bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

ChemChaste: Simulating spatially inhomogenous biochemical
reaction-diffusion systems for modelling cell-environment

feedbacks
Connah G. M. Johnson!?, Alexander G. Fletcher>**, Orkun S. Soyer®*

I Mathematics of Real-World Systems Doctoral Training Centre, University of Warwick,
Coventry, UK

2 School of Life Sciences, University of Warwick, Coventry, UK

3 School of Mathematics & Statistics, University of Sheffield, Sheffield, UK

4 Bateson Centre, University of Sheffield, Sheffield, UK

* Corresponding author(s): O.Soyer@warwick.ac.uk, a.g.fletcher@sheffield.ac.uk

Abstract

Motivation: Spatial organisation plays an important role in the function of many biological
systems, from cell fate specification in animal development to multi-step metabolic conversions
in microbial communities. The study of such systems benefits from the use of spatially explicit
computational models that combine a discrete description of cells with a continuum description
of one or more chemicals diffusing within a surrounding bulk medium. These models allow the
in silico testing and refinement of mechanistic hypotheses. However, most existing models of
this type do not account for concurrent bulk and intracellular biochemical reactions and their
possible coupling.

Results: Here, we describe ChemChaste, an extension for the open-source C++ computational
biology library Chaste. ChemChaste enables the spatial simulation of both multicellular and bulk
biochemistry by expanding on Chaste’s existing capabilities. In particular, ChemChaste enables:
(1) simulation of an arbitrary number of spatially diffusing chemicals; (ii) spatially heterogeneous
chemical diffusion coefficients; and (iii) inclusion of both bulk and intracellular biochemical
reactions and their coupling. ChemChaste also introduces a file-based interface that allows users
to define the parameters relating to these functional features without the need to interact directly
with Chaste’s core C++ code. We describe ChemChaste and demonstrate its functionality using
a selection of chemical and biochemical exemplars, with a focus on demonstrating increased
ability in modelling bulk chemical reactions and their coupling with intracellular reactions.
Availability and implementation: ChemChaste is a free, open-source C++ library, available
via GitHub at https://github.com/0SS-Lab/ChemChaste under the BSD license.

Contact: O.Soyer@Qwarwick.ac.uk or a.g.fletcher@sheffield.ac.uk

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1 Introduction

Understanding the emergent dynamics of spatially heterogeneous cell populations is highly
relevant to both eukaryotic and microbial biology. Spatially self-organised biological systems
often display nonlinear dynamics (An et al., 2017; Hart et al., 2019; Painter, 2019), which
may be difficult to mechanistically explain through observation alone, necessitating the use of
computational modelling approaches to help guide and explain experimental studies. Several
outstanding challenges must be addressed to fully leverage models of spatially organised
biological systems (Fletcher and Osborne, 2021), not least the development of robust and
extensive computational frameworks that allow users to define, explore, and share models in
a straightforward manner.

Many computational frameworks already exist for studying the dynamics of spatially
organised cell populations. Some of these, such as iDynoMiCs (Lardon et al., 2011), use
a bottom-up (discrete, agent-based) approach to modelling individual cell behaviours (Kreft
et al., 2017), combined with a top-down (continuum, partial differential equation (PDE) based)
approach to modelling the diffusive transport of nutrients and other chemicals. In this approach,
some aspects of cell physiology are ‘hard-coded’, along with specific ‘rules’ governing their
dynamics. In other computational frameworks, the physical forces acting on individual cells are
modelled explicitly, but cell physiology is not. In these approaches, cells are treated as extended
shapes in space, with cell proliferation and migration implemented through neighbourhood
update rules, e.g. an implementation of the so-called cellular Potts model (e.g. as done in
CompuCell3D (Glazier and Graner, 1993) and as used in Morpheus (Starrufs et al., 2014)). It
is also possible to combine these two approaches, into what we call a ‘hybrid continuum-discrete
approach’, where cells are represented by particles, with some aspects of their physiology encoded
by rules (e.g. cell division) and others governed by spatially explicit energy or force equations
(e.g. cell migration). Such hybrid approaches have been developed by either creating dedicated,
new computational frameworks (e.g. HAL (Bravo et al., 2020), PhysiCell (Ghaffarizadeh et al.,
2018), Chaste (Cooper et al., 2020)), or by adapting existing agent-based (Xavier et al., 2005)
or molecular dynamics (Plimpton, 1995) tools.

Using hybrid modelling tools, cell physiology can theoretically be coupled to the dynamics of
chemicals in the bulk medium. This functionality, however, is implemented in a limited fashion
in existing platforms. For example, in Chaste, PhysiCell and CompuCell3D, either only a limited
number of bulk chemicals can be dynamically modelled, and /or diffusion coefficients are assumed
to be homogeneous. Additionally, the linking of these bulk chemicals to intracellular reactions
is limited in terms of number of reactions and couplings that can be encoded in each cell and at
the cell-bulk interface. This limits the range of biological phenomena that can be studied within
existing computational frameworks.

The coupling between cells and their microenvironment is increasingly being recognised
as playing a fundamental role in cell dynamics in the context of both microbial
and eukaryotic populations, e.g. metabolic environmental feedbacks in the tumour
microenvironment (Carmona-Fontaine et al., 2017) and microbial community stability (Ratzke
and Gore, 2018). Additional feedbacks can emerge from cell-excreted enzymes, which introduce

reactions in the bulk, and from cell-excreted metabolites or proteins that can affect chemical

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

diffusion coefficients in the bulk or near cells. Such effects arising from bulk-cell interaction
can create their own nonlinear dynamics (Kondo and Miura, 2010; Newman, 2016; Hofer
et al., 1995; Glock et al., 2019) or exert a feedback onto cellular physiology (Liu et al., 2015;
Bocci et al., 2018; Mikami et al., 1992). Thus, modelling of metabolic and other feedbacks
between bulk environment and cellular behaviours would benefit from the further development
of computational frameworks centred on the role chemical coupling.

To this end, we introduce ChemChaste, a computational framework that allows the
simulation of any number of chemical reaction-diffusion systems with or without cells, and
allows cell-excreted chemicals or enzymes to react in the bulk phase. ChemChaste builds upon
Chaste and expands its capabilities with the introduction of: (i) unlimited number of PDEs
for modelling any number of bulk chemicals diffusion dynamics,; (ii) heterogeneous diffusion
rates, allowing for implementation of different ‘domains’ in the bulk pertaining different diffusion
properties; (iii) expansion of cellular network reaction size that can be implemented to describe
cellular behaviours; and (iv) a user-interface for defining model structure. The user-interface
allows cell-internal biochemical reaction systems (cell network ODEs), spatial reactions in the
bulk, and heterogeneous diffusion rates for chemicals in the bulk to be encoded in a file-based
system. These features allow easier simulations in ChemChaste, without any need for users
to change the C++ source code. Below, we demonstrate the ChemChaste implementation
and functionality using a set of chemical and biochemical exemplars, including a cell-based
example. All of the source code and user manuals for ChemChaste are provided through GitHub
(https://github.com/OSS-Lab/ChemChaste) as an open-source library to accompany Chaste,

allowing for its application and further development by the research community.

