what we have evidence for
experimentally.

I consider three questions.

1. Can the fundamental universal approxi-
mator proofs for neurons be extended to
astrocytes?

2. If astrocytes can approximate universally,
why do neurons exist?

∗erik.exists@gmail.com

3. Can simulations of astrocytes learn as well
as a simulations of neurons?

That is, I set a new upper-bound for approx-
imation in astrocyte waves, which I validate
with simulations. I also report some notable
limits on their computational efficiency.

II. Results

The results have three major parts answering
in turn the three questions in the introduction.
First is a theoretical study of function approxi-
mation in astrocytes, and proof of approxima-
tion. Second, I analyze the computational com-
plexity of astrocyte networks in general. Third
is some experimental computer simulations.

Astrocyte equivalence

The universal approximator theorem from neu-
rons can be extended to astrocytes, using sim-
ple conceptions of neurons and astrocytes. I’ll
prove that any astrocyte network can be “con-
verted” to a neural network, which is already
known to be a universal approximator. It’s
important to know this conversion trick is for
mathematical convenience, and not a prescrip-
tion for training astrocytes.

Neurons

To build towards the first result let’s review
neural networks, when they are reduced to
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Figure 1: Models. a-b Diagram of communi-
cation in firing rate neural network (wija), and
an astrocyte wave with k = 2 neighbors (b). c-d
Modes of transmission. Neuronal transmission
(a) generally occurs in a well defined synapse,
which among other things tightly controls the
diffusion of the transmitter. Gliotransmission is
far less confined, and can diffuse some distance
leading to a potential for cross-talk between
cells, a.k.a. leak.

firing-rate models of point cells. From there
then define what it means to be a universal
approximator.

The kind of two-layer neural network we are
interested in is shown in Figure IIa and has the
mathematical form,

y =
r

∑
i=1

cr
i σ
( n

∑
j=1

wn
ijx

n
j + bn
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)
(1)

Where the input xn = {xn
1 , . . . , xn

n} is a vector
of size n, each xi ∈ R, and the output y is a
single real value y ∈ R. Here wij ∈ R is the
weight between ith element of the input and
the jth unit in layer n, bn

i ∈ R is the threshold of
the ith unit, and cr

i ∈ R is the weight between
the ith unit in layer r (which is also the output
y). I use σ to denote some nonlinear function,
restricted as described below.

Note the use of subscripts to denote indexing
under summation and superscripts to denote
the layer each term belongs to. In a two layer
neural network these superscripts seem redun-

dant. But as we move to study many-layered
astrocyte wave networks they are a convenient
way to prevent proliferation of excess terms.

It is known that two-layer neural networks [4]
are universal function approximators. All ap-
proximator proofs follow the same form. They
remake the question of how good an approx-
imation is into a question about the “density”
between two sets of numbers [50]. Density for-
malized as requiring every element in M is
within a neighborhood ε > 0 of an element in
C. If this criterion holds, then M is said to be
dense in C. Density is an abstract way to mea-
sure near equivalence in sets, and as a result
approximation between functions.

Our target function I denote f , and set up as
a continuous real function f ∈ C(RN). It is this
function we wish to approximate. To do that
we’ll be using an approximator F, given in this
case by Equation 1.

To ask density questions about these we’ll
need sets, not function. To that end, it is com-
mon to focus on some compact subset K of Rn.
The set for f is then { f (x) : x ∈ K}. For the
approximator F things are slightly complex, be-
cause we need a parameterized set. To get that
I follow [50] and define a set building scheme,
Mr (below), otherwise known as the spanning
set.

