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ABSTRACT11

Pain invariably changes over time, and these temporal fluctuations are riddled with uncertainty about
body safety. In theory, statistical regularities of pain through time contain useful information that can
be learned, allowing the brain to generate expectations and inform behaviour. To investigate this, we
exposed healthy participants to probabilistic sequences of low and high-intensity electrical stimuli to the
left hand, containing sudden changes in stimulus frequencies. We demonstrate that humans can learn to
extract these regularities, and explicitly predict the likelihood of forthcoming pain intensities in a manner
consistent with optimal Bayesian models with dynamic update of beliefs. We studied brain activity using
functional MRI whilst subjects performed the task, which allowed us to dissect the underlying neural
correlates of these statistical inferences from their uncertainty and update. We found that the inferred
frequency (posterior probability) of high intensity pain correlated with activity in bilateral sensorimotor
cortex, secondary somatosensory cortex and right caudate. The uncertainty of statistical inferences
of pain was encoded in the right superior parietal cortex. An intrinsic part of this hierarchical Bayesian
model is the way that unexpected changes in frequency lead to shift beliefs and update the internal
model. This is reflected by the KL divergence between consecutive posterior distributions and associated
with brain responses in the premotor cortex, dorsolateral prefrontal cortex, and posterior parietal cortex.
In conclusion, this study extends what is conventionally considered a sensory pain pathway dedicated
to process pain intensity, to include the generation of Bayesian internal models of temporal statistics of
pain intensity levels in sensorimotor regions, which are updated dynamically through the engagement of
premotor, prefrontal and parietal regions.
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INTRODUCTION31

In recent years, our understanding of pain has shifted from viewing it as a simple responsive system to32

a complex predictive system, that interprets incoming inputs based on past experience and future goals33

(Fields, 2018). Indeed, all types of pain response, including perception, judgement and decision-making,34

are invariably and often strongly shaped by what pain is being predicted, and the nature of this influence35

gives clues regarding the fundamental architecture of the pain system in the brain (Büchel et al., 2014;36

Seymour and Mancini, 2020; Roy et al., 2014; Wiech, 2016). To date, most experimental strategies to37

study prediction have come from explicit cue-based paradigms, in which a learned or given cue, such38

as visual image, contains the relevant information about an upcoming pain stimulus. (Atlas et al., 2010;39

Büchel et al., 2014; Fazeli and Büchel, 2018; Geuter et al., 2017; Zhang et al., 2016). However, a much40

more general route to generate predictions relates to the background statistics of pain over time - the41

underlying base-rate of getting pain, and of different pain intensities, at any one moment. In principle,42

the pain system should be able to generate predictions based on how pain changes over time, in absence43

of external cues. This possibility is suggested by research in other sensory domains, showing that the44

temporal statistics of sequences of inputs are learned and inferred through experience - a process termed45

temporal statistical learning (Dehaene et al., 2015; Frost et al., 2015; Fiser and Aslin, 2002; Kourtzi and46

Welchman, 2019; Turk-Browne et al., 2005; Wang et al., 2017). We hypothesise that temporal statistical47
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learning also occurs in the pain system, allowing the brain to infer the prospective likelihood of pain48

by keeping track of ongoing temporal statistics and patterns. In this way, pain should effectively act as49

the cue for itself, instead of utilising a cue from a different sensory modality. This may be especially50

important in clinical contexts, in which pain typically comes in streams of inputs changing over time51

(Kajander and Bennett, 1992).52

Here, we tested this hypothesis by designing a frequency learning paradigm involving long, probabilis-53

tic sequences of noxious stimuli of two intensities (low and high) that could suddenly change. We tested54

people’s ability to generate explicit predictions about the probability of forthcoming pain, and probed the55

underlying neural mechanisms. In particular, following evidence in other sensory domains (Meyniel et al.,56

2016), we proposed that the brain uses a optimal Bayesian strategy to infer the background temporal57

statistics of pain. Importantly, this approach may allow us to map core regions of the pain system to58

specific functional information processing operations: the temporal prediction of pain, its uncertainty and59

update. Our hypothesis predicts that the predictive inference of pain stimuli should be encoded largely60

within pain processing brain regions (Conway and Christiansen, 2005). The uncertainty of the prediction61

is expected to implicate multisensory, intraparietal regions, as shown previously using visual and auditory62

stimuli (Meyniel and Dehaene, 2017).63

RESULTS64

Thirty-five participants (17 females; mean age 27.4 years old; age range 18-45 years) completed an65

experiment with concurrent brain fMRI scanning. They received continuous sequences of low and high66

intensity painful electrical stimuli, wherein they were required to intermittently judge the likelihood67

that the next stimulus was of high versus low intensity (figure 2 a). We designed the task such that the68

statistics of the sequence could occasionally and suddenly change, which meant that the the sequences69

effectively incorporated sub-sequences of stimuli. The statistics themselves incorporated two types of70

information. First, they varied in terms of the relative frequency of high and low intensity stimuli, to71

test the primary hypothesis that frequency statistics can be learned. Second, sequences also contained72

an additional aspect of predictability, in which the conditional probability of a stimulus depended on the73

identity of the previous stimulus (i.e. its transition probability). By having different transition probabilities74

between high and low stimuli within subsequences, it is possible to make a more accurate prediction of a75

forthcoming stimulus intensity over-and-above simply learning the general background statistics. For76

instance, if low pain tends to predict low pain, and high predicts high, then one tends to get ’clumping’77

patterns of pain (runs of high or low stimuli); or conversely if high predicts low and vice versa, one78

tends to get alternating patterns. Both might have the same overall frequency of high and low pain, but79

better predictions can be made by learning the temporal patterns within. Thus we were able to test the80

supplementary hypothesis that humans can learn the specific transition probabilities between different81

intensities, as shown previously with visual stimuli (Meyniel et al., 2016).82

At the beginning of the experiment, participants were informed that the sequence was set by the83

computer and could occasionally change at any point in time. This design mirrored a well-studied task84

used to probe statistical learning with visual stimuli (Meyniel and Dehaene, 2017); participants were85

explicitly and occasionally asked to estimate the probability of forthcoming stimuli (figure 2 b). The86

sequence was thus defined by a set of transition probabilities: the probability of high or low pain following87

a high pain stimulus; and the probability of high or low pain following a low pain stimulus (i.e. a88

Markovian transition matrix; see example in figure 2 c). Occasionally, these probabilities were suddenly89

resampled, such that in fact the total task length of 1300 stimuli (split into 5 blocks) comprised typically90

about 50 subsequences (mean 25±4 stimuli per subsequence). Participants were not explicitly informed91

when these changes happened. Within these subsequences, the frequency of high (versus low) stimuli92

varied from 15% to 85%, and figure 2 a illustrates an example of a snapshot of a typical sequence, showing93

a couple of ‘jump’ points where the probabilities change. Figure 2 b shows the rating screen, with ratings94

being required on 4.8% of stimuli. Before the main experimental scanning session, subjects practiced the95

task for an average of roughly 1200 trials before the MRI sessions.96

Behavioural results97

Participants were able to successfully learn to predict the intensity (high versus low) of the upcoming98

painful stimulus within the sequence. Fig 2a shows the positive correlation between stimulus rated and99

true probabilities for low and high pain respectively for an example individual (Pearson correlation for100
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this participant p(H|H) r=0.567, p=4.61e-4, p(H|L) r=0.348, p=0.075; see supplementary figs 1-2 for plots101

from all subjects). Across subjects, the within-individual Pearson’s r between true and rated probabilities102

was significantly above zero. (Fig 2b, 26 out of 35 subjects had r>0: p(H|H) r=0.138±0.225, t(34)=3.65,103

p=0.00088, Cohen’s d=0.871; p(H|L) r=0.117±0.220, t(34)=3.15, p=0.0034, Cohen’s d=0.752; see also104

supplementary figures 1-2; note that p(H|L) and p(L|L) are reciprocal, as well as p(H|L) and p(L|L)).105

Figure 1. Behavioural task and model explanation. (a) Example trials from a representative participant,
showing the true probability of high (H) and low (L) stimuli given current stimuli, trial stimulation given,
and participant rated probabilities. Arrows pointing to jump points of true probabilities, where a large
change happens. (b) Participant rating screens during the task, where they were asked to estimate the
identity of the upcoming stimulus given the current one. For example, after a low stimulus participants
would be asked to rate the probability of the upcoming stimulus being low (L -> L) or high (L -> H). (c)
Markovian generative process of the sequence of low and high intensity stimuli, depicted in a. The
transition probability matrix was resampled at change points, determined by a fixed probability of a jump.

(a) (b)

Figure 2. Behavioural results. (a) True vs rated probabilities for p(H|H) and p(H|L) from an example
participant, a positive correlation suggests the participant correctly learned the stimuli probability, (b)
Pearson’s r for true vs rated probabilities for p(H|H) and p(H|L) within individual participants.
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Behavioural data modelling106

Model choice107

Based on previous evidence in other sensory domains, we hypothesised that subjects use an optimal108

Bayesian strategy to infer the statistics over time (Meyniel, 2020; Meyniel et al., 2016). We fit subjects’109

ratings to four variations of a Bayesian model, according to two factors: first, sequence inference through110

stimulus frequency (by assuming the sequence as generated by a Bernoulli process, where subjects track111

how often they encountered previous stimuli), versus inference through transition probability (by assuming112

the sequence follows a Markov transition probability between successive stimuli, where the subject tracks113

such transition of previous stimuli). This distinguishes between whether participants learn simple statistics114

(our primary hypothesis), or are able to learn the full transition probabilities (supplementary hypothesis).115