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

2 Methods

ChemChaste builds from Chaste, inheriting its adaptable and modular C++ structure (Mirams
et al., 2013; Cooper et al., 2020), and expanding its capabilities with a comprehensive set
of C++ classes (Figure 1). Chaste exhibits many capabilities ideal for the foundation of
a hybrid modelling framework, including: (i) implementation of a range of on-lattice and
off-lattice multicellular modelling approaches in a consistent computational framework (Osborne
et al., 2017); (ii) centre-based cell modelling, which treats cells as point particles with radii of
interactions (Pathmanathan et al., 2009); (iii) accounting for cell physiology through empirical
rules or a limited intracellular reaction network implemented as a set of ordinary differential
equations (ODEs); (iv) modelling of cell physics, including movement and attachment;and (v)
modelling of bulk chemicals dynamics using PDEs solved numerically using the finite element
(FE) method (Osborne et al., 2017). For specific biological modelling applications, Chaste
requires the PDEs and ODEs to be explicitly written by the user as C+- classes, limiting
Chaste’s usability to those familiar with C++ (Fletcher et al., 2013; Dunn et al., 2013; Figueredo
et al., 2013)

Expanding from Chaste, ChemChaste considers parabolic reaction-diffusion systems, where
chemicals diffusing and reacting in the bulk are also coupled with cells present in the same bulk,
through cellular excretion and uptake. For simulating such cell-bulk coupling, ChemChaste is
developed to handle different chemical species confined to the bulk, to cell populations, or present
in both phases. ChemChaste also allows for spatially varying chemical diffusion coefficients.

Each ChemChaste simulation features four distinct dynamical components that run at
each discrete time step of the simulation (Figure 1-b). These involve updating of bulk and
cellular chemical systems, their couplings, cell behaviours, and cell positions. The bulk and
cellular chemical reaction systems are considered separately: the former is updated by solving
reaction-diffusion equations, taking into account any reactions implemented in the bulk; while
the latter may in general differ from the bulk chemical system and may involve further chemical
species. These two systems are coupled through transport of chemicals across the cell membrane.
Thus, bulk chemical concentrations are updated according to these couplings. After all chemical
concentrations have been updated, any ‘rules’ implemented regarding cell behaviour (e.g.
division) are checked and subsequent cellular events (e.g. cell death, division) are implemented.
Division introduces a daughter cell into the simulation. In this case, the cellular chemicals of the
parent cell are re-distributed between both cells, based on a user-defined parameter (allowing for
symmetric or asymmetric inheritance of cellular chemicals). The location of each cell is updated
by numerically integrating its equation of motion. These two steps, division and movement, are
inherited from Chaste (Cooper et al., 2020). The user may tailor the simulation details through
a file interface system. Further details of the ChemChaste platform are explained below and in

the Supplementary Information (SI).

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

D .
]
a) ‘ Chaste ‘ b) 1 =
A v =
'y [|
[S et] [Cell-based Methods] = .
. | | A -
=" T N /7 ca O
Y4 Domain Heterogeneity Domain Coupled Cells \ V4 dynamics \ 2'
' \/ | ‘ / \ = > -
! | = ! Cell Environment 1 - 4
I [Hybrid Continuous-Discrate Simulation] | — o‘ division dynamics Yq
®* A
‘ ! 4 ‘\ / N
I ' He A
I \ y .
1 ChemChaste | \ Cellular P
| Executable | ~ fluxes -
| | ~ o - -
, | . 3
|} 1 a
\ Python Front End 7
L s e - h a

[[] Chaste trunk code [] ChemChaste additions
Chemical nutrients set {I * 4o O]

Figure 1: ChemChaste’s simulation framework. a) ChemChaste classes (in dashed yellow-green)
that extend Chaste’s FE solver capabilities. These build on existing Chaste modules (in solid
gray-pink) and allow for heterogeneous spatial domains with varying diffusion rates for chemicals.
The cell-based methods are also extended through introducing transport properties linking cell
interior and exterior state variables. These extensions are coupled with a file-based user interface
allowing higher-level model specification. b) Four processes that occur over discrete time steps
and allow the simulation of cells coupled to the bulk. The cells perform their own system of
rules or reactions (cell cycle progression, cell properties, and cellular reaction networks) (1 & 2)
before the environmental reaction-diffusion systems are solved (2). The state variables are then
coupled through cellular flux (3), before any implemented cell-based rules (e.g. relating to cell
division and/or death) are performed (4).

2.1 Expanding the reaction-diffusion system simulations: The Domain Field
Class

The core of Chaste is composed of finite element (FE) solvers and associated spatial meshing
routines (see SI section S1 for details of the FE method as implemented in Chaste). In brief,
the FE methods model the bulk domain as a discrete mesh of nodes and approximates the
concentration of each chemical across this mesh, subject to a user-defined combination of
boundary conditions (BCs): Neumann; Dirichlet; or periodic conditions at the edge of the
bulk domain. Over the mesh, Chaste utilises a range of ODE solvers, chosen by the user, to
determine the ODE solutions at the discrete mesh nodes. Utilising a set of linear basis functions,
these nodal ODE solutions are then interpolated onto a finer grid of points, known as Gauss
points, where point-based source terms and diffusive terms are added. Chaste’s FE method then
uses the chemical values at the Gauss points to compute the PDE system solutions at the next
time step. This implementation has been limited in Chaste to solving the same given ODE for
all nodes in the mesh.

Expanding from this implementation, ChemChaste introduces a Domain Field class, which
allows us to compute the solution of nodal ODEs generally varying at each mesh node. With

the addition of the chemical and reaction classes (see SI, sections S1.3-S1.4), ChemChaste forms

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a chemical Domain Field wherein the concrete reaction systems are mapped to the FE mesh.
This expansion allows for: (i) multiple, diffusing bulk chemicals; (ii) reactions among chemicals
in the bulk; and (iii) spatially varying diffusion rates for chemicals. With this introduction the
simulation domain may now be broken into sub-domains, each containing their own diffusion
parameters, ODE systems, and node-based source terms. This allows chemical reaction systems
to be confined to sub-domains of the simulation for modelling spatial sub-compartments with
their own diffusion parameters, e.g. a biofilm or tissue surrounded by a bulk. The Domain Field
class uses a 2D matrix to contain the nodal values which acts as a look up reference for spatial
aspects of the simulation. While this currently limits the ChemChaste simulation to a 2D
domain, an extension to 3D simulations would be straightforward for a C+-+ proficient user by

editing the source code.

2.2 Coupling the cell physiology and reaction-diffusion system simulations

The core spatial mesh routines of Chaste also form the basis of simulating dynamic cell
populations. ChemChaste uses the ‘node-based’ or cell-centre modelling approach offered
in Chaste (Pathmanathan et al., 2009). In this approach, a cellular mesh (CM) is defined
wherein each mesh node acts as the centre of a cell. Each cell is simulated as a particle, and
the CM vertices are used to encode any rules (e.g. physical forces) governing physical cell
interactions (Osborne et al., 2017; Fletcher et al., 2013). The CM is also mutable, allowing
simulation of cell motility - by defining forces to shift CM nodes - or cell division and death -
by performing vertex additions or deletions on the CM (Mirams et al., 2013).

ChemChaste expands upon this node-based cell population simulation to introduce the
coupling between cellular and bulk chemicals. As explained above, an interpolated Gauss point
is produced during the FE simulations. In ChemChaste, this point may also be the location of a
cell in the CM. When this is the case, membrane and transport reactions are performed on the
selected cell and their outcomes are coupled to the relevant cellular and bulk chemicals. In this
way the cell’s ‘contribution’ to the source term of the related, bulk chemicals’ reaction-diffusion
PDE is accounted for. At the same time the selected cell’s internal chemical concentrations are

updated through exchanged chemicals (see SI, section S1.2).