Mr(σ) =
{ r
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Armed with a way to build sets for F and f ,
on the “ball” K, we can then ask the following
question. For which σ is it true that,

max
x∈K
|F(x)− f (x)| < ε? (3)

Answering this question positively means
proving universal approximation. For neural
networks of the kind above this has been stud-
ied for several kinds of σ, but also for may
other networks beyond two-layers [18, 34, 4,
50, 58, 42, 44, 58, 31, 43, 36]. In this work, I
borrow a classic theorem for the two-layer net-
work as given by [50]. It is modified only to
include a continuous nonzero derivative on σ.
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This addition does not alter the neuronal proff,
but makes the astrocyte proof more convenient
later on. Without, that is, introducing much of
a practical burden for biologically plausible σ.

Theorem II.1 (Neural approximation) Let σ
by any nonlinear function that is not a polynomial
function and has a continuous nonzero derivative at
some point. Then finite sums of the form in Equation
1 are dense in C(Rn) on K. In other words, given
any f (x) ∈ C(Rn) and ε > 0 there is function
F(x) for which, |F(x)− f (x)| < ε, for all x ∈ K.

Proving approximation only means F can "do
the job" approximating f . It does not ensure
an efficient method to cause F to approximate
f exists or is known. Another way to explain
this limit is to say that density proofs are not
constructive proofs. (I take up construction in
part 3.).

Astrocytes

Are astrocytes limited in what functions they
can approximate? The focus in studying astro-
cytes as computational elements has been on
their tuning of neurons, as already discussed.
This is despite the fact astrocytes communicate
with each other, using both transmitters and
gap junctions [37, 29], and that these commu-
nications generate far-reaching calcium waves
[23, 17].

The model of astrocytes I’ll consider is shown
in Figure IIb. Compare it to a standard two-
layer neural network, in Figure IIa. In this
model I assume,

• Astrocyte communication is only between
k nearest neighbors in the “forward” direc-
tion. (Forward is defined as the flow from
input to output).
• Astrocytes can be modeled as point cells

on an ordered rectangular grid.
• That gliotransmission is the dominant

mode of communication.
• (If instead gap junctions are dominant this

would improve the specificity of commu-
nications and so improve practical approx-
imation performance. See the Astrocyte
complexity section below.)
• The lack of synapses means transmitters

are released from the cell wall uniformly,

and “leaks” across to neighborhoods. (We
show this leak in Figure IId as a Gaussian;
Contrast this leak to the “exact” synapses
in a neural network as shown in Figure
IIc.)
• This leak does not extend past k neighbors.

The limited connectivity between astrocytes
in the model means writing down the general
equation for astrocytes is more complex than
for neurons. I show an example of a r = 4, k = 2
astrocytes network in Figure IIb and mathemat-
ically below. This example matches the max
width r = 4 of the two layer neural network
depicted in Figure IIa.
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xn = x (7)

I assume an astrocyte network should take
the general form shown in Equation 4, gener-
alized for any choice of finite n and r > n + 1
[36], where r denotes the maximum width of
the widest layer. The function ρx stands in for
a generic convolution operation take on each
element in some x based in part on the vector
x, where refers to some layer input. I other
words, this is how I model transmitter diffu-
sion, or "leak". Having introduced the physical
idea of leak for now though I will neglect it,
by setting ρx to 1, and treating astrocytes as if
they formed direct connections. Justifications
for, and tests of, these assumptions are found
in the simulations below.

I will now prove any astrocyte network G
can be made equivalent to any two-layer neural
network F, which is itself a universal approx-
imator. Without loss of generality I write the
spanning set for astrocytes P(σ), as a series of
sum and compositions based on Equations 4,
generalizable as necessary to other n and r.
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Pr(σ) =
{
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Theorem II.2 (Astrocyte equivalence) Let σ
by any nonlinear function that is not a polynomial
function and has a continuous nonzero derivative
at some point. Then generalized finite sums of the
form in Equation 4 can be made equivalent with the
form in Equation 1 there if F(x) is dense then G(x)
is also dense in C(RN) on K. In other words, given
any g ∈ Pr(σ) there is a neural network F ∈ M(σ)
for which |G(x)− F(x)| = 0, for allx ∈ K. And
therefore given any f (x) ∈ C(RN) and ε > 0 there
is function G(x) for which, |G(x)− f (x)| < ε for
all x ∈ K.

The proof for this is trivial and proceeds in
two parts. We first recognize the inner sum
in Equation 1, that is ∑n

j=1 wijxj + bi, is an sim-
ply an affine function, which can perfectly re-
constructed by linearizing the corresponding
region in G. That is, layers n through r are
linearized allowing for an exact superposition
solution.

Each layer and set of connection in the “outer”
sum, ∑r

i=1 ciσs(.) is composed of small net-
works mathematically equivalent to neural net-
works with n = 3, and is therefore composed
of compositions of nonlinear terms that are al-
ready proven to be universal approximators. In
other words, the outer sum is necessarily step-
wise dense in C by reusing the argument made
for neurons.

This proof is not intended to be a guide to
constructing astrocyte networks. Nor is the
linearizing step necessary for construction of
working waves, as I show in the next section.
This theoretical approach is instead a means to
an end to establish density.

Astrocyte complexity

Before giving mathematical details the big pic-
ture for the complexity of astrocyte waves is
easy to state. To span distances astrocytes must
pass messages between cells. Each cell is a new
set of parameters, and so complexity of the
whole model increases, compared to neurons.

If we assume neurons axons can span any
distance |m− n|, then for a neuronal network
we can move from m to n in l = 1 layers, and a
total of m + n cells.

The lack of axons on astrocytes means how-
ever there is a necessary link between the size or
width of a feed forward network and it’s depth.
If each cell rests on the corners of a regular
grid, going from from input size m to output
size n, where m 6= n, it will take l ≥ |m−n|

2 − 1
layer steps, if both m and n are even or odd. It
will take l ≥ |m−n+1|

2 − 1 steps if there is m is
even and n odd, or vice versa. If the widths
are the same, so m = n, the layer "penalty" is
l = m− 2. If l is the difference in layer numbers
between astrocytes and neurons is l, then the
cell number penalty is the sum over l, with the
generic term oi standing for the width of each
layer. That is, ∑l

i=1 oi.
In computer science terms an O(l), or lin-

ear penalty, for a computation is still viable,
even efficient, computation. I argue this viabil-
ity is not so in biology. For example, imagine
neurons had not been “invented” and circuits
were limited to wave/step computations and
we continue to use grid models to make the cal-
culations convenient. If the wave transmission
in a single astrocyte takes ta seconds, the the to-
tal transmission time is Ta = ta ∗ l for astrocytes.
It would be ta for neurons. If we modestly as-
sume a very small neural circuit to compare to,
say m = 2 and n = 12 so l = 4, then Ta has
grown four fold. Consider what this means for
motor output, as an example. If the best motor
reaction time of an animal with neurons is 10
ms, it would grow to 40 ms with astrocytes.
This is a substantial difference in reaction time
for say a prey escaping an agile predator. Now
consider what a linear time penalty would im-
ply for mammalian brains with their trillions of
connections [3, 46].

In sum, the analysis in this paper implies
the neuron’s innovation—with the introduction
of axons and synapses—-was not the ability
to learn. It was the ability to compute as effi-
ciently, in terms of width, depth, and cell num-
ber. But this is not the whole story, perhaps.
Our view has been looking at what it would
take to make astrocytes mimic neurons, exactly.
In some ways this provides insight into the base
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question of “why neurons”?. But, there is no
reason for evolution to hold this perspective,
exactly.

Astrocytes can be expected to perform more
efficiently than neurons when there is some
"sympathy" between them and the learning
problem at hand [?]. For example, in [45] et
al astrocytes act to integrate incoming signals.
If this integration was done instead using neu-
rons, it would require several cells, or circuits,
with exacting properties [63, 14, 21]. Mean-
while slow calcium dynamics, combined with
connectionist waves, generate natural integra-
tion [56, 20, 45, 55]. That is despite the analysis
above, we have meaningful evidence that as-
trocytes can be more efficient in terms of cell
number, for some computations which match
their properties like integration. The question I
pose is, given astrocytes can act as universal ap-
proximators, what other functions might they
fulfil efficiently which have been so far missed
in our experiments?