The second factor was to whether the model incorporates the possibility of sudden changes (jumps) in116

stimuli probability, as occurs in the task paradigm, or ignores such possbilities (fixed). To compare117

against alternative models, we also fit a basic reinforcement learning model (Rescorla-Wagner with fixed118

learning rate, which is an established model of Pavlovian conditioning; (Rescorla et al., 1972)) and a119

baseline random model that assumes constant probabilities throughout the experiment for high and low120

pain respectively.121

Model fitting122

The selected models estimate the probability of a pain stimulus’ identity in each trial. The values predicted123

by the model can be fitted to actual subject predictive ratings gathered during the experiment. A model is124

considered a good fit to the data if the total difference between the model predicted values and the subjects’125

predictions is small. Within each model, free parameters were allowed to differ for individual subjects in126

order to minimise prediction differences. For Bayesian ‘jump’ models, the free parameter is the prior127

probability of sequence jump occurrence. For Bayesian fixed models, the free parameters are the window128

length for stimuli history tracking, and an exponential decay parameter that discounts increasingly distant129

previous stimuli. The RL model’s free parameter is the initial learning rate, and random model assumes130

a fixed high pain probability that varies across subjects. The model fitting procedure minimises each131

subject’s negative log likelihood for each model, based on residuals from a linear model that predicts132

subject’s ratings using learning model predictors. The smaller the sum residual, the better fit a model’s133

predictions are to the subject’s ratings.134

Model comparison135

We compared the different models using the likelihood calculated during fitting as model evidence. Fig 3a136

showed model frequency, model exceedance probability, and protected exceedance probability for each137

model, fitted for fMRI sessions of the experiment. Both comparisons showed the winning model was the138

’Bayesian jump frequency’ model inferring both the frequency of pain states and their volatility, producing139

predictions significantly better than alternative models (Bayesian jump frequency model frequency=0.563,140

exceedance probability=0.923, protected exceedance=0.924). Fig 3b reports the model evidence for each141

subject; it shows that, although the majority (n=23) of participants were best fit by the model that infers142

the background frequency, some participants (n=12) were better fit by the more sophisticated model that143

infers specific transition probabilities.144

Neuroimaging results145

We used the winning computational model to generate trial-by-trial regressors for the neuroimaging146

analyses. The rationale of this approach is that neural correlation of core computational components of a147

specific model provides evidence that and how the model is implemented in the brain (Cohen et al., 2017).148

First, a simple high>low pain contrast identified BOLD responses in the right thalamus, sensorimotor,149

premotor and supplementary motor cortex, insula, anterior cingulate cortex and left cerebellum (with150

peaks in laminae V-VI), consistent with the known neuroanatomy of pain responses (fig 4, table 1). The151

opposite contrast (low>high pain) is reported in Supplementary Figure 3 and Supplementary Table 1.152

Next, we looked at BOLD correlations with the modelled posterior probability of high pain. For153

any pain stimulus, this reflects the newly calculated probability that the next stimulus will be high, i.e.154

the dynamic and probabilistic inference of high pain. This analysis identified BOLD responses in the155

bilateral primary and secondary somatosensory cortex, primary motor cortex and right caudate (fig 5,156

table 2). We report the opposite contrasts (posterior probability of low pain) in Supplementary Figure 3157

and Supplementary Table 2.158
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(a) (b)

Figure 3. Model comparison results. (a) Bayesian model comparison based on model fitting evidence,
in fMRI sessions. Subjects’ predictive ratings of next trial’s pain intensity were fitted with posterior
means from Bayesian models, values from Rescorla-Wagner (reinforcement learning) model, and random
fixed probabilities. Bayesian jump frequency model (assuming jumps in sequence and inference with
stimuli frequency) was the winning model in both cases. (b) Individual subject model evidence.
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Figure 4. Brain responses to noxious stimuli (high > low pain stimuli) in (a) sagittal, (b) axial and (c)
coronal views (colorbar shows Z scores thresholded at z>3.3, FWE corrected p<0.05).
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Cluster ID X Y Z Peak Stat Cluster Size (mm3)

0 1 13 -17 5 6.886 2587
1 1a 13 -22 -3 4.957
2 2 33 -22 58 6.524 5247
3 2a 30 -19 49 5.953
4 2b 16 -17 68 5.524
5 3 37 -17 15 5.742 1186
6 4 6 -7 49 5.128 3486
7 4a 0 -2 43 4.967
8 4b 4 -19 49 4.333
9 4c 11 -14 49 4.289
10 5 -17 -60 -19 4.851 1707
11 5a -10 -55 -16 4.651
12 5b -7 -62 -22 4.217

Table 1. High pain > low pain stimuli activation clusters (FWE p<0.05).
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Figure 5. Posterior probability mean of high pain in Bayesian jump frequency model showed activations
in the bilateral primary and secondary somatosensory cortex, primary motor cortex and right caudate
(FDR corrected p<0.001, colorbar shows Z scores > 3.3). (a) sagittal (b) axial and (c) coronal view.
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Cluster ID X Y Z Peak Stat Cluster Size (mm3)

0 1 66 -7 27 6.477 4402
1 1a 52 -7 33 5.787
2 2 -62 -7 33 5.924 2408
3 2a -46 -12 43 4.002
4 3 21 -12 24 4.885 1491
5 3a 11 -2 15 4.197
6 3b 13 -7 21 4.140

Table 2. Activation clusters associated with the posterior mean p(H) of the Bayesian jump frequency
model.