2.3 Specifying chemical reactions and chemicals diffusion properties

ChemChaste allows modelling of three different reaction processes based on where they occur;
bulk, membrane, and transport reaction. Bulk reactions offer the means to model reactions
in the bulk and acting on spatially diffusing chemical species. As explained above, the FE
simulations implement on each node of the mesh a reaction rule, which is used to update species’
concentrations accordingly. Bulk reactions occur on these mesh nodes and act as a source/sink
term for the PDEs defining the reaction-diffusion system. Membrane and transport reactions
involve cellular and bulk chemical species and therefore require knowledge of the concentrations
of a given chemical both within the cell object and in the bulk. In the case of membrane reactions,
reaction rates depend on both bulk and intracellular chemical concentrations, however, there is
no chemical species exchange through the membrane. This class of reactions is thus ideal for

implementing processes such as membrane bound enzymatic reactions. Transport reactions

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

implement a chemical flux through the membrane and internal species may react or exchange
with external species.

The three reaction types are modelled with user-defined kinetic rate laws, such as mass
action or enzymatic kinetics. In ChemChaste, both the stoichiometry and kinetic rates of these
reactions are defined through a file-based user interface (see next section and SI, section 52.2.2).
Furthermore, bulk reactions can be assigned to a specific sub-domain (of the Domain Field) of
the mesh. To assist with the assignment of kinetic laws to reactions, ChemChaste implements
specific classes describing different kinetic laws. In ChemChaste, chemical species may be
provided with a set of properties: name, diffusivity, mass, valence, Gibbs formation free energy.
These properties can be linked to affect the rate of diffusion or rate of a given reaction within
which the species participate. Furthermore, when the Domain Field contains sub-domains, the
domain varying chemicals’ properties may be stored in upstream inheritance classes. This allows
simulating changes in diffusivity due to spatial heterogeneities (e.g. bulk media vs. biofilm or
tissue). Within the ChemChaste code, these chemical associated parameters can be called by

the PDE diffusion functions or reaction systems for the correct sub-domain.

2.4 File-based user interface

ChemChaste introduces a file-based interface to enable its use by a wider audience. In
particular, ChemChaste has two main user-interface systems, one to provide the Domain Field
and diffusion properties and one for defining the Reaction System, which together characterise
a heterogeneous reaction-diffusion model. The Domain Field files contain the information
required to produce the FE mesh and define the labelled sub-domains. This file also defines any
varying BCs and/or diffusion rates for bulk chemicals. The user supplies a comma separated
values (CSV) file of labels denoting the sub-domains and a text file of the associated label keys
(see SI, section S2.2 for an exemplar Domain Field file). Further CSV files of initial species
values, boundary conditions, and diffusion rates on a sub-domain basis may also be specified.
These files fully characterise the conditions of the simulation space, while the reaction dynamics
are detailed in a separate reaction file.

The Reaction System file encodes the bulk, cellular, and coupling (i.e. membrane and
transport) reactions as described above. For the bulk reactions each sub-domain can have an
associated, separate reaction system file. Another file is used to define the cellular reaction
system. Within this cell file, coupling reactions are defined with at most one membrane reaction
file and one transport reaction file, each containing a set of reactions of the respective type.
All reaction files follow a set format; name of reaction kinetics, chemical equation involving
the species, then the kinetic parameters used by the rate laws (see SI, section S2.2.2). Further
rate laws may be implemented by the user, which will then be utilised in the same way as the
supplied rate laws (see SI, sections S4-S6 for details). Overall, the information stored within
these files is sufficient to select the desired reaction class, formulate reaction terms and implement

concentration changes when solved within the simulation.

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

3 Results

ChemChaste presents a hybrid continuum-discrete modelling framework for the simulation of
individual cells within a chemically active environment. As shown in Figure 1 and discussed
in the Methods section, the framework is composed of an array of different modules building
upon each other to fulfil the simulation needs. Here, we verify and demonstrate the functionality
of ChemChaste by considering each of these key modules in turn. The accuracy of the PDE
solvers was tested through solving the Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP)
equation showing a strong agreement with an analytic series expansion (Section 3.1). The
simulation of multiple PDESs using the ChemChaste reaction system and file interface system was
demonstrated through producing diffusion-driven spatial patterning and temporal oscillations of
the Schnakenberg reaction system (Section 3.2). Finally, an exemplar coupled cell simulation was

implemented involving a cooperator-cheater system based on enzyme excretion (Section 3.3).

3.1 Spatial simulation accuracy in ChemChaste: Fisher-KPP equation

To verify and demonstrate the PDE solving capabilities in ChemChaste, a single PDE with
a known analytical solution was implemented. The chosen system was the Fisher-KPP
equation, which has been used to model the propagation of an invasive species through a
population (Fisher, 1937; Murray, 2002) and admits travelling wave solutions with an analytically
resolved minimum wave velocity (El-Hachem et al., 2019). The corresponding reaction-diffusion

equation includes a logistic growth source term,

%g—szUerO—Z), (1)
where U(x,t) > 0 is the size of the invasive species population at position x = (x,y) and time ¢,
and the positive parameters D, r and k denote the diffusion coefficient, linear growth rate and
carrying capacity of the invasive species, respectively. For suitable initial conditions, it is known
that this system exhibits pulled travelling wave solutions of the form U(z) where z = x — ¢t and
¢ > 0 is the wave velocity. It can be shown analytically that the front of these waves travels

with a minimum velocity defined by
Cmin = 2V 1D, (2)

while the observed velocity, ¢ > ¢pnin, is dependent on the initial conditions (Murray, 2002;
El-Hachem et al., 2019).

We implemented the Fisher-KPP equation in a ChemChaste simulation using equation (1)
and setting the parameters to unity {D,r, k} = 1. We considered a rectangular bounded domain
2 € [0,10] x [0, 100] and impose zero-flux boundary conditions (BCs) and record a 1-dimensional
slice across the domain. The simulations were initialised with a strip of invasive species bordering

the left boundary of the domain, 0 < x < 1:

U(z,y,0) =Uy for 0 <z < 1,0 <y < 100. (3)

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

For equation (1) the minimum wave speed with the selected parameter set is given by ¢pin = 2.

The FE methods within ChemChaste were used to solve equation (1) subject to the boundary
and initial conditions. A travelling wave solution was identified across the one-dimensional
domain slice and compared to the analytical solution of the one-dimensional Fisher-KPP

equation (Loyinmi and Akinfe, 2020), given by

B 1 c 2exp(z/c) 0 dexp(z/c) 1
Vo) = 1 ool T U+ elz/o)? <(1 + exp(Z/C))2> i <C4> W

where z = x — ct denotes the travelling wave coordinate.

The results were visualised using ParaView (Ahrens et al., 2005). Two tests were considered:
comparing the travelling wave front solution produced by the ChemChaste simulation vs. the
analytic form given by equation (4), and comparing the simulations’ convergence stability under
decreasing temporal and spatial step size. Results for both tests are given in Figure 2, and show
a good agreement between the ChemChaste simulation output and expected results determined
through analytic solutions. Additionally, the convergence with decreasing temporal and spatial
step sizes suggest stable numerics albeit with the waves showing longer accelerating phases than
the expected analytic top-hat gradient. Therefore the ChemChaste implementation was able to
correctly simulate dynamics (in this case, the travelling wave phenomenon) in simple PDE with

stable and accurate numerics.