Experimental results

Astrocytes learn (nearly) as well as neurons
in three test simulations. Both astrocyte and
neural models were trained by stochastic gra-
dient descent, using identical procedures and
parameters. The learning tasks were one classic
nonlinear learning test (the XOR problem) and
two classic visual recognition datasets (MINST
digits and fashion). These tasks are shown in
Figure IIe-g.

To design astrocytes waves I intermingled
the three basic courses a feed-forward wave
can take–spreading themselves out, collapsing
or gathering themselves in, or simply sliding
forward with no change in width. The final
model architectures are shown in Table 1, and 2
(Methods).

The change in size from input image to out-
put class was too large, given astrocytes com-
plexity. And the various tricks for fixing vanish-
ing gradients available to the machine learning
practitioner do not seem biologically sound. To
overcome the complexity limits of astrocytes,
and the vanishing gradients which follow from
it, all vision tasks had two stages. First the
high dimensional images were projected to a
low dimensional space. This was done with

Figure 2: a-b. Datasets. We considered three de-
cision tasks. a. XOR task. b. MINST digit recog-
nition c. MINST fashion recognition. Learning
in MINST sets had two distinct stages (grey
box). First the raw pixel input data had its
dimensionality reduced to 1d vector (z = 20).
This representation was used as the input to
the learned classifier networks, both neurons
and astrocytes.

neural negotiation. One approach mimicked
the fixed random sparse connections sometimes
reported in cortex [11, 51]. The other approach
trained a variational autoencoder [38] during
astrocyte training, in an online way. This was
termed co-learning, and it mimicked a learning
process where astrocytes adjust online to ongo-
ing changes/learning in their (presumptively)
neuronal input.

On the XOR task astrocytes and neurons
showed perfect accuracy (Figure 2a). In both
MINST tasks astrocyte performance was re-
duced between 0.05 and 0.08 (Figure 3b-e). Vari-
ance was also substantially higher in astrocytes
and they were substantially slower to train (see
inset panels in Figure 3). The difference in
speed of learning was as predicted. See Com-
plexity

Connections in this working model were lim-
ited to each cell’s k = 3 nearest downstream
neighbors. However in this model I was free to
explore transmitter leak between greater than
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Figure 3: Learning performance. a. XOR task classification accuracy as a function of training
epoch, on the test set (which is the training set for this task). Inset plot is individual loss curves for
all 20 experiments. b-c. MINST digit classification accuracy for co-learning and random projection
schemes. To the right of each are the individual train/text loss curves. d-e. MINST fashion
classification accuracy for co-learning and random projection schemes. To the right of each are the
individual train/text loss curves.

k neighbors, modeled by a 1d Gaussian con-
volution of each layers output. These simu-
lations also let me explore biological factors
like additive noise, and communication failures
(dropout) between neighbors (Methods). See,
Figure II.

Performance is robust to < 0.3 standard de-
viations of leak, followed by sharp decline. In
contrast, injected (additive) transmission noise,
and signal loss, had much smoother declines
in classification. The biological significance of
these patterns is unclear. Overall these biolog-
ical perturbations showed what seems to be
reasonable robustness leak, noise, and signal
loss. There is however a significant caveat. It is
difficult to know how plausible the magnitude
of these perturbations were compared to what
real astrocytes, biological systems, endure. De-
tailed data does at present seem to be available.

III. Discussion

Limitations

I studied a highly simplified model of feed-
forward computations, with nearest neighbor
connections between cells. I presume this is
a minimal but adequate account of calcium

Figure 4: Biological realism. Leak (diffusion),
communication failures (message dropping),
and noise (message corruption) and their ef-
fects on astrocyte learning performance. a. Fi-
nal test accuracy after convolution with a spa-
tial Gaussian kernel (0-0.6 standard deviations).
b. Final test accuracy with probabilistic con-
nection loss between neighbors (0.0-0.20). c.
Final test accuracy with connection noise (0.0-
0.8 standard deviations). Points represent 20
individual experiments. Grey bars represent
median accuracy.
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waves. That said, this simplified model ne-
glects:

• Lateral and recurrent calcium dynamics
[28, 54, 64].
• Gap junctions and their associated plastic-

ity [23].
• Neuronal-astrocyte interactions during

wave-computation [29, 54].
• Calcium microdomains in individual cells.
• The complex, sometimes gated, calcium-

gliotransmitter relationship [6].
• Astrocytes are a diverse cell type, with di-

verse shapes roles and electrical properties
[35]

I think of these details as adding more de-
grees of freedom, and so dimensions, to astro-
cytes computational potential [61, 15, 62]. It is
often the case in other modeling studies increas-
ing detail has at worse has no effect, and often
leads to improvement [32, 33, 25].

Related work

There does not seem to be any work study-
ing the computational limits of astrocytes on
their own. In a literature review [49] informally
proposed astrocytes may act as “master hub”
for metabolic process, neuronal tuning, and
for consciousness. [52] studied hybrid artificial
neuron-glia networks (NGN) and used them
to solve classification problems. Their focus
was on the useful role astrocytes play in tun-
ing neurons at the tripartite synapse [1, 2], as a
kind of regularization. They did not consider
astrocytes on their own. Several reports show
how astrocyte waves can support self-organized
neural oscillations. For example, [7] and [39].
In this work astrocytes are a computationally
“passive” medium for stabilizing some neurons’
self-organized dynamics.

Some questions and answers

• Q: Are artificial astrocyte networks
(AANs)a new way to do state of the art
machine learning?
• A: No, probably not.
• Q: Why not?
• A: Our work on complexity suggests astro-

cytes face practical scaling limits, despite

their universalness. The local connections
and weight “leak” will limit both the prac-
tical training time and final performance
of most AANs, to below that of neural net-
works. (Though, as discussed above and
later below, I expect notable and important
exceptions to this rule.)
• Q: Then why are you doing machine learn-

ing tasks?
• A: To prove that astrocytes networks can

solve hard problems, in practice.
• Q: Do real glia recognize digits or do motor

control?
• A: We don’t know. Maybe [55]. What

this paper offers is a new strong upper
limit of what is possible for astrocytes. It
seems likely if this potential is put to use in
more than special cases, it is done so in the
meta-learning role astrocytes are already
thought to play?
• Q: Is this paper presenting a biological the-

ory? Is it a machine learning paper?
• A: A little of both. Our learning mecha-

nism is not at present a biological idea (see
below) and our model of astrocytes is pro-
foundly simplified. This rules out thinking
of this paper as presenting a mechanistic bi-
ological theory. Computer science, though,
has a tradition of doing theoretical analysis
to establish upper and lower bounds for
possible learning [4, 40, 12]. We borrow
from this tradition to offer a theoretical
upper-bound on possible astrocyte perfor-
mance. (This upper bound is a universal
function approximation, with complexity
penalty).
• Q: Is it realistic to assume that neurons and

glia share a common nonlinear function?
• A: No. But the choice of nonlinearity

should not matter [41].
• Q: Is it realistic to assume point cells?

A: No. The stronger form of our proof
would adopt Farmer’s approach [22] to
connectionist systems. He suggested an ab-
stract formalism for specifying connection
systems as a set of graphs and dynamics
and that any two connectionist schemes are
equivalent if their jacobians are the same.
This abstraction joined with Leshno’s work
showing any perceptron can be an approx-
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imator if the nonlinear functions are not
polynomial functions [41] suggests the de-
tails of the nonlinearity, and physical struc-
ture is not critical to showing two dis-
tributed computation systems are equiv-
alent,
• Q: What about the work trying to justify

biological gradient descent and error back-
propagation [9]. Does that work get this
paper closer to biological mechanisms?
• A: It’s interesting work but preliminary. At

this time this paper was written, I’m not
comfortable having learning mechanisms
used in this paper be read as an exact bio-
logical hypothesis. For now, please think
of this paper as a potential upper bound.
Perhaps neural systems do learn by back-
propagation [53, 10]. If this is so, the use
of stochastic gradient descent to train the
astrocytes here is more plausible than ex-
pected.
I chose stochastic gradient descent, and
built a tensor-using model, because it was
a convenient path. The intention here is
only to show calcium waves–limited in the
ways astrocytes seem to be–can be taught
to solve hard computational problems at
all, in simulation. The real biological learn-
ing mechanism at work in glia is not the
important thing in this work....
It is however very important to establish
the real working potential of biological as-
trocytes.
• Q: If it’s not a mechanistic theory, can we

test it?
• A: In part we can. Please see the next sec-

tion.

Predictions

To detect if astrocytes carry on their own com-
putations the first challenge is isolating these
signals. [55] has shown this is possible by direct
observation. A reasonable default is to say as-
trocyte activity is a delayed slow filtered reflec-
tion of neuronal drive. Under this null any pat-
tern in astrocyte waves is an epiphenomenon of
neural activity. If it was then shown that wave
patterns are not just reflections, this would be
some evidence for astrocyte’s wave computa-
tions.

For example, in multi-area, brain-wide
recordings the high dimensional dynamics of
neurons is well captured by low dimensional
dynamical systems [16, 66]. [57] developed con-
vergent cross mapping, a way to compare if
two dynamical systems are equivalent using
only noisy measurements. This was adapted
to work in latent spaces by [13] If astrocyte
waves are simple an epiphenomenon this pro-
cedure should identify an equivalence between
a learned low dimensional model neuronal fir-
ing rates, and measurements of astrocytes of
calcium dynamics. Taken over several corti-
cal areas, experiments in cross mapping would
provide good initial evidence for astrocyte com-
putation and independence.

Another open problem is glia biology is
understanding why cortical astrocytes are so
spread out. The results for leak and complexity
suggests an answer. Astrocytes are spread out
to minimize leak, or crosstalk, between them-
selves. In other words, are they spread out to
play a role as waveguides [6, 30]?

Some speculations and questions

I’d like to suggest learning theory in biology
move past questions of can this problem be
learned? For there are many approximator
proof. There are many useful learning rules.
So the answer to this question is more often yes
than no. It might be fruitful then to assume in-
stead that any given biological system can learn
to solve any given (computable) problem, given
some kind of communication and enough cells
[41]. From here we can ask instead questions
about the trade-offs involved. Questions like,

• For what kinds of problems will this sys-
tem/network be computationally efficient?
• For what kinds of problems will it have a

useful inductive bias [?],
• And on what timescales will the bias hold

up [60]?
• How well can it support reuse?
• How well can it support distribution gen-

eralization?
• What about out of distribution? (If those

are even sensible distinctions for the natu-
ral world?)
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• How well can the system be itself com-
posed?
• How easily can it be evolved?
• Can any part of it be laid down into a

developmental template, and how complex
is that developmental program?
• Or more difficult, how many of the above

ideas can it simultaneously satisfy and
what are the trade-offs involved?

For if astrocytes can really compute univer-
sally, what else can? However useful it has
been, what has the neuron doctrine caused us
to miss? From the questions above what "fail-
ures’ ’ does the neuron model admit? How can
we find them and prove them for real systems?
How might other cell types improve on those?
How do we show that? This work offers some
clues, I argue.

Astrocytes are far less efficient in terms of
cell number for changes in dimensionality, but
their slow dynamics may let them be far more
efficient at integration [?]. Their local connec-
tions, but high density, may offer a very differ-
ent structural bias than that of neurons, with
their axons and developmentally precise synap-
tic connections [27]. Their diffuse connections
can also favor low frequency (spatial) features
during learning, which is known to improve
generalization [65].

In other words, astrocytes have real practical
potential. They can control behavior, in at least
one case. They can also in theory exercise co-
ordinated control of neurons, using most any
mathematical function. The astrocyte-neuron
tripartite view is not wrong, but it may be quite
incomplete.

IV. Methods

All learning networks were implemented in
python using the pytorch framework. Code
and data are available at https://github.com/
CoAxLab/glia_playing_atari. Simulations
were run on a 4 Nvidia GeForce GTX 1080 Ti
cluster.

We trained all models on the XOR problem,
and on two computer vision tasks MINST dig-
its and MINST fashion. MINST datasets were
sourced from torchvision. Images were ran-
domly assigned to training and reporting sets,

and were used as provided. XOR data was its
truth table implemented in tensors. Note the
XOR problem has no meaningful way to split
between training and testing

Neural networks were multilayered percep-
trons, with all to all connections. These net-
works played two roles. The first used a varia-
tional autoencoder [38] to reduce input dimen-
sionality into something astrocyte waves can
practically learn from. More on this below. The
second kind implemented the classification net-
works, which were the point of comparison for
the astrocyte waves. The autoencoder design
is discussed in the next section. The hyper-
parameters for the three classifier networks are
shown in Table 1.

The input image size for both MINST dataset
is N by N pixels, which gives flattened vectors
of size K. The output size for both is 10, the
number of classes to be learned. As astrocytes
in simulation needed l steps to make a dimen-
sionality change of size K. This led to vanishing
gradients [24]. To solve this two kinds of di-
mensionality reduction were considered. One
inspired by standard machine learning practice.
The use of a variational autoencoder. The other
was inspired by the neural circuits, which are
often modelled as sparse random projections
[19, 5, 11].

To implement astrocyte communication we
defined three prototype “steps” for wave prop-
agation. Our use of the term steps is syn-
onymous with “layers” in typical neural net-
works. We distinguish them because our as-
trocyte waves may need several steps to ac-
complish the same output as the equivalent
single layer of neurons. If m is the number of
cells in the input and m the number of cells in
the output, we define three step types where
m > n, m = n, and where n < m (Figure 6). s
1. Slide (d) steps have input size n and output
size m = n. 2. Gather (g) steps have input size
n and output size max(n− 2, 1). 3. Spread (s)
steps have input size n and output size n + 2

Each step ensures only local, (i, j, k) nearest
neighbor interactions. These were implemented
as pytorch tensors of full rank n and m but
whose sum operations for each jth cell were
locally indexed during both forward computa-
tion and backpropagation. This meant working
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Figure 5: Astrocyte tensor operations – three
prototypes for astrocyte steps. Solid circles rep-
resent the current cell (the input for that step).
Dashed circles represent the projected output
(for that step). For compactness in the Tables
which describe the networks, I use s to denote
spread steps, g to denote gather, and d for slide.

around pytorch’s limits on “in place” opera-
tions. Each wave step could contain stochastic
dropout, or (Gaussian) noise injection or (Gaus-
sian) spatial convolution.
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Table 1: Astrocyte model and training hyper-parameters. Note: s denotes spread steps, g denotes
gather, and d denotes slide. The learning rate for the XOR network was 0.001. The two MINST
models have a learning rate of 0.004, and a 128 image batch size.

Network Layers Input size Output size Layer steps

XOR 13 2 1 (s,d,s,d,s,d,g,s,g,s,g,g,g)
Digits 10 20 10 (g,s,g,s,g,s,g,s,g,s,g)
Fashion 10 20 10 (g,s,g,s,g,s,g,s,g,s,g)

Table 2: Network models and training hyper-parameters. The learning rate for the XOR network
was 0.001. The two MINST models have a learning rate of 0.004, and a 128 image batch size.

Network Layers Input size Output size Hidden sizes

XOR 1 2 1 1
Digits 1 20 10 20
Fashion 1 20 10 20
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