In contrast, a right superior parietal region, bordering with the supramarginal gyrus, was implicated in159

the computation of the uncertainty (SD) of the posterior probability of high pain, a measure that reflects160

the uncertainty of pain predictions (figure 6 and table 3). The negative contrast of the posterior SD did not161

yield any significant cluster.162
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Figure 6. Uncertainty (SD) of the posterior probability of high pain in Bayesian jump frequency model
was associated with activations in the right superior parietal cortex (FDR corrected p<0.001, colorbar
shows Z scores > 3.3). (a) sagittal (b) axial and (c) coronal view.

A key aspect of the Bayesian model is that it provides a metric of the model update, quantified as the163

KL divergence between successive trial’s posterior distribution. The KL divergence increases when the164

two successive posteriors are more different from each other, and the opposite when the posteriors are165

similar. We found that the KL divergence was associated with BOLD responses in left premotor cortex,166

bilateral dorsolateral prefrontal cortex, superior parietal lobe, supramarginal gyrus, and left somatosensory167

cortex (fig 7, table 4). For completeness, we report the negative contrast in Supplementary Figure 5 and168
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Cluster ID X Y Z Peak Stat Cluster Size (mm3)

0 1 40 -48 58 4.311 1186
1 1a 47 -38 58 4.168
2 1b 33 -41 43 3.745
3 2 28 -58 49 4.084 736

Table 3. Activation clusters associated with the uncertainty of the Bayesian jump frequency model.

Supplementary Table 3. Figure 8 overlays the posterior probability with its uncertainty and update (KL169

divergence). This shows that the temporal prediction of high pain and its update activate distinct, although170

neighbouring regions in the sensorimotor and premotor cortex, bilaterally. In contrast, the uncertainty of171

pain predictions activates a right superior parietal region that partially overlaps with the neural correlates172

of model update.173

x=-62 x=-58 x=-46 x=47 x=59 0

1.8

3.5

5.2

7

(a)
L R

z=24

L R

z=33

L R

z=36

L R

z=40

L R

z=58 0

1.8

3.5

5.2

7

(b)

L R

y=-41

L R

y=-17

L R

y=6

L R

y=11 0

1.8

3.5

5.2

7

(c)

Figure 7. Neural activity associated with the model update, i.e. the KL divergence between posteriors
from successive trials (positive contrast), in (a) sagittal, (b) coronal, and (c) axial views (FDR corrected
p<0.001, colorbar shows Z scores >3.3).

DISCUSSION174

Pain is typically uncertain, and this is most often true when pain persists after injury. When pain175

persists, the brain needs to be able to track changes in intensity and patterns over time, in order to predict176

what will happen next and what to do about it. Here we investigated whether, in absence of external177

cues, the human brain can generate explicit (conscious) predictions about the likelihood of forthcoming178

pain, as these are central to the generation of internal models of pain and can be formally compared to179

normative models of statistical learning (Dehaene et al., 2015; Meyniel et al., 2016). This study provides180

evidence that humans can learn and predict the background temporal statistics of pain using optimal181
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Cluster ID X Y Z Peak Stat Cluster Size (mm3)

0 1 -58 6 36 6.191 11034
1 1a -26 -2 49 5.945
2 1b -60 4 21 4.935
3 1c -43 0 55 4.516
4 2 -46 -41 40 6.098 5193
5 2a -36 -50 52 5.438
6 2b -50 -41 55 3.789
7 3 59 11 24 5.308 1886
8 4 47 -41 58 5.295 6128
9 4a 37 -50 52 4.972
10 4b 37 -58 61 4.460
11 4c 30 -65 61 4.255
12 5 -62 -17 33 4.814 1797
13 5a -50 -24 33 4.584
14 5b -46 -29 27 3.849

Table 4. Activation clusters positively associated with the update (KL divergence) of the Bayesian jump
frequency model.

Figure 8. Overlaying the temporal prediction of high pain (mean posterior probability, red-yellow), its
uncertainty (SD posterior probability, blue) and the model update (KL divergence between successive
posterior distributions, green); (FDR corrected p<0.001, colorbar shows Z scores >3.3)
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Bayesian inference with dynamic update of beliefs, allowing explicit prediction of the probability of182

forthcoming pain at any moment in time. Using neuroimaging, we reveal the neural correlates of the183

internal models of pain predictions. We found distinct neural correlates for the probabilistic, predictive184

inference of pain and its update. Pain predictions (i.e. mean posterior probability) are encoded in the185

bilateral, primary somatosensory and motor regions, secondary somatosensory cortex and right caudate,186

whereas the signal representing the update of the probabilistic model localises in adjacent premotor187

and superior parietal cortex. The superior parietal cortex is also implicated in the computation of the188

uncertainty of the probabilistic inference of pain. Overall, the results show that cortical regions typically189

associated with the sensory processing of pain (primary and secondary somatosensory cortices) encode190

how likely different pain intensities are to occur at any moment in time, in the absence of any other cues or191

information; the uncertainty of this inference is encoded in superior parietal cortex and used by a network192

of parietal-prefrontal regions to update the temporal statistical representation of pain intensity.193

The ability of the brain to extract regularities from temporal sequences is well-documented in other194

sensory domains such as vision and audition (Kourtzi and Welchman, 2019; Dehaene et al., 2015), but195

pain is a fundamentally different system with intrinsic motivational value and direct impact on the state of196

the body (Baliki and Apkarian, 2015; Fields, 2018; Seymour, 2019). Despite this fundamental difference,197

we show that temporal inferences of pain are generated using optimal Bayesian inference - tracking the198

frequency of low and high intensity pain states and their volatility (i.e. how likely they are to change) based199

on past experience. A more complex strategy involves trying to infer higher level statistical patterns within200

these sequences, namely representing all the transition probabilities between different states (Meyniel201

et al., 2016). Although this model fits 1/3 of our subjects best, overall it was not favoured over the simpler202

frequency learning model, which best describes the behaviour of approximately 2/3 of our sample (figure203

3). At this stage it is not clear whether this is because of stable inter-individual differences, or whether204

given more time, more participants would be able to learn specific transition probabilities. However, it205

is worth noting that stable, individual differences in learning strategy have been previously reported in206

visual statistical learning (Karlaftis et al., 2019; Wang et al., 2017).207

The Bayesian frequency model is consistent with many other tasks that involve cognitive model208

learning or acquisition of explicit contingency knowledge across modalities, including pain (Yoshida et al.,209

2013; Jepma et al., 2018; Hoskin et al., 2019). This reflects a fundamentally different process to pain210

response learning - either in Pavlovian conditioning where simple autonomic, physiological or motoric211

responses are acquired, or basic stimulus-response (instrumental / operant) avoidance or escape response212

learning. These behaviours are usually best captured by reinforcement learning models such as temporal213

difference learning (Seymour, 2019), and reflect a computationally different process (Carter et al., 2006).214

Having said that, such error-driven learning models have been applied to statistical learning paradigms215

in other domains before (Orpella et al., 2021), and so here we were able to directly demonstrate that it216

provided a less accurate model than Bayesian models (figure 3). In contrast to simple reinforcement217

learning models, Bayesian models allow building an internal, hierarchical model of the temporal statistics218

of the environment that can support a range of cognitive functions (Honey et al., 2012; Meyniel et al.,219

2016; Weiss et al., 2021).220

A key benefit of the computational approach is that it allows us to accurately map underlying operations221

of pain information processing to their neural substrates. Our study shows that the probabilistic inference222

of high pain frequency is encoded in the bilateral sensorimotor cortex, secondary somatosensory cortex,223

and right caudate (figure 5). The neural correlates of pain predictions arising from predictive Bayesian224

inference seem to contrast to a certain extent with those arising from value-based learning, which is225

typically characterised by non-probabilistic model-free learning and involves insula, anterior cingulate226

and ventromedial prefrontal cortices (Seymour and Mancini, 2020). An exception to this is the observation227

that the caudate nucleus correlates well with the posterior probability of high pain (i.e. its temporal228

inference). Although it is difficult to interpret this without an accompanying experimentally-matched229

value learning task, and without measuring conditioned responses such as autonomic responses, it may230

represent the parallel or integrative role of caudate in multiple divergent learning processes.231

A specific facet of the Bayesian model is the representation of an uncertainty signal, i.e. the posterior232

SD, and a model update signal, defined as the statistical KL divergence between consecutive posterior233

distributions. This captures the extent to which a model is updated when an incoming pain stimulus234

deviates from that expected, taking into account the uncertainty inherent in the original prediction. In235

our task, the uncertainty of the prediction was encoded in a right superior parietal region, which partially236
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overlapped with a wider parietal region associated with the encoding of the model update (figures 6, 8).237

This emphasises the close relationship between uncertainty and learning in Bayesian inference (Koblinger238

et al., 2021). A previous study on statistical learning in other sensory domains reported that a more239

posterior, intraparietal region, was associated with the precision of the temporal inference (Meyniel and240

Dehaene, 2017). The role of the superior parietal cortex in uncertainty representation is also evident in241

other memory-based decision-making tasks, as the superior parietal cortex is more active for low vs. high242

confidence judgements (Hutchinson et al., 2014; Moritz et al., 2006; Sestieri et al., 2010). In addition243

to the parietal cortex, the model update signal was encoded in the left premotor cortex and bilateral244

dorsolateral prefrontal cortex (figure 7), neighbouring regions activated by pain statistical inferences245

(figure 8). This is particularly interesting, as the premotor cortex sits along a hierarchy of reciprocally246

and highly interconnected regions within the sensorimotor cortex. The premotor cortex has also been247

implicated in the computation of an update signal in visual and auditory statistical learning tasks (Meyniel248

and Dehaene, 2017).249

In conclusion, our study demonstrates that the pain system generates probabilistic predictions about250

the background temporal statistics of pain states, in absence of external cues and using Bayesian-like251

inference strategy. This extends both current anatomical and functional concepts of what is conventionally252

considered a ’sensory pain pathway’, to include encoding not just stimulus intensity (Segerdahl et al.,253

2015; Wager et al., 2013) and location (Mancini et al., 2012), but the generation of more sophisticated254

and dynamic internal models of temporal statistics of pain intensity levels. Future studies will need to255

determine whether temporal statistical predictions modulate pain perception, similarly to other kinds256

of pain expectations (Büchel et al., 2014; Wiech, 2016; Wager et al., 2004). More broadly, temporal257

statistical learning is likely to be most important after injury, when continuous streams of fluctuating pain258

signals ascend nociceptive afferents to the brain, and their underlying pattern may hold important clues as259

to the nature of the injury, its future evolution, and its broader semantic meaning in terms of the survival260

and prospects of the individual. It is therefore possible that the underlying computational process might261

go awry in certain instances of chronic pain, especially when instrumental actions can be performed that262

might influence the pattern of pain intensity (Jepma et al., 2018; Jung et al., 2017). Thus, future studies263

could explore both how temporal statistical learning interacts with pain perception and controllability, as264

well as its application to clinical pain.265

METHODS266

Code and data availability267

Raw functional imaging data is deposited at OpenNEURO https://openneuro.org/datasets/ds003836 and268

derived statistical maps are available at NeuroVault ([upon acceptance]). Sequence generation, task269

instructions and behavioural data can be found at https://github.com/NoxLab-cam/pain_statistics_3tfrmri.270

Analysis code can be found at https://github.com/syzhang/tsl_paper.271

Participants272

Thirty-five healthy participants (17 females; mean age 27.4 years old; age range 18-45 years) took part in273

two experimental sessions, 2-3 days apart: a pain-tuning and training session and an MRI session. Each274

participant gave informed consent according to procedures approved by University of Cambridge ethics275

committee (PRE.2018.046).276

Protocol277

The electrical stimuli were generated using a DS5 isolated bipolar current stimulator (Digitimer), delivered278

to surface electrodes placed on the index and middle fingers of the left hand. All participants underwent a279

standardised intensity work-up procedure at the start of each testing day, in order to match subjective pain280

levels across sessions to a low-intensity level (just above pain detection threshold) and a high-intensity level281

that was reported to be painful but bearable (>4 out of 10 on a VAS ranging from 0 [‘no pain’] to 10 [‘worst282

imaginable pain’]). The pain delivery setup was identical for lab-based and MR sessions. After identifying283

appropriate intensity levels, we checked that discrimination accuracy was >95% in a short sequence of 20284

randomised stimuli. This was done to unsure that uncertainty in the sequence task would derive from the285

temporal order of the stimuli rather than their current intensity level or discriminability. If needed, we286

tweaked the stimulus intensities to achieve our target discriminability. Next, we gave the task instructions287

to each participants (openly available https://github.com/NoxLab-cam/pain_statistics_3tfrmri).288
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After receiving a shock on trial t, subjects were asked to predict the probability of receiving a stimulus289

of the same or different intensity on the upcoming trial (trial t+1). We informed participants that in the290

task they "would receive two kinds of stimuli, a low intensity shock and a high intensity shock. The L and291

H stimuli would be presented in a sequence, in an order set by the computer. After each stimulus, the292

following stimulus could be either the same or different than the previous one. The computer sets the293

probability that after a given stimulus (for example L) there would be either L or H" (we showed a visual294

representation of this example). We asked participants to "always try to guess the probability that after295

each stimulus there will the same or a different one" and we informed them that "the computer sometimes296

changes its settings and sets new probabilities", so to pay attention all the time. We also told them the297

sequence would be paused occasionally in order to collect probability estimates from participants using298

the scale depicted in Fig 1. A white fixation cross was displayed on a dark screen throughout the trial,299

except when a response was requested every 12-18 trials. The interstimulus interval was 2.8-3 seconds.300

There were 300 stimuli in each block, lasting approx. 8 minutes. Average intensity ratings for each301

stimulus level were collected after each block during a short break. Low intensity stimuli were felt by302

participants as barely painful, rated on average 1.39 (SD 0.77) on a scale ranging from 0 (no pain) to 10303

(worst pain imaginable). In contrast, high intensity stimuli were rated as more than 4 times higher than304

low intensity stimuli (mean 5.74, SD 4.85). Participants were given 4 blocks of practice, 2-3 days prior305

the imaging sessions, and 5 blocks (1500 stimuli in total) during task fMRI.306

The sequence of stimuli was unique and generated as in (Meyniel et al., 2016). L and H stimuli were307

drawn randomly from a 2x2 transition probability matrix, which remained constant for a number of trials308

(chunks). The probability of a change was 0.014. Chunks had to be >5 and <200 trials long. In each309

chunk, transition probabilities were sampled independently and uniformly in the 0.15–0.85 range (in steps310

of 0.05), with the constraint that at least one of the two transition probabilities must be >/< 0.2 than in the311

previous chunk. Participants were not informed when the matrix was resampled, and a new chunk started.312

Behavioural data analysis were conducted with Python packages pandas (pypi version 1.1.3) and scipy313

(pypi version 1.5.3). Effect size was calculated as Cohen’s d for t-tests.314

Computational modelling of temporal statistical learning315

Learning models The models used in comparison are listed as followed:316

Random (baseline model) Probabilities are assumed fixed and reciprocal for high and low stimuli,317

where ph = 1− pl (pl as free parameter). Uncertainty are also assumed fixed for high/low pain.318

Rescorla-Wagner (RW model) Rated probabilities are assumed to be state values, which were
updated as

Vt+1←Vt +α(Rt −Vt)

, where Rt=1 if stimulus was low, and 0 otherwise. α was fitted as free parameter (see (Rescorla et al.,319

1972)).320

Bayesian models Bayesian models update each trial with stimulus identity information to obtain
upcoming trial probability from posterior distribution (Meyniel et al., 2016). Using Bayes’ rule, the model
parameters θt is estimated at each trial t provided previous observations y1:t (sequence of high or low
pain), given a model M.

p(θt |y1:t ,M)∼ p(y1:t |θt ,M)p(θt ,M)

Stimulus information can either be frequency or transition of the binary sequence. There are ‘fixed’321

models that assume no sudden jump in stimuli probabilities, and ‘jump’ models that assume the opposite.322

The four combinations were fitted and compared.323

1. Fixed frequency model For fixed models, the likelihood of parameters θ follows a Beta distri-
bution with parameters Nh +1 and Nl +1, where Nh and Nl are the numbers of high and low pain in the
sequence y1:t . Given that the prior is also a flat Beta distribution with parameters [1,1], the posterior can
be analytically obtained with:

p(θ |y1:t) = Beta(θ |Nh +1,Nl +1)
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The likelihood of a sequence y1:t given model parameters θ can be calculated as:

p(y1:t |θ) = p(y1|θ)
t

∏
i=2

p(yi|θ ,yi−1)

Finally, the posterior probability of a stimulus occurring in the next trial can be estimated with Bayes’
rule:

p(yt+1|y1:t) =
∫

p(yt+1|θ ,yt)p(θ |y1:t)dθ

Priors window and decay were fitted as free parameters, where window is the previous n trials where324

frequency of stimuli were estimated, and decay is the previous n trials where the frequency of stimuli325

further from current trial were discounted following an exponential decay.326

When window= w is applied, then Nh and Nl are counted within the window of w trials yt−w,t . When327

decay= d is applied, an exponential decay factor e(−
k
d ) is applied to the k trials before their sum is328

calculated. Both window and decay were used simultaneously.329

2. Fixed transition model Priors window and decay were fitted as free parameters as Fixed
frequency model above, however, the transition probability was estimated instead of frequency. The
likelihood of a stimuli now depends on the estimated transition probability vector θ ∼ [θh|l ,θl|h] and the
previous stimulus pairs N ∼ [Nh|l ,Nl|h]. Given that both likelihood and prior can be represented using
Beta distributions as before, the posterior result can be analytically obtained as:

p(θ |y1:t) = Beta(θh|l |Nh|l +1,Nl|l +1)Beta(θl|h|Nl|h +1,Nh|h +1)

3. Jump frequency model In jump models, parameter θ is no longer fixed, instead it can change
from one trial to another with a probability of p jump. Prior p jump was fitted as a free parameter, representing
the subject’s assumed probability of a jump occurring during the sequence of stimuli (e.g. a high p jump
assumes the sequence can reverse quickly from a low pain majority to a high pain majority). The model
can be approximated as a Hidden Markov Model (HMM) in order to compute the joint distribution of θ

and observed stimuli iteratively,

p(θt+1,y1:t+1) = p(yt+1|θt+1,yt)
∫

p(θt ,y1:t)p(θt+1|θt)dθt

where the integral term captures the change in θ from one observation t to the next t +1, with probability
(1− p jump) of staying the same and probability p jump of changing. This integral can be calculated
numerically within a discretised grid. The posterior probability of a stimulus occurring in the next trial
can then be calculated using Bayes’ rule as

p(yt+1|y1:t) =
∫

p(yt+1|θt+1)p(θt+1|y1:tθt+1)

=
∫

p(yt+1|θt+1)

[∫
p(θt |y1:t)p(θt+1|θt)dθt

]
dθt+1

=
∫

p(yt+1|θt+1) [(1− p jump)p(θt+1 = θt |y1:t)+ p jump p(θ0)]dθt+1

4. Jump transition model Similar to jump frequency model above, prior p jump was fitted as a free
parameter, but estimating transition instead of frequency. The difference is the stimulus at trial yt+1 now
dependent of stimulus at the previous trial, hence the addition of the term yt in the joint distribution term,
shown below.

p(yt+1|y1:t) =
∫

p(yt+1|θt+1,yt) [(1− p jump)p(θt+1 = θt |y1:t)+ p jump p(θ0)]dθt+1
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KL divergence Kullback-Leibler (KL) divergence quantifies the distance between two probability dis-
tributions. In the current context, it measures the difference between the posterior probability distributions
of successive trials. It is calculated as

DKL(P ‖ Q) = ∑
x∈X

P(x)log
(

P(x)
Q(x)

)
, where P and Q represents the two discrete posterior probability distributions calculated in discretised330

grids X . KL divergence can be used to represent information gains when updating after successive trials331

(Meyniel and Dehaene, 2017).332

Subject rated probability For each individual subject, model predicted probabilities pk from the trial k
was used as predictors in the regression:

yk ∼ β0 +β1 · pk(Mi,θi)+β2 ·Ns + ε

where yk is the subject rated probabilities, Mi is the ith candidate model, Ns is the session number333

within subject, β0, β1, β2 and θi are free parameters to be fitted, and ε is normally distributed noise added334

to avoid fitting errors (Maheu et al., 2019).335

Model fitting336

To estimate the model free parameters from data, Bayesian information criteria (BIC) values were337

calculated as:338

BIC = n · logσ̂
2
ε + k · logn

σ̂
2
ε = min

1
n

n

∑
k−1

(yk− ŷk)

where σ̂2 is the squared residual from the linear model above that relates subject ratings to model predicted339

probabilities, and n is the number of free parameters fitted.340

We use fmincon in MATLAB to minimise the BIC (as approximate for negative log likelihood, Maheu341

et al. (2019)) for each subject/model. The procedure was repeated 100 times with different parameter342

initialisation, and the mean results of these repetitions were taken as the fitted parameters and minimised343

log likelihoods.344

Model comparison345

In general, the best fit model was defined as the candidate model with the lowest averaged BIC. We346

conducted a random effect analysis with VBA toolbox (Daunizeau et al., 2014), where fitted log likelihoods347

from each subject/model pair was used as model evidence. With this approach, model was treated as348

random effects that could differ between individuals. This comparison produces model frequency (how349

often a given model is used by individuals), model exceedance probability (how likely it is that any given350

model is more frequent than all other models in the comparison set), and protected exceedance probability351

(corrected exceedance probability for observations due to chance) (Stephan et al., 2009; Rigoux et al.,352

2014). These values are correlated and would be considered together when selecting the best fit model.353

Neuroimaging data354

Data acquisition355

First, we collected a T1-weighted MPRAGE structural scan (voxel size 1 mm isotropic) on a 3T Siemens356

Magnetom Skyra (Siemens Healthcare), equipped with a 32-channel head coil (Wolfson Brain Imaging357

Centre, Cambridge). Then we collected 5 task fMRI sessions of 246 volumes using a gradient echo358

planar imaging (EPI) sequence (TR = 2000 ms, TE = 23 ms, flip angle = 78◦, slices per volume = 31,359

Grappa 2, voxel size 2.4 mm isotropic, A>P phase-encoding; this included four dummy volumes, in360

addition to those pre-discarded by the scanner). In order to correct for inhomogeneities in the static361

magnetic field, we imaged 4 volumes using an EPI sequence identical to that used in task fMRI, inverted362

in the posterior-to-anterior phase encoding direction. Full sequence metadata are available at OpenNeuro363

(https://openneuro.org/datasets/ds003836).364
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Preprocessing365

Imaging data were preprocessed using fmriprep (pypi version: 20.1.1, RRID:SCR_016216) with Freesurfer366

option disabled, within its Docker container. Processed functional images had first four dummy scans367

removed, and then smoothed in an 8mm Gaussian filter in SPM12.368

GLM analysis369

Nipype (pypi version: 1.5.1) was used for all fMRI processing and analysis within its published Docker370

container. Nipype is a python package that wraps around fMRI analysis tools including SPM12 and FLS371

in a Debian environment.372

First and second level GLM analyses were conducted using SPM12 through nipype. In all first level373

analyses, 25 regressors of no interest were included from fmriprep confounds output: CSF, white matter,374

global signal, dvars, std_dvars, framewise displacement, rmsd, 6 a_comp_cor with corresponding cosine375

components, translation in 3 axis and rotation in 3 axis. Sessions within subject are not concatenated.376

In second level analyses, all first level contrasts were entered into a one-sample T-test, with group377

subject mask applied. The default FDR threshold used was 0.001 (set in Nipype threshold node378

height_threshold=0.001).379

For visualisation and cluster statistics extraction, nilearn (pypi version: 1.6.1) was used. A cluster380

extent of 10 voxels was applied. Visualised slice coordinates were chosen based on cluster peaks identified.381

Activation clusters were overlayed on top of a subject averaged anatomical scan normalised to MNI152382

space as output by fmriprep.383

GLM design384

All imaging results were obtained from a single GLM model. We investigated neural correlates using385

the winning Bayesian jump frequency model. All model predictors were generated with the group mean386

fitted parameters in order to minimise noise. First level regressors include the onset times for all trials,387

high pain trials, and low pain trials (duration=0). The all trial regressor was parametrically modulated by388

model-predicted posterior mean of high pain, the KL divergence between successive posterior distributions389

on jump probability, and the posterior SD of high pain.390

For second level analysis, both positive and negative T-contrasts were obtained for posterior mean,391

KL divergence and uncertainty parametric modulators, across all the first level contrast images from all392

subjects. A group mean brain mask was applied to exclude activations outside the brain. Given that high393

and low pain are reciprocal in probabilities, a negative contrast of posterior mean of low pain would be394

equivalent to the posterior mean of high pain. In addition, high and low pain comparisons were done395

using a subtracting T-contrast between high and low pain trial regressors. We corrected for multiple396

comparisons with a cluster-wise FDR threshold of p<0.001 for both parametric modulator analyses,397

reporting only clusters that survived this.398
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