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

[nt]

O
~

U(x,t)

-0.30

-024

Time step size (dt)

cooo0oooo
OO BN OO B R

Position

o
|

o

—~

0.025

10 N - Analytic
& dx_1.dt 01
g dx_0.8_dt 0.1
08 : e dx_0.6_dt 0.1
] . dx 0.4 dt 0.1
dx_0.2_dt 0.1
dx_0.1_dt 0.1
; . dx_0.08_dt 0.1
04 : dx_0.06_dt 0.1
dx_0.04_dt 0.1
. dx_0.02_dt 0.1
02 SO dx_0.01 dt 0.1
o dx_0.008_dt 0.1
P S | | I | | s+ dx_0.006_dt 0.1 0.000 s
0 100 200 300 400 500 600
Time

0.020

0.015
06

0.010

Averaged U(t)
dU(t)/dt

0.005

Averaged line gradient

Figure 2: ChemChaste simulations of the Fisher-KPP equation. a) Plot showing the progression
of an expanding wavefront through the domain (solid line). The simulation results are
accompanied by the analytic solution for the zeroth (dashed line) and first order (dotted line)
expansion in terms of 1/¢? in equation (4). The wave speed in simulation is initially faster than
the analytical minimum wave speed ¢y, = 2, calculated with equation (2), but with agreement
at later times implying the correct asymptotic wave velocity has been reached. b) Heat-map
of L? convergence scores for simulations using a range of spatial and temporal step sizes. The
simulations for given step sizes are compared to the analytically determined value with the
lower scores suggesting closer values. A threshold was utilised reducing higher scores to 0.5.
This includes simulations whose numerics diverged. c¢) Traces for the solutions U(t) averaged
across the domain for different spatial and temporal step sizes. The traces converge to the
analytical solution with decreasing step size. d) The gradients of the slopes in plot ¢) sharing
the same legend. The gradients are suggestive of the velocity of the wave passing through the
domain.

3.2 Modelling multiple, diffusing and reacting chemicals in ChemChaste:
Schnakenberg reaction-diffusion system

ChemChaste builds upon Chaste’s PDE solvers to enable the simulation of multiple PDEs over
the domain. While Chaste is restricted to solving three PDEs, ChemChaste’s limiting factor
is solely the available computational resources. To test the multi-dimensional PDE simulation,
and to verify the file interface system, we implemented the well-studied two species reaction
system commonly known as the Schnakenberg system (Li et al., 2018; Schnakenberg, 1979) and
shown in equations (5)—(7). When these reactions are modelled with mass action kinetics they are
shown to display temporal oscillations and diffusion driven spatial patterning for distinct, defined
parameter regimes (Al Noufaey, 2018; Murray, 2003). These phenomena were reproduced here
using ChemChaste.

10

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

The Schnakenberg reaction system involves two chemical species U, V' which are produced,

inter-converted, and removed via the reactions

k1
ey (5)
02y, (6)
2U +V 53U, (7)

where the reaction rate constants parameters are denoted by ki, k_1, ko, k3. Applying mass

action kinetics to these reactions yields the reaction ODEs

U

o= Ry(U, V) =k — kU + ksVU?, (8)
d
O = Ry(U,V) = by — ksVU?, (9)

where the reaction rates Ry, Ry describe the change of each species’ concentration in a given
timestep and also provide the source terms to the reaction-diffusion PDEs. The PDEs are

satisfied across the whole two-dimensional domain space, €2, and are given by

O Dy = Ru(U,V), (10)
%‘tf — DyV?V = Ry (U, V), (11)

where Dy, Dy are the spatially homogeneous isotropic diffusion coefficients. Here, we consider

a square bounded domain € € [0, 100] x [0, 100] which are subject to zero-flux Neumann BCs
n-VU=n-VV =0 on 0. (12)

Each simulation begins with the randomly perturbed initial conditions defined on each node of
the FE mesh,

U($, 970) = Uy + &, (13>
Vi(z,y,0) =Vo+¢, (14)

where &,(~ Uniform(—1,1) are uniformly distributed random fields bounded by the interval
[—1,1].

Two parameter sets were considered: one for temporal oscillations; and one for
diffusion-driven patterning (Al Noufaey, 2018). Temporal oscillations are present when the
homogeneous system, equations (8)—(9), display limit cycle behaviour. Spatial patterning across
the domain occurs when the spatially uniform steady-state solution to equations (10)—(11) is
linearly stable in the absence of diffusion (Dyy = Dy = 0), but linearly unstable in the presence
of diffusion. The resultant spatial patterning in the 2D concentration maps are referred to
as displaying diffusion-driven instabilities (DDI) or Turing instabilities (Murray, 2003; Turing,
1952; Page et al., 2003; Maini et al., 1992). These dynamical cases were found to occur for

specific parameter sets, as listed in Table 1.

11

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

[Case ki k1 ke ks Dy Dv Uy Vo |

Figure 3a: Oscillations 0.5 2.2 1.5 1.0 05 05 091 1.67
Figure 3b: Patterning 0.1 1.0 09 1.0 1 40 1.0 1.0

Table 1: Parameters used in the Schnakenberg reaction simulation. The values were selected
based on analytical solutions of this system and to demonstrate the possible oscillatory and
patterning dynamics.

These parameters were determined through considering small linear perturbations for
conditions which provided the expected phenomena in the two cases, equations (8)—(9)
and (10)—(11), and selecting parameter sets which satisfy the algebraic equations (Murray, 2003),

(see SI, section S3 for details). The values Uy, V were used as the initial conditions for the two

cases.
y
a
3.5
3
G 25
£ 2
S 1.5
o
c 1
o
Oo.s-
00 1 2 3 4 5 &6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time
b)
20 4.5
I
— 1.6 3
— 14
—2
1.2
1.0 1
1.3

Figure 3: The Schnakenberg reaction system showing the oscillatory and patterning dynamics.
a) The two curves show the concentration of U and V averaged over the nodes in the domain for
each time step from the simulations run using oscillatory regime parameters. b) Domain maps
of the initial and final (i.e. steady state) distribution of U and V in simulations using parameters
for the patterning dynamics (see Table 1).

We have verified, using ChemChaste, that this model exhibits the expected spatio-temporal
dynamics for the tested parameter regimes (see Figure 3). These results are as expected for the
parameters used, based on analysis of equations (8)—(9) and (10)—(11). Therefore these tests

verify that ChemChaste was able to both correctly parse the chemical reaction files and simulate

12

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

multi-chemical reaction-diffusion systems capable of complex dynamics and patterning.

3.3 Coupled cell-chemical environment simulations in ChemChaste

A main motivation behind developing ChemChaste was to simulate a hybrid continuum-discrete
model of cells within a chemically reactive environment, where bulk and cell-secreted chemicals
and other entities such as proteins can diffuse as well as react. This is a common biological
scenario, as seen for example in the case of microbial utilisation of cellulose or other complex
resources, which must be treated by enzymes before a cell can metabolise or uptake them (Flint
et al., 2012). The core aspects of this scenario, i.e. a cell-secreted enzyme mediating a reaction
in the bulk is also found in cases outside of substrate uptake, for example in de-toxification of
the environment (Zerfass et al., 2019). In ChemChaste, this scenario is readily modelled through
implementation of bulk reactions and coupling of cellular metabolic reactions and environmental
PDEs.

Here, we provide a simplistic, toy example for illustrative purposes and for testing
ChemChaste implementation of cellular reactions and cell-environment coupling. More detailed
and realistic simulations can be readily constructed by users, through developed ChemChaste
user interface. For the exemplar test case, we modelled a growing cell population harbouring
two cell types, along with a chemical resource (i.e. substrate) that is not readily taken up. One
cell type - termed cooperator - excretes an enzyme that can allow the internalisation of the
substrate, while the other cell type - termed cheater - does not excrete the enzyme but can also
internalise the enzyme-bound substrate (Figure 4a). The cells process the internalised substrate
to produce a pseudo chemical species (called ‘biomass’), which is used as a proxy for monitoring
cell growth. Once the cellular biomass concentration reaches a threshold value the cell divides
into two, the parent and offspring, sharing the internal concentrations equally between both
parent and offspring cell. The offspring cell is placed at a random neighbouring location around
the parent cell and the population undergoes positional updating to accommodate the new cell.

Previous agent-based simulations of growing cell populations harbouring cheater and
cooperator types have found spatial segregation of cell types within the population (Nadell
et al., 2010; Mitri et al., 2016; Momeni et al., 013a). This cell sorting is linked to the disparity in
growth rates of the two species, which may be due to substrate availability and dependency, and
is of interest in game theoretic investigations of mutual interactions in biofilms (Tudge et al.,
2016; Rubin and Doebeli, 2017). The presented simulations are conceptually similar to these
previous studies, but differ in their mechanistic implementation of substrate scavenging, as a

cooperative trait, as well as the inclusion of both substrate and oxygen diffusion in the bulk.

13

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

—ADP
a) Cell A Membr Envir nbrane Cell B —ATP
© I I —Biomass
2 II> I —H20
@ - <§> Y —NAD j
® ol
£) cone@® V3 ~NADH W\
s i} | b) —Precursor [/}
2 $ 9 ot/
» | Ij>
L . 1700
o2 1600 —E ! 1
B 2 1500 —ES [- J
!2 5{ 6 E . ES .Substrate .Oxygen 1400 5 0 100 200[300 400 500 600 700 800 900 1000
85 c 1300 T Xygen
ADP -(% 1200 —
i = 1100
0 NAD NADH ATE/ Biomass § 1100 ’
S S~ g oo
3 S —— Precursor " G 800
3 TN ATP © 700 /R
= ADP ATP AE 600 e
5 Y 500 /A
El ADP 200 . T
S [NADH # ADP # Oxygen ———" H20 #NAD # ATP 300 ’ ’
100{
OO 100 200 300 400 500 600 700 800 <900 1000

Time

Figure 4: The simulation schematic and results for the exemplar cellular model with
cell-environment coupling. a) Cartoon showing the two cell types and cellular reaction system
implemented in the simulations. One cell type, the ’cooperator’, excretes an enzyme that can
bind an environmental substrate, while the other - the 'cheater’ - does not produce the enzyme
(top). Both cell types can take up the enzyme-substrate complex and process it through a series
of internal reactions (bottom). Note that the enzyme producing pathway is only active in the
cooperator cells, which has to invest substrate between this pathway and biomass producing
pathway. b) The concentrations for each chemical within the cell are displayed over time for
a cell of both types; cooperator (solid) and cheater (dashed) lines. The main plot shows the
concentrations of ES and S (chemicals harvested from the environment). The inset shows the
concentrations of the cell-internal chemicals. Sharp changes in cellular concentrations are due
to cell division and sharing of chemicals between the parent and offspring.

In the presented model the two types of cells were introduced into the simulation domain
which contains two chemicals which diffuse in the bulk; oxygen (O2) and a substrate, S.
Furthermore the cells excrete and take up a scavenging enzyme, FE, the enzyme-substrate
complex, ES, and Os, which freely diffuses in the bulk. To capture dynamics of cell growth, a
simple metabolic network is implemented in each cell, defined by the following toy reactions that

abstract biomass generation and the main respiratory and fermentative metabolic pathways:

BES P pas,
S+ NADT + ADP "2 Precursor + NADH + ATP,

NADH + ADP + O, ::3 NAD* + HyO + ATP,
-3

Precursor + ATP 4, Biomass + ADP,
Precursor + ATP LNy + ADP,

where NAD', NADH, ADP, and ATP are the usual energy and electron carrier molecules

14

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

internal to the cell. These toy reaction set captures substrate uptake (reaction 1), re-cycling of
NAD" /NADH and ADP/ATP pairs through fermentative and respiratory pathways (reactions
2 and 3), and biomass and scavenging enzyme production through ATP investment (reactions 4
and 5). For the simulations, these reactions are modelled with mass action kinetics with shown
reaction rate constants. All reaction rate constants were set to 1 in both cell types, except for
ks, which is set to zero in the cheater cell type. The overall simulation schematic for this cellular
system is shown in Figure 4.

In addition to the cellular reaction network, we implemented bulk reactions for the enzyme
binding to the substrate in the extracellular media, the enzyme being degraded in the bulk, and

the diffusion of the substrate (S), enzyme (E) and the enzyme-substrate (ES) complex.

ES 2 E 45,
k_1

E*2, 0.

The parameters for these reactions were scaled for computational efficiency and are given in
SI, section S2.3. We performed simulations through the hybrid continuum-discrete solvers
introduced in ChemChaste. A reaction-diffusion PDE was solved over the domain for the
diffusing species {E, S, ES, O} with Neumann BCs at the domain boundary. The Neumann
boundary conditions allow continual replenishment of substrate to drive the system. The cells
were placed in the centre of this domain with a single cell of each type, and allowed to grow
over the simulation course, as shown in Figure 5. The chemical concentrations in each cell and
the bulk were recorded over the simulation. Note that initial substrate levels at the beginning
of the simulation are low, but will linearly increase due to the implementation of the Neumann
boundary conditions. Additional boundary conditions, like Dirichlet type, can be defined per

the user files.

15

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1.0e+00 1.0e+00

a) [00 t=10000 [09

- 08 1 0.8

-~ 0.7 -~ 0.7

~ 06 — 06

— 0.5 — 05 L

-~ 04 -~ 04

- 0.3 —0.3

0.2 — 0.2
[0.1 [0.1
0.0e+00 0.0e+00

1.0e+00 2.0e+01
b) [00 t=10000 [0
108 — 18

— 0.7 — 17
06 — 16
—05 — 15 »
— 04 —14
- 03 — 13

0.2 12
I I
0.0e+00 1.0e+01
Figure 5: Domain maps showing the cells and the spatial concentration of the enzyme and
nutrient species, £ and S, in the bulk at the towards the beginning, t = 0 and ¢ = 100,
and at the end, t = 10000, of the simulation. The cooperator and cheater cells are coloured
white and black, respectively. The upper row (a) shows simulation results with the enzyme (E)

concentration plotted across the domain. The lower row (b) shows simulation results for the
substrate (S) across the domain with the replenishment of the substrate at the boundary.

We show the dynamics of cellular and bulk chemicals in Figure 4 and 5. While Figure 4 is
focused on the cell concentrations, Figure 5 demonstrates the impact that the cells have on local
chemical concentrations. In Figure 5a, we see a higher enzyme concentrations in the vicinity
of cooperator cells. This is as expected, since these are the cells excreting the enzyme. We
expect that such higher local concentrations of enzyme will be enhanced with lower enzyme
diffusion rates and enzyme degradation rate in the bulk. In Figure 5b, we see the substrate
concentration, with higher values at the domain edge (due to influx of substrate) and lower
values near the cell population (due to cellular uptake). Evaluating Figures 4 and 5, together,
we see a greater uptake of the substrate by the cooperator cells and a greater rate of cell
biomass increase, compared to the cheater cells. Thus, the localised pockets of high enzyme
concentrations around cooperator cells can lead to their growth rate surpassing that of cheaters
and subsequently lead to a spatial segregation of the two cell types. While further simulations
with different parameter sets are needed to fully confirm these dynamics, the presented results
provide an exemplar implementation of cellular simulations in ChemChaste and confirm expected
cooperator-cheater dynamics.

We conclude that the presented toy model and exemplar implementation of a cellular

16

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

simulation demonstrate ChemChaste’s flexibility and capabilities in developing models featuring

cell-environment coupling along with environmental reaction-diffusion.

4 Conclusion

We have presented ChemChaste, a computational framework for hybrid continuum-discrete
modelling of multi-cellular populations coupled to chemical reaction-diffusion systems. In
contrast to existing computational frameworks, ChemChaste facilitates chemical couplings
between bulk and cellular metabolic processes through an arbitrary number of diffusing chemicals
that can undergo chemical reactions in the bulk and that can have spatially heterogeneous
diffusion coefficients. ChemChaste simulations are implemented using a simple file-based
interface and can be used to implement different biological and chemical scenarios for modelling
complex cell-environment chemical coupling and resulting emergent phenomena.

We have presented several exemplar simulations in ChemChaste, which produce the expected
dynamical behaviours in given parameter regimes. These exemplars were specifically chosen to
demonstrate ChemChaste’s functionality and flexibility, instead of presenting an exhaustive list
of the possible phenomena that may be investigated using this tool. Applications of immediate
interest can include different observed cases involving coupling between cellular physiology, cell
excretions, and environmentally diffusing reactions such as metabolic switching of cell types
coupled to a reactive environment (Ratzke and Gore, 2018; Varahan et al., 2019), coupled
chemical reactions in the bulk and within cells (Turing, 1952), coupling between cell secreted
enzymes, signalling, and motility (Weijer, 2009), and cell-chemical systems presenting spatially
varying diffusion coefficients (e.g. within and outside of a tissue) (Liu et al., 2015).

Some of these investigations may require further expansion of ChemChaste. Such as the
extension into 3D modelling which would require expanding the ChemChaste code. However,
for users proficient in C++ the addition of new classes is straightforward through the addition of
new user-defined classes to the ChemChaste C++ class hierarchy utilising the modular structure
of the framework. In this way we hope ChemChaste will prove a useful tool for investigating the

chemical mechanisms behind a range of phenomena in spatially organised biological systems.

Acknowledgements

The authors thank Aydar Uatay for useful discussions about Chaste.

Funding

This work was supported by the UK’s Biotechnology and Biological Sciences Research
Council [BB/S506783/1 to O.S.S., BB/R016925/1 to A.G.F.] and the UK’s Engineering and
Physical Sciences Research Council and Medical Research Council [EP/L015374/1 to University
of Warwick’s Mathematics of Real World Systems Centre for Doctoral Training]. OSS
acknowledges additional funding from Gordon and Betty Moore Foundation (Grant GBMF9200,
https://doi.org/10.37807/GBMFEF9200).

17

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Conflict of Interest: none declared.

References

Ahrens, J. et al. (2005). ParaView: An end-user tool for large data visualization. The

visualization handbook, 717.

Al Noufaey, K. (2018). Semi-analytical solutions of the Schnakenberg model of a
reaction-diffusion cell with feedback. Results Phys., 9, 609—614.

An, G. et al. (2017). Optimization and control of agent-based models in biology: a perspective.
Bull. Math. Biol., 79, 63-87.

Bocci, F. et al. (2018). Role of metabolic spatiotemporal dynamics in regulating biofilm colony
expansion. Proc. Natl. Acad. Sci. U.S.A., 115, 4288-4293.

Bravo, R. R. et al. (2020). Hybrid Automata Library: A flexible platform for hybrid modeling
with real-time visualization. PLoS Comput. Biol., 16, e1007635.

Carmona-Fontaine, C. et al. (2017). Metabolic origins of spatial organization in the tumor
microenvironment. Proc. Natl. Acad. Sci. U.S.A., 114, 2934-2939.

Cooper, F. et al. (2020). Chaste: cancer, heart and soft tissue environment. J. Open Source
Softw., 5, 1848.

Dunn, S.-J. et al. (2013). Computational models reveal a passive mechanism for cell migration
in the crypt. PLoS ONE, 8, e80516.

El-Hachem, M. et al. (2019). Revisiting the Fisher-Kolmogorov—Petrovsky—Piskunov equation
to interpret the spreading—extinction dichotomy. Proc. R. Soc. A, 475, 20190378.

Figueredo, G. P. et al. (2013). On-lattice agent-based simulation of populations of cells within
the open-source Chaste framework. Interface Focus, 3, 20120081.

Fisher, R. A. (1937). The wave of advance of advantageous genes. Ann. Fugen., 7, 355-369.

Fletcher, A. G. and Osborne, J. M. (2021). Seven challenges in the multiscale modeling of
multicellular tissues. WIREs Mech Dis., e1527.

Fletcher, A. G. et al. (2013). Implementing vertex dynamics models of cell populations in biology
within a consistent computational framework. Prog. Biophys. Mol. Biol., 113, 299-326.

Flint, H. J. et al. (2012). Microbial degradation of complex carbohydrates in the gut. Gut
Microbes, 3, 289-306.

Ghaffarizadeh, A. et al. (2018). PhysiCell: an open source physics-based cell simulator for 3-D
multicellular systems. PLoS Comput. Biol., 14, e1005991.

Glazier, J. A. and Graner, F. (1993). Simulation of the differential adhesion driven rearrangement
of biological cells. Phys. Rev. E, 47, 2128.

18

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Glock, P. et al. (2019). Design of biochemical pattern forming systems from minimal motifs.
Elife, 8, e48646.

Hart, S. F. et al. (2019). Uncovering and resolving challenges of quantitative modeling in a
simplified community of interacting cells. PLoS Biol., 17, e3000135.

Hofer, T. et al. (1995). Dictyostelium discoideum: cellular self-organization in an excitable
biological medium. Proc. R. Soc. B, 259, 249-257.

Kondo, S. and Miura, T. (2010). Reaction-diffusion model as a framework for understanding
biological pattern formation. Science, 329, 1616-1620.

Kreft, J.-U. et al. (2017). From genes to ecosystems in microbiology: modeling approaches and

the importance of individuality. Front. Microbiol., 8, 2299.

Lardon, L. A. et al. (2011). iDynoMiCS: next-generation individual-based modelling of biofilms.
Environ. Microbiol., 13, 2416-2434.

Li, B. et al. (2018). Analysis on a generalized Sel’kov—Schnakenberg reaction—diffusion system.
Nonlin. Anal. Real World Appl., 44, 537-558.

Liu, J. et al. (2015). Metabolic co-dependence gives rise to collective oscillations within biofilms.
Nature, 523, 550-554.

Loyinmi, A. C. and Akinfe, T. K. (2020). Exact solutions to the family of Fisher’s
reaction-diffusion equation using Elzaki homotopy transformation perturbation method. Eng.
Rep., 2, e12084.

Maini, P. K. et al. (1992). Pattern formation in reaction-diffusion models with spatially
inhomogeneous diffusion coefficients. Math. Med. Biol., 9, 197-213.

Mikami, T. et al. (1992). One-dimensional reaction-diffusion model for intra- and inter- biofilm
oscillatory dynamics. ALIFE 2020: The 2020 Conference on Artificial Life, 9, 197-213.

Mirams, G. R. et al. (2013). Chaste: an open source C++ library for computational physiology
and biology. PLoS Comput. Biol., 9, e1002970.

Mitri, S. et al. (2016). Resource limitation drives spatial organization in microbial groups. ISME
J., 10, 1471-1482.

Momeni, B. et al. (2013a). Strong inter-population cooperation leads to partner intermixing in

microbial communities. Flife, 2, e00230.
Murray, J. D. (2002). Mathematical Biology: I. An Introduction. Springer.

Murray, J. D. (2003). Mathematical Biology II: Spatial Models and Biomedical Applications.
Springer.

Nadell, C. D. et al. (2010). Emergence of spatial structure in cell groups and the evolution of
cooperation. PLoS Comput. Biol., 6, e1000716.

19

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Newman, S. A. (2016). ‘Biogeneric’ developmental processes: drivers of major transitions in
animal evolution. Phil. Trans. R. Soc. B, 371, 20150443.

Osborne, J. M. et al. (2017). Comparing individual-based approaches to modelling the
self-organization of multicellular tissues. PLOS Comput. Biol., 13, e1005387.

Page, K. et al. (2003). Pattern formation in spatially heterogeneous Turing reaction—diffusion
models. Physica D, 181, 80—-101.

Painter, K. J. (2019). Mathematical models for chemotaxis and their applications in

self-organisation phenomena. J. Theor. Biol., 481, 162-182.

Pathmanathan, P. et al. (2009). A computational study of discrete mechanical tissue models.
Phys. Biol., 6, 036001.

Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. J. Comput.
Phys., 117, 1-19.

Ratzke, C. and Gore, J. (2018). Modifying and reacting to the environmental pH can drive
bacterial interactions. PLoS Biol., 16, e2004248.

Rubin, I. N. and Doebeli, M. (2017). Rethinking the evolution of specialization: A model for
the evolution of phenotypic heterogeneity. J. Theor. Biol., 435, 248-264.

Schnakenberg, J. (1979). Simple chemical reaction systems with limit cycle behaviour. J. Theor.
Biol., 81, 389—400.

Starrufs, J. et al. (2014). Morpheus: a user-friendly modeling environment for multiscale and

multicellular systems biology. Bioinformatics, 30, 1331-1332.

Tudge, S. J. et al. (2016). Game theoretic treatments for the differentiation of functional roles
in the transition to multicellularity. J. Theor. Biol., 395, 161-173.

Turing, A. (1952). The chemical basis of mophogenesis. Phil. Trans. R. Soc. B, 237, 37-72.

Varahan, S. et al. (2019). Metabolic constraints drive self-organization of specialized cell groups.
eLife, 8, e46735.

Weijer, C. (2009). Collective cell migration in development. J. Cell Sci., 122, 3215-3223.

Xavier, J. B. et al. (2005). A framework for multidimensional modelling of activity and structure
of multispecies biofilms. Environ. Microbiol, 7, 1085-1103.

Zerfass, C. et al. (2019). Manganese oxide biomineralization provides protection against nitrite

toxicity in a cell-density-dependent manner. Appl. Environ. Microbiol., 85, e02129-18.

20

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Supporting information for: ChemChaste: Simulating spatially
inhomogenous biochemical reaction-diffusion systems for
modelling cell-environment feedbacks

Connah G. M. Johnson'2, Alexander G. Fletcher®**, Orkun S. Soyer®*

I Mathematics of Real-World Systems Doctoral Training Centre, University of Warwick,
Coventry, UK

2 School of Life Sciences, University of Warwick, Coventry, UK

3 School of Mathematics & Statistics, University of Sheffield, Sheffield, UK

4 Bateson Centre, University of Sheffield, Sheffield, UK

* Corresponding author(s): O.Soyer@warwick.ac.uk, a.g.fletcher@sheffield.ac.uk

S1 Brief introduction to the finite element method and the

hybrid continuum-discrete model used in ChemChaste

At the heart of ChemChaste lies a suite of finite element (FE) solvers, which are used to
numerically solve systems of reaction-diffusion partial differential equations (PDEs). These
equations track the spatiotemporal dynamics of a set C of chemical species over a bounded
rectangular domain C R? whose boundary is denoted 9€2. Each chemical species ¢ € C
is associated with a scalar concentration field, with the associated state variable u.(x,t) € R
denoting the concentration of the chemical at position x € 2 at time t.

ChemChaste couples the reaction-diffusion system to an agent-based cell system to model a
spatially distributed cell population. We define a set of cells, p € P, within the domain which
are modelled as point sources at position x, € {). These cells perform reactions independently of
the domain reactions and exchange chemical concentrations with the domain. These exchanges
are described by the transport law T'(u,t) : Ry x [0,#) — RICl controlling the chemical
concentrations passing between the bulk and the cell.

During a simulation the vector of state variables, u = RICl, evolves through the parabolic

PDE system

du — V- [D(x)-Vu] = R(x,u,t) +ZTp(u,t)5(X—Xp)v (1)

ot ey

where T}, (u, t) is the source/sink contribution by the cell p located at position x,, R(x,u,t) : X
R €1 [0,¢) — RIl is the reaction ordinary differential equation (ODE) system defined over the
domain, and ¢ is the Dirac delta distribution. ChemChaste models the spatially discontinuous
distribution by a top-hat distribution with maximum value 1 and 2D extent covering the Gauss
point associated with location x (see section S1.2). We solve equation (1) as an initial boundary
value problem (IBVP) with given initial conditions (ICs) and boundary conditions (BCs).

For each chemical species, we allow for either fixed-value Dirichlet BCs of the form

u. = a for x € 09, (2)
or fixed-flux Neumann BCs of the form
—D.(x)Vu.-n="b. for x € 09, (3)

where n is the unit outward normal, D.(x) is the (local) diffusion coefficient of chemical species
¢, and a,b € R are constants. Isolated conditions, b. = 0, are assumed for chemicals without a
user defined Neumann BC.

While the BCs are defined on the whole boundary ChemChaste handles chemical initial
conditions through labelling regions of the domain. A set of regions, S, are provided using the

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

file based input (see section S2.2), which link to chemical concentrations. Let s € S label a

region g C) asssociated with an initial chemical concentration vector ug € le‘. For each
position x € €2, the initial conditions are implemented with sharp discontinuous boundaries

up(x) = Y uj Lo, (x) (4)

SES
where
1 ifx e
Lo, (x) = { 0 ifx ¢ Q,

is the indicator function.

We solve the above system numerically using a FE method, which divides the spatial domain
) into a discrete mesh comprising nodes and elements, and converts the PDE problem into a
coupled system of algebraic equations (Pathmanathan, 2012).

S1.1 Finite element method for a reaction-diffusion PDE coupled to a cell
mesh

To apply the FE method to the PDE system (1), we first derive the weak formulation of the

problem. We start by discretizing time into discrete timesteps t”* = mAt and applying a
semi-implicit scheme to the time derivative in (1), obtaining
iuerl — ium — V- [D(x) - Vu™] = R(x,u™, t™) + Z Tp(u™, t"™)é(x —xp), (5)
At At 7

where u™ denotes the approximation to the chemical concentration vector u(x,t™) for x € Q.
Next, we multiply by a vector v of arbitrary ‘test functions’ with each element v € v defined
in a function subspace of the Sobolev space v € V C HZ () and integrate over the domain ().
Rearranging, we obtain

1 1
0:At/ﬁumH-VdV—At/gum-vdV—/QV-[D(x)-Vum+1]-vdV

- / [R(x,u™, t™) + > T,(u™,t"™)6(x — x,)] - vdV.
Q peP
Writing the diffusion term as V- [D(x) - Vu™ v = V- [v- D(x) - Vu™!] - D(x) - Vv - Vu" !
and applying the divergence theorem, we obtain

1

0=A¢

/um+1-vdV—1/um-vdv+/ D(x)-Vv-Vu" ! dV—/ [v-D(x)-Vu™].7.dS
Q At Jq Q 0
—/[R(X, um,mAt)—l—ZTp(um,mAt)(S(X—xp)] -vdV.
Q
peP

We then consider the BCs as v = 0, Vv € v by the natural boundary definition for Dirichlet
types and Vu, - i = b for the Neumann types to get

1 1
0_/um+1-vdV—/um-vdv+/D(x)-vV-vum+1dV—/ bov-D(x)dS
At Jq At Jq Q o0

— /Q [R(x,u™, mAt) + > T,(u™, mAt)s(x — x,)] - vdV (6)
peP

which defines the weak formulation of the PDE as a variational problem, with o representing
the element-wise product. This allow us to determine functions v in order to find the next

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

state variable vector u™*! given the previous u™ state variable vector such that the remaining
Dirichlet BCs for u™*! are satisfied (Logg et al., 2012). This problem is solved on the nodes of
a discretised spatial domain, i.e the FE mesh nodes.

To implement the FE method a mesh is placed over the domain, 2. This mesh provides a
space of discrete nodes and for each node i at position n; on the domain Q \ 99, i.e each node
not on the boundary, a set of linear basis functions ¢; are defined {¢1, p2, ..., P} where N is
the number of nodes in the domain. We solve equation (6) on the discrete node points and
interpolate onto a fine rectilinear grid to approximate the domain locations x. We refer to these
interpolated locations as Gauss points and discuss the interpolation in Section S1.2. The Gauss
point x is given by the product of the node location n; and the linear test basis function ¢;;

N
x=> mn;¢ (7)
j=1

Using the mesh interpolation the trial function can be approximated by
N
u™ = Z Uj"9; (8)
j=1
where Uj is the nodal value. Additionally, we find the gradient of the trial function is given by
N
Vu™t =Y UV, (9)
j=1
We are free to restrict the basis functions, ¢;, to functions that satisfy the requirements for the
test functions over the 2. Therefore we may substitute ¢; for v

N N
_ L m _ 1 me
O—At/QjZlUj 0j iV At/szlUj ¢ i dV

N N N
+/QD(an¢j)-quz--;U?”‘“Wjdv—/mcm-D(angbj)obds
/ Zn]@,ZU ¢, mAL) + > T, ZU bj, mAL)S angb] |- ¢;dV

peEP j=1

which can be converted into the algebralc system
Lyvsr)urt— Lyunis (10)
At At

by defining K, M and B, as

N
Kz‘jZ/D(an%)'V@-V@dV
o i

My = [gy v

and

N
Bi:/89¢i'D(j;nj¢j)ode
N N
+/Q[R(an¢j,ZU;”¢j,mAt > T, ZU bj, mAL)(anqs] |- ¢;dV
j=1 j=1

peP j=1

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Dirichlet BCs are applied by altering the matrix, K, and vector, B;, for the contributions of
nodes on 0f) while Neumann BCs are contained within the definition of B;. The coupled cell
system is performed by solving a system of ODEs and agent properties for the cells and solving
the linear system (Equation (10)).

S1.2 Interpolation of the nodal solution to Gauss points and coupling to cells

As motivated in Section S1.1, the FE method employed discretises the domain space using
elements formed by nodes, solves a linear algebraic system on those nodes and then interpolates
the solution within each element. While Chaste has been developed to run simulations in 1,
2, or 3 spatial dimensions, the current version of ChemChaste has been restricted to simulate
2-dimensional domains. Chaste utilises linear Lagrange elements for creating the FE mesh (Logg
et al., 2012). To construct the FE mesh for a 2-dimensional domain the domain is partitioned
into a finite set of triangles, T, which cover the space;

Q= UrerT

Each triangle contains a triplet of nodes where a pair of nodes may be shared by adjacent
triangles, shown in Figure Sla. The mesh is defined by the set of N nodes, L = {l,l2,...,Ix}.

This triangulation process and the resulting elements define a so-called Sobolev space, and
permits the choice of a linear basis, ¢, for the test functions (Shapira, 2012). In Chaste, the
linear Lagrange basis is used such that for node triplet at triangle locations {n,n,,n.} =
{(0,0), (1,0), (0,1)} is spanned by a basis of the form;

d)gc(x) =1 — 1 — T2
Py(x) = 21
¢Z(X) = X2

where the test function is approximated by the linear superposition of the values at the nodes

vV = Z V(ﬁ,z)(ﬁz

ic{z,y,z}

The positions within the triangle are discretised by a fine grid for computational purposes. These
grid locations x = Zie{m},z} n;¢; are known as the Gauss points. The local points are mapped
to global locations as shown in Figure Sla. ChemChaste introduces the cell contribution to
equation (10) if a cell is located at the Gauss point, Figure S1b.

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Without cell With cell
b) Cell Layer R.. (u,x, tk)
_________________ Cell,p p' p' " Tp
T (Ut k)
Domain Layer g P
________ A _ _ . R(X,U,t)
X
P

Figure S1: Cartoon showing the interpolation procedure from finite triangle elements to Gauss
point and coupling to cell agents. a) The nodes (blue) of the triangle are located at positions
n; and each node contributes to the particular Gauss point (red square) through the node’s
basis function ¢; for node i € {z,y, 2}. The node locations and other interpolated quantities are
mapped from the local reference triangle to the global mesh i.e by applying a mapping function to
the node position M (7;) — n;, which may, in general, rotate and stretch the reference triangle.
b) Cells have a point location which share the location of a Gauss point. Each point in € is
associated with a spatially dependent reaction system, R(x,U,t) and may also be associated
with a cell. These cells (green) contain their own reaction system, Rcey p(Up, Xp, t;k — p), and
are coupled to the domain through a transport law T,,(U, t; kp).

S1.3 Simulations of chemical reaction PDEs without cells: Chemical
reactions R(u)

Reaction-diffusion simulations in ChemChaste are created from a set of user-defined chemical
reactions as provided in configuration files. Let the set of all chemical species within a system
be denoted by C' and the concentration of a particular species ¢ € C' be denoted u. where
u. € R>g. For a given reaction, let a., 5. € N denote the unsigned stoichiometry of species
c. B >= 1 if the species is a product of the reaction, where . is the number of the species
produced per one instance of the reaction. Conversely, a.. is the number of the species consumed
within the reaction; v >= 1 if the species is a substrate species of the reaction. The change in
concentration, hence value for u., is given by

du,.
dt

= (Be — ac)R(u),

where the function R(u) defines the reaction dynamics (Table S1).

For a given reaction, let S C C denote the set of substrates in the reaction, P C C the set
of products, kf the forward reaction rate constant, kr the reverse reaction rate constant, and
let S C {c € C|B = 0,a = 0} be the set of spectator species. The spectator species affect the
reaction rate while remaining unchanged themselves. As an examplar, consider a set of chemicals

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

in the domain C' = {A, B,C, D, E, F'} and a chemical reaction involving two substrate species
S = {A, B}, two products P = {C, D} and a single spectator species S = E. The chemical
reaction may be written as;

aAA + aBB e BCC + IBDD
where the change in concentrations will depend on R(u);

dua
dt
dup
dt
duc
dt
dup
dt
dug
dt
dup
dt

= —aaR(u)
= —apR(u)
= BcR(u)
= BpR(u)
=0

=0

FE is a spectator species and therefore is not produced or consumed in the reactions but affects
the value for R(u) and d:“i”—tE =0 as E as a steady state for E is assumed within the context of
this reaction system. Implicitly, dzl‘—tp = 0 as F' as chemical F' is present within the domain but
is not involved within the reaction system.

Table S1 presents the pre-implemented reaction rate laws for bulk domain reactions. Each
reaction law is supplied with a chemical equation and a set of parameters and ChemChaste

calculates the reaction rate, R(u).

Reaction name Reversible Reaction rate formula R(u)
ZerothOrderReaction False kf
ZerothOrderReversibleReaction True kf —kr
MassActionReaction True kf H uge — kr H upe
ceP ceS
SpectatorDