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12 Abstract

13 Saccharomyces cerevisiae is known for its outstanding ability to produce ethanol in industry. 

14 Identifying the dynamic of gene expression in S. cerevisiae in response to fermentation is required for 

15 the establishment of any ethanol production improvement program. The goal of this study was to 

16 identify the discriminative genes between improved and repressed ethanol production as well as 

17 clarifying the molecular responses to this process through mining the transcriptomic data. Through 11 

18 machine learning based algorithms from RapidMiner employed on available microarray datasets 

19 related to yeast fermentation performance under Mg2+ and Cu2+ supplementation, 172 probe sets 

20 were identified by at least 5 AWAs. Some have been identified as being involved in carbohydrate 

21 metabolism, oxidative phosphorylation, and ethanol fermentation. Principal component analysis (PCA) 

22 and heatmap clustering were also validated the top-ranked selective probe sets. According to decision 

23 tree models, 17 roots with 100% performance were identified. OLI1 and CYC3 were identified as the 

24 roots with the best performance, demonstrated by the most weighting algorithms and linked to top two 

25 significant enriched pathways including porphyrin biosynthesis and oxidative phosphorylation. ADH5 

26 and PDA1 are also recognized as differential top-ranked genes that contribute to ethanol production. 

27 According to the regulatory clustering analysis, Tup1 has a significant effect on the top-ranked target 

28 genes CYC3 and ADH5 genes. This study provides a basic understanding of the S. cerevisiae cell 

29 molecular mechanism and responses to two different medium conditions (Mg2+ and Cu2+) during the 

30 fermentation process. 

31 Key words: Saccharomyces cerevisiae, fermentation, Microarray analysis, Machine learning, Principal 

32 component analysis, Hierarchical clustering

33 Introduction

34 In research and industry, Saccharomyces cerevisiae is used as one of the main microorganisms for bio-

35 ethanol production. In addition to its high ethanol production capability, its stability for anaerobic 

36 fermentation and low pH tolerance facilitates its use in industry for ethanol production [1]. In terms of 

37 molecular biology, the genetics of S. cerevisiae is known, the genome has been sequenced, and many 
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38 genes have been functionally annotated and characterized [2,3], so genetic manipulation of this 

39 organism is well developed [4]. There are different S. cerevisiae industrial strains used for bioethanol 

40 production. Molecular study of industrial strains with the aim of providing insight for improved ethanol 

41 production, is of great interest due to their importance for large-scale production. S. cerevisiae JP1 is 

42 one of the dominant strains in fermentation industry since it exhibits high temperature tolerance, 

43 stability under low pH and high fermentation rate [5]. Several researches have been conducted on the 

44 S. cerevisiae metabolic engineering to generate efficient ethanol producing strains [6,7]. Suji et al [8], 

45 for example used the PHO13 deletion in conjunction with LAD1 and ALX1 heterologous expression to 

46 improve S. cerevisiae for arabinose consumption, resulting in a 3.5-fold increase in specific ethanol 

47 productivity. Furthermore, transcriptomic studies have revealed the role of genes in ethanol 

48 fermentation. Under fermentation, gene expression analysis revealed the presence of stress-response 

49 and energy-related genes in S. cerevisiae supplemented with Mg2+ [9]. Upregulation of transketolase 

50 and transaldolase genes have been reported through transcriptome analysis of engineered S. cerevisiae 

51 under fermentation of arabinose sugar [10]. Identifying the molecular basis and dynamics of gene 

52 expression profiles related to yeast response in improved bioethanol production conditions is critical 

53 for developing new manipulated strains with increased ethanol yield. It also shed light on the 

54 mechanisms that yeast uses to improve production. 

55 Metal supplements are effective in the yeast metabolic pathways that produce ethanol. Among these, 

56 zinc, magnesium, manganese, and copper have been extensively researched and shown to have 

57 regulatory effects on ethanol production [11, 12, 13]. Mg2+ ion is involved in phosphorylation, DNA 

58 and protein synthesis, as well as cell membrane rigidity and proliferation, and it has the potential to 

59 increase ethanol accumulation through fermentation [14, 9]. Furthermore, Mg2+ may improve the S. 

60 cerevisiae tolerance to high ethanol concentration during glucose and xylose fermentation [15, 16]. 

61 Mg2+ medium supplementation, in particular, resulted in a 29% increase in ethanol production by 

62 regulating the expression of cell wall and membrane related genes using S. cerevisiae [16]. Copper is 

63 also known as a critical element for yeast biological functions, particularly in its ion form Cu++. Some 

64 essential activities, such as cytochrome c oxidase, a component of oxidative phosphorylation, and 
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65 superoxide dismutase are dependent on Cu2+ [17]. Copper stress, on the other hand, caused by an excess 

66 of copper, can result in ROS generation and DNA damage. At high concentrations, it also has a negative 

67 impact on cell membrane stability and enzyme activity. [18]. A high copper concentration (1.5 mM) 

68 inhibited cell growth, glucose and fructose consumption during fermentation by S. cerevisiae [19]. Few 

69 studies have been conducted to investigate the effect of Cu2+ on the physiology and fermentation ability 

70 of S. cerevisiae cell. As a result, despite their lack of research, Mg and Cu have the potential to modulate 

71 the gene expression network involved in the fermentation process.

72 It would be possible to identify the critical genes and clarify the mechanisms involved in the ethanol 

73 production process using bioinformatics-based analysis of the S. cerevisiae expression dataset. 

74 Computational approaches for identifying key genes involved in the fermentation process could 

75 elucidate the transcriptomic dynamics of yeast ethanol fermentation and reveal expression signatures 

76 that could be underutilized for improved production. RapidMiner is one of the most useful and widely 

77 used mining tools for data analysis [20]. Machine learning algorithms, both supervised and 

78 unsupervised models, are widely used in gene expression data analysis and gene identification [21,22]. 

79 Different gene selection algorithms, such as Information Gain, Information Gain Ratio, rule induction, 

80 SVM, and PCA, are widely used in gene expression analysis using RapidMiner. Cheng et al [23] used 

81 RapidMiner to preform four machine learning weighting models on gene expression datasets related to 

82 Huntington’s disease, including decision tree, rule induction, random forest, and generalized linear 

83 algorithms, in order to identify contributing genes to this disorder. In another study, Zinati et al [24] 

84 used ten different weighting algorithms to identify the genes that differentiate between sour and acidic 

85 lemon taste.

86 Valuable publicly available data on S. cerevisiae genome-wide expression experiments could be used 

87 for functional genomic analysis through machine learning. Machine learning algorithms' discriminative 

88 ability aids in revealing the underlying biological process in microarray data analysis [20]. In light of 

89 the availability of such useful primary data sets and the potential of RapidMiner as an efficient tool for 

90 biological data analysis, we used available microarray expression dataset related to S. cerevisiae 

91 supplemented with Copper and Magnesium metal components under fermentation to investigate the 
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92 underlying molecular basis of fermentation used by S. cerevisiae. The goal of this study was to identify 

93 the critical genes contribute to discriminate the improved (Mg2+ treatment) and low ethanol production 

94 (Cu2+ treatment at toxic concentration), as well as to elucidate the transcriptomic response of S. 

95 cerevisiae under these two conditions. S. cerevisiae transcriptome analysis using data mining and 

96 machine learning by both supervised and unsupervised models was used in this study as a novel 

97 approach to identify the underlying gene regulation mechanisms that can be used to optimize 

98 fermentation performance.

99 Materials and Methods

100 Data Collection

101 For this study available microarray datasets related to yeast fermentation performance under Mg2+ (500 

102 mg/L) or Cu2+ (1 mg/L) supplementation was used. Microarray data of the industrial yeast S. cerevisiae 

103 JP1 strain downloaded from the GEO repository of the NCBI database (GEO number: GSE75803) was 

104 used. To meet the research objective, the probe sets with significant differential expression 

105 (concomitant Adj. p ˂ 0.05 and B ≥ 3) were chosen for this study. 

106 Data cleaning

107 We used RapidMiner software (RapidMiner Studio 7.6) [25] to enter the 6300-differential expressed 

108 probe sets as numerical features, as well as high and low bioethanol as class features. For better 

109 processing, inefficient or redundant probe sets with less than or equal to a given standard deviation (SD) 

110 threshold (0.1), as well as correlated probe sets (correlation ≥ 0.95), were carefully removed from the 

111 dataset. The resulting list, which only contained efficient probe sets, was designated as the Final 

112 Cleaned (FCdb) database.

113 Attribute weighting algorithms

114 Eleven attribute weighting algorithms with cut-off ≥ 0.7 were used in the FCdb to identify the most 

115 effective probe sets contributing to discriminate ethanol content. Weights close to 1 indicate that a 

116 specific probe set in ethanol content is more important. The main probe sets were those determined by 
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117 the majority of AWAs (intersection of the weighing method). The attribute weighting algorithms used 

118 in this investigation, as well as the statistical background description for each one, are as follows 

119 (RapidMiner Studio 7.6):

120 Weight by Information Gain and Information Gain Ratio 

121 This algorithm is a well-established superior method for gene selection in microarray data analysis 

122 [26,27]. In this method, the attributes (probe sets) are weighted according to their class label (high or 

123 low ethanol production). 

124 Weight by Rule 

125 Based on a single rule and the relationship between attributes (genes) and considering the errors, the 

126 weight of each attribute is measured through rule algorithm [28] and is used as a selective method for 

127 microarray analysis. 

128 Weight by Deviation, Weight by Correlation and Weight by Chi Squared Statistic

129 The standard deviation of attributes is used as a weighting parameter in the deviation weighting method. 

130 The correlation method, on the other hand, weighs the label attributes based on the correlation. In 

131 addition, for labeling the attributes, we used the Chi Squared Statistic weighting algorithm, which takes 

132 the Chi squared into account.

133 Weight by Gini Index and Weight by Uncertainty 

134 Due to the label attribute in this model, the weight of attributes is determined by measuring the Gini 

135 coefficient as an inequality index of sample data. According to each attribute, the lower the Gini index 

136 of the attribute, the more equal dispersion among attributes is considered. The weight for uncertainty 

137 model, on the other hand, is determined using the symmetrical uncertainty due to the class attribute. 

138 Weight by Relief

139 This model is one of the most reliable algorithms for weighting genes because it is based on the 

140 determination of values between probe sets of the same and different classes in a short distance. 
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141 Weight by SVM 

142 SVM is one of the most powerful classification models for gene expression analysis [21]. The SVM 

143 method weighs attributes using the coefficients of the normal vector of a linear SVM. 

144 Weight by PCA 

145 This model performs attribute weighting due to the class attribute based on the component number 

146 parameter of PCA and the value of the components. 

147 Decision tree models

148 Eleven new datasets were generated using the entire probe sets with weight >0.70. They were 

149 annotated based on the models used for attribute weighting (Relief, Information gain, Uncertainty, 

150 Information gain ratio, Chi Squared, Rule, Correlation, Deviation, SVM and PCA, Gini index). 

151 Random Tree, Decision Tree, Decision Stump, and Random Forest were the tree induction models 

152 used for 12 datasets (FCdb and 11 datasets produced by specific weighting algorithms). Each model 

153 had four criteria (Gini Index, Gain Ratio Information Gain, and Accuracy). We used a ten-fold 

154 validation algorithm with appropriate sampling to create trees with RapidMiner. The performance 

155 of the model was evaluated and used to compare various models based on the accuracy of each model 

156 in identifying the target variable (high and low bioethanol content) and according to the attribute 

157 variables (normal expression of the probe set). Performance is expressed as a measure of model 

158 accuracy in this case. We calculated the accuracy by dividing the number of correct predictions by 

159 the total number of samples. The value of the attribute accuracy that is expected to be the same as 

160 the value of the labeled attribute is referred to as the correct prediction. These models were used with 

161 a minimum gain of 0.1 to obtain a split and a maximum tree depth of 20. For pruning 0.25 confidence 

162 level was considered with a pessimistic error calculation.

163 Unsupervised analysis of the top ranked probe sets derived by supervised AWAs 

164 Unsupervised principal component analysis (PCA) and hierarchical clustering heatmap were used to 

165 evaluate the power of top-ranked probe sets which differentiate the fermentation under different 
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166 supplementation treatments. For unsupervised analysis, a web-based tool Clustvis 

167 (https://biit.cs.ut.ee/clustvis/) was used [30]. The PCA analysis was carried out in the PCA Methods 

168 R package using unit variance scaling on rows and Singular Value Decomposition (SVD) with the 

169 imputation method. The clustering heatmap was created with the pheatmap R package (version 

170 0.7.7). The clustering heatmap was constructed using correlation, Pearson correlation subtracted 

171 from 1, and the average distance of all possible pairs [31].

172 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis

173 The pathway enrichment analysis was carried out using Y e a s t E n r i c h r  

174 (https://maayanlab.cloud/YeastEnrichr/) [30,31]. The biochemical pathways related to key probe sets 

175 were identified using the KEGG2019 database. Pathways with p-value < 0.1 were considered 

176 significant.

177 Exploring for transcription factors among top-ranked genes and Regulator cluster analysis

178 We used yeastract database (http://www.yeastract.com/formrankbyhomotf.php) to identify 

179 transcription factors (TFs) among the 172 probe sets identified by at least 5 attribute weighting 

180 algorithms [32]. The TFs and their target genes were identified using this tool based on DNA binding 

181 sites and expression evidence. Furthermore, we used the regulator DB database 

182 (http://wyrickbioinfo2.smb.wsu.edu/cgi-bin/RegulatorDB/cgi/home.pl) to run regulator cluster 

183 diagram to determine the regulatory effect of the identified TFs on the target genes [33,34]. It provides 

184 data on mutant regulator expression for selected regulators and target genes.

185

186 Results

187 Ranking probe sets by AWAs

188 After cleaning 6300 probe sets by RapidMiner, we obtained 1813 probe sets. Eleven AWAs were used 

189 to identify informative probe sets. Following AWAs analysis, 172 probe sets were identified by at least 

190 5 attribute weighting algorithms (Supplementary File, sheet S1). Furthermore, there were distinct probe 
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191 sets classified by at least five algorithms that respond discriminatively to supplement treatment and/or 

192 are particularly related to ethanol production during fermentation. Sheet S2 of the Supplementary File 

193 contains the probe sets as well as the AWAs used to identify the probe sets. Some of the informative 

194 probe sets were recognized to be involved in carbohydrate metabolism, TCA cycle, oxidative 

195 phosphorylation, and ethanol fermentation while others were related to stress responses, cell membrane 

196 structure, and cell growth which could be indirectly effective in ethanol production. Some of the top 

197 informative genes are presented in (Table 1). 

198 Table 1. Some of the informative probe sets identified by at least AWAs.

199

probe sets

Standard 
Gene 
Name AWAs Names

AWAs 
number Gene Name

A_06_P4554 MRP8

Chi Square Statistic, Correlation, Gini Index, 
Information Gain, Information Gain ratio, PCA, 

Relief, Rule, SVM, Uncertainty 10
Uncharacterized, response to 

stress

A_06_P1016 OLI1

Chi Square Statistic, Correlation, Gini Index, 
Information Gain, Information Gain ratio, PCA, 

Relief, Rule, SVM, Uncertainty 10
ATP synthase subunit 9, 

mitochondrial;OLI1;ortholog

A_06_P1397 ADH5

Chi Square Statistic, Correlation, Gini Index, 
Information Gain, Information Gain ratio, PCA, 

Rule, SVM, Uncertainty 9
Alcohol dehydrogenase 

5;ADH5;ortholog

A_06_P1238 PKC1

Chi Square Statistic, Correlation, Gini Index, 
Information Gain, Information Gain ratio, PCA, 

Rule, SVM 8 Protein serine/threonine kinase

A_06_P3384 GTR2

Chi Square Statistic, Correlation, Gini Index, 
Information Gain, Information Gain ratio, PCA, 

Rule, SVM, Uncertainty 9 GTP-binding protein

A_06_P1063 CYC3

Chi Square Statistic, Correlation, Gini Index, 
Information Gain, Information Gain ratio, Relief, 

Rule, SVM, Uncertainty 9 Cytochrome c heme lyase

A_06_P1003 COX1

Chi Square Statistic, Correlation, Gini Index, 
Information Gain, Information Gain ratio, Rule, 

SVM, Uncertainty 8 cytochrome c oxidase

A_06_P2810 PDA1

Chi Square Statistic, Correlation, Gini Index, 
Information Gain, Information Gain ratio, Rule, 
SVM 7

Pyruvate dehydrogenase E1 
component subunit alpha, 

mitochondrial;PDA1;ortholog

A_06_P2931 QCR6 Chi Square Statistic, Correlation, PCA, Rule, SVM 5
Cytochrome b-c1 complex 
subunit 6;QCR6;ortholog

A_06_P6820 ALD6 Chi Square Statistic, PCA, Rule, Uncertainty 4

Magnesium-activated aldehyde 
dehydrogenase, 

cytosolic;ALD6;ortholog
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200

201 Decision Tree models

202 The decision tree models were used to achieve pattern recognition between important genes as well as 

203 with the genes with the highest distinguishing power. The lowest and highest performances were 0% 

204 and 100%, respectively (Supplementary File, sheet S3). There were 17 probe sets with 100% 

205 performance in the roots of decision tree models (Table 2).

206 Table 2. Decision Tree models roots identified as exhibited 100% performance.

elements
GENE_SYMBO

L AWS DESCRIPTION
A_06_P101

6 OLI1 10
BioProcess=ATP synthesis coupled proton 

transport
A_06_P247

5 CWC21 9 BioProcess=biological_process unknown
A_06_P100

2 ORF:Q0017 9 BioProcess=biological_process unknown
A_06_P103

4 CYS3 9 BioProcess=sulfur amino acid metabolism*
A_06_P113

1 HTB2 8 BioProcess=chromatin assembly/disassembly
A_06_P106

8 KRE23 9 BioProcess=biological_process unknown
A_06_P298

4 CGR1 9 BioProcess=rRNA processing*
A_06_P129

8 ORF:YBR051W 9 BioProcess=biological_process unknown
A_06_P152

4 ORF:YBR270C 8 BioProcess=biological_process unknown
A_06_P328

7 ORF:YGR067C 9 BioProcess=biological_process unknown
A_06_P106

3 CYC3 9 BioProcess=not yet annotated
A_06_P205

1 RPS13 9 BioProcess=protein biosynthesis
A_06_P196

7 OST4 10 BioProcess=not yet annotated
A_06_P104

9 ORF:YAL027W 9 BioProcess=biological_process unknown
A_06_P100

3 COX1 8 BioProcess=aerobic respiration
A_06_P202

3 ORF:YDR036C 7 BioProcess=biological_process unknown
A_06_P102

3 ORF:Q0297 8 BioProcess=biological_process unknown
207
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208 Unsupervised Analysis

209 As a complementary confirmation, the 172 top ranked probe sets were validated using PCA and 

210 hierarchical clustering heatmap, identified with supervised attribute weighting models. According to 

211 the results, the 172 significant probe sets could accurately differentiate between two different 

212 fermentation conditions, thus confirming the significance and accuracy of the identified probe sets (Fig. 

213 1). In particular, the captured variances with the first two components on all recognized 6031 probe sets 

214 and informative 172 probe sets were up to 74% and 50%, respectively. Furthermore, it could efficiently 

215 separate informative 172 probe sets under Cu2+ or Mg2+ supplementation in the hierarchical clustering 

216 heat map, (Fig. 1). In total, 64 probe sets were up and down regulated by Mg2+ and Cu++, while 108 

217 probe sets were up and down regulated through Cu and Mg supplementation, respectively (Fig. 2).

218 Fig. 1. Two-dimensional plot related to the first two principal components. GSM1968101, 

219 GSM1968110, GSM1968100 and GSM1968108 are samples related to Mg2+ supplementation. 

220 GSM1968106, GSM1968114, GSM1968103 and GSM1968112 are samples related to Cu2+ 

221 supplementation.

222 Fig. 2. The heatmap related to 172 probe sets which were recognized by at least 5 attribute weighting 

223 algorithms (AWAs). Each row corresponds to the different samples including Mg2+ (high ethanol 

224 production) and Cu2+ supplementation (repressed ethanol production). Columns exhibits hierarchically 

225 clustered probe sets. The normalized intensity expressions of probe sets were shown as a color scale. 

226 The up and down-expression levels were represented as red and blue scales, respectively.

227 Pathway enrichment analysis of genes

228 Significant enriched pathways such as Porphyrin metabolism, Oxidative phosphorylation, Glycolysis, 

229 Amino sugar and nucleotide sugar metabolism, Cell cycle, Meiosis and Citrate cycle (TCA cycle) were 

230 identified using the KEGG enrichment analysis. The enriched pathways and the related genes are 

231 presented in Table 3.
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232 Table 3.  KEGG enrichment analysis of 172 probe sets. The significant pathways with adjusted P-

233 value < 0.1 are represented.

Term Adjusted P-value Genes
Porphyrin and chlorophyll metabolism 0.000582985 HEM2;HEM12;CYC3;YFH1
Oxidative phosphorylation 0.007415084 OLI1;QCR6;ATP6;COX1;ATP2
Endocytosis 0.007415084 CAP1;APL3;LAS17;ARC15;VPS25
RNA degradation 0.025376563 POP2;RRP42;SSQ1;CCR4
Meiosis 0.049279656 CLN3;HMRA2;MSN4;APC9;TPD3
Autophagy 0.049279656 KCS1;VPS8;MSN4;PEP4
Ubiquitin mediated proteolysis 0.049279656 UBC13;UBC6;APC9
Protein processing in endoplasmic 
reticulum 0.049279656 OST4;UBC6;PDI1;SSE2
Glycolysis / Gluconeogenesis 0.064176371 PDA1;PGM2;ADH5
Galactose metabolism 0.072088565 GAL7;PGM2
Phosphatidylinositol signaling system 0.072088565 KCS1;PKC1
Amino sugar and nucleotide sugar 
metabolism 0.075323668 GAL7;PGM2
Spliceosome 0.075323668 PRP43;ECM2;PRP8
MAPK signaling pathway 0.072088565 TUP1;MKC7;MSN4;PKC1
Pentose phosphate pathway 0.075323668 SOL4;PGM2
Alanine, aspartate and glutamate 
metabolism 0.075323668 GDH3;NIT3
Cell cycle 0.075323668 CLN3;TUP1;APC9;TPD3
Citrate cycle (TCA cycle) 0.075323668 PDA1;LSC2
Ribosome biogenesis in eukaryotes 0.075323668 UTP15;CKB1;RIO1
Glycine, serine and threonine 
metabolism 0.075323668 SER1;CYS3

234

235 Identification of transcription factors and their targets

236 Among the 172 informative probe sets identified by yeastract analysis were seven transcription factors: 

237 YGR067C, HAP4, NRG2, TUP1, TOS8, MSN4, and PDC2. Surprisingly, the targets of the identified 

238 transcription factors were discovered among the 172 genes identified by RapidMiner analysis and 

239 ranked by at least 5 algorithms (Supplementary File, sheet S5). These findings support the AWAs' 

240 ability to correctly identify top-ranked probe sets. Furthermore, regulator clustering related to TFs and 

241 their targets (both ranked by at least eight algorithms) was performed to demonstrate the effect of top-

242 ranked TFs on top-ranked target genes based on the transcription factors mutants. The results showed 

243 that Hap4p, Tup1, and TOS8 mutants resulted in different ratios of up and down-regulation of target 

244 genes (Fig. 3). Although Hap4 and TOS8 resulted in down or up regulation of target genes, their effect 
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245 on none of target genes was significant. According to the findings, the Tup1 transcription factor has the 

246 greatest impact on the target genes expression. The Tup1 knocked out mutant significantly induce the 

247 expression of CYC3 (YAL039C), while causing highest level of down regulation of YBL11C, ADH5 

248 (YBR145W).

249 Fig. 3. The regulatory clustering heatmap related to genes targeted by identified transcription factors 

250 Hap4p and Tup1 and TOS8. The cluster is represented as the log mRNA ratio of each target gene in 

251 each regulator mutant. 

252 Discussion

253 In this study, machine learning and decision tree models were used to analyze the transcriptome of S. 

254 cerevisiae during the fermentation process in two conditions: repressed ethanol production and high 

255 ethanol production supplemented with Cu2+ and Mg2+. Indeed, for the most accurate prediction methods, 

256 we used both supervised and unsupervised models. In summary, we used 11 supervised models to 

257 achieve high accuracy results. In addition, a PCA analysis as an unsupervised model and a hierarchical 

258 clustering heat map were used to validate the 172 top-ranked probe sets identified by supervised-based 

259 models. Furthermore, we used pathway enrichment, transcription factor and regulatory analysis to 

260 validate the machine learning analysis results (Fig. 4). According to RapidMiner-assisted analysis, some 

261 probe sets were identified as playing a distinct role in ethanol production. Nonetheless, it should be 

262 noted that the function of some identified probe sets has not yet been clarified, despite the fact that they 

263 may be critical in ethanol production. ADH5 or Alcohol dehydrogenase, which was weighted by 9 

264 algorithms and classified in Glycolysis / Gluconeogenesis by KEGG enrichment analysis, contributes 

265 to ethanol production by reducing acetaldehyde to ethanol [35]. OLI1 is distinguished by ten algorithms 

266 and is rich in Oxidative phosphorylation term, which encodes F0-ATP synthase subunit c and  generates 

267 ATP in yeast mitochondria [36]. Metal ions, such as Cu++, are known to have a negative effect on 

268 mitochondrial respiratory components, as it slowed the respiratory chain in PC12 and liver cells at toxic 

269 doses [37,38]. That is most likely the main reason for the down regulation of OLI1, which is an 

270 important component of the oxidative phosphorylation pathway when exposed to toxic Cu. RNA-seq 

271 analysis revealed that this gene was enriched as a significant gene between the wild and high glucose 
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272 tolerant mutant strains of S. cerevisiae [39]. In addition to this gene, COX1 has an AWA weight of 8 

273 and is involved in the final electron chain reaction in the respiratory system [40]. It encodes one of the 

274 cytochrome c oxidase subunits and, like OLI1, has been shown to be repressed by Cu2+ treatment. PDAI 

275 encodes alpha subunit of pyruvate dehydrogenase and converts the pyruvate to acetyl-CoA through 

276 oxidative decarboxylation [41]. This gene was found to be enriched in the Glycolysis/Gluconeogenesis 

277 pathway by seven weighting algorithms used in this study. PDAI directs the pyruvate metabolism to 

278 Acetyl- COA in mitochondria to provide the TCA cycle substrate. In other words, directing the pyruvate 

279 to TCA cycle PDAI keeps pyruvate from being consumed in the fermentation process or ethanol 

280 production. PDAI was down regulated in Mg-containing medium, which accounts for improved ethanol 

281 production, and was upregulated in the repressed fermentation condition, by Cu. QCR6 is a subunit of 

282 cytochrome bc1 complex and contributes to oxidative phosphorylation. Cytochrome C is known to be 

283 activated by Cu metal ion [42]. QCR6 was up regulated, as expected, by Cu supplementation. Similarly, 

284 in Pichia stipites, cytochrome bc1 disruption resulted in increased ethanol production. [43]. Granados-

285 Arvizu et al [44] also concluded that cytochrome bc1 complex repression would be a promising way to 

286 enhance ethanol production in Saccharomyces stipitis. ALD6 or Aldehyde dehydrogenases is activated 

287 by Mg and have a distinct role in the formation of acetate from pyruvate in an alternate pyruvate 

288 dehydrogenase bypass pathway [45]. ALD6 expression was found to be increased with Mg 

289 supplementation, which corresponded to the activation of this enzyme by Mg++. Since it consumes the 

290 acetaldehyde source that ADH enzymes can use to produce ethanol, deleting ALD6 via Crisper/CAS 9 

291 genome editing resulted in increased ethanol production [46].

292 Fig. 4. The schematic illustrates the methodology of the study with summarized results.

293 Based on decision tree analysis, 17 identified roots performed flawlessly, some of which have unknown 

294 molecular functions and have yet to be characterized. Surprisingly, OLI1 and CYC3 were identified by 

295 the highest attribute weighting algorithms (10 and 9), were enriched in the second most important 

296 biochemical pathway, and were also identified as decision tree model roots with 100% performance. 

297 COX1 is also shown as a complete root, but it is identified using 8 weighting algorithms. As previously 

298 stated, OLI1 is an F0-ATP synthase subunit c that contributes to the electron transport chain. CYC3 is 
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299 also known as Cytochrome c heme lyase and has a strong sensitivity to ethanol. Indeed, the null mutants 

300 for this gene showed ethanol sensitivity. Both of these genes are involved in ATP generation and are 

301 up regulated in Mg supplemented medium. Nonetheless, it has been established that Mg2+ has an effect 

302 on energy metabolism and ATP production in the cell [47].

303 Confirming the results of the AWAs and decision tree models analysis through RapidMiner, the Kegg 

304 pathway analysis showed that two most significant terms, porphyrin biosynthesis and oxidative 

305 phosphorylation, were enriched in CYC3 and OLI1 and COX1. Cell cycle and division, as well as 

306 Ribosome biogenesis, are identified as significant terms in the KEGG pathway enrichment. They may 

307 have an impact on ethanol production even though they do not directly contribute to the fermentation 

308 bioprocess. For example, in addition to its role in yeast cell growth and proliferation, which affects 

309 ethanol production, ribosome biogenesis is predicted to be associated with fermentation, and some 

310 related genes, such as SFP1 are thought to be involved in glycolysis control as well [35,48]. 

311 Nonetheless, significant phosphatidylinositol signaling and MAPK signaling pathways identified in this 

312 study by enrichment analysis were reported to be responsible for cell proliferation/growth regulation 

313 and critical for stress responses [49,50]. PKC1 which was attributed by 8 algorithms and remarkably 

314 enriched in phosphatidylinositol signaling system is a serine/threonine kinase which is suggested to 

315 have role in response to copper toxicity since it was upregulated in Cu2+ supplementation or reduced 

316 ethanol production according to heatmap clustering. Confirming this finding, Zhou et al [49] reported 

317 that 5-hydroxymethyl-2-furaldehyde, which is toxic to industrial fermentative S. cerevisiae strain, 

318 increases the expression of PKC1 gene. Furthermore, according to AWAs analysis, some genes are 

319 involved in stress responses, cell growth and proliferation, protein synthesis, fatty acids and lipid 

320 metabolism, all of which may contribute to ethanol production efficiency. MRP8 was assigned by ten 

321 algorithms as a response to cell wall stress, and its expression has been reported to be induced under 

322 stress conditions [51]. Its function, however, is unknown. Cu supplementation induces the expression 

323 of this gene in response to the stress condition caused by copper. GTR2, a GTPase subunit, was weighted 

324 using nine algorithms. It is suggested in this study that it contributes to tolerance response to CU 
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325 inhibitor because it was up regulated by copper. As an implication for this result, the null mutant related 

326 to GTR gene showed decreased resistance to Zn metal at inhibitory amount [52].

327 According to the crucial role of TFs in gene expression regulation and to confirm the results obtained 

328 from attribute weighting algorithms analysis, the TFs and their targets were explored among 172 probe 

329 sets. According to the regulatory clustering analysis, Tup1 has a significant effect on the top-ranked 

330 target genes. Tup1 is a transcriptional repressor in S. cerevisiae has the ability to repress target genes 

331 via various molecular mechanisms, and it contributes to carbon catabolite repression of transcription by 

332 glucose [53, 54]. Regarding the results of this study on regulatory clustering analysis, the Tup1 mutant 

333 caused decreased expression in some of the target genes and up regulation in others. In other words, the 

334 deletion of Tup1 resulted in downregulation of YBL111C, whose biological function is unknown and 

335 YBR145W (ADH5) at most. The ADH5 gene has also been identified as the top-ranked gene with 9 

336 AWAs through RapidMiner analysis. On the other hand, the TUP1 knock out resulted in significant 

337 upregulation of YAL039C (CYC3). Indeed, the CYC3 gene, which was confirmed by the greatest number 

338 of AWAs and a decision tree model, was also shown to be a top target of the transcription factor 

339 involved in ethanol production responses in this study. Hap4 is a transcription factor involved in the 

340 regulation of the respiratory genes’ expression and ethanol tolerance. The role of TUP1 and HAP4 in 

341 glucose fermentation have been studied and recently confirmed in thermotolerant yeast, Ogataea 

342 polymorpha [54]. Moreover, the overexpression of HAP4 gene caused enhanced glucose consumption 

343 and ethanol production in S. cerevisiae [55,56]. In this study, the HAP4 gene was also identified as top-

344 ranked gene attributed by nine AWAs. Although the results confirm its involvement in the identified 

345 probe sets regulation, it does not demonstrate significant up or down-regulation effect on the target 

346 genes. Overall, OLI1, CYC3, COX1 and ADH5 were ranked as the most critical genes in the 

347 differentiation of two improved and repressed ethanol production conditions because they were the most 

348 frequently identified genes across analyses. These important findings shed light on the complex 

349 pathways and regulatory responses that genes use to contribute to ethanol production. However, 

350 additional experimental analysis could fully clarify the results. Overall, the findings of this study could 
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351 be used to further investigate the possibility of improving ethanol through overexpression or knock out 

352 strategies. Furthermore, additional experimental testing to confirm the findings is strongly advised.
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354 (PCA) Principal component analysis, (KEGG) Kyoto Encyclopedia of Genes and Genomes, ADH5 

355 (Alcohol dehydrogenase), (CYC3) Cytochrome c heme lyase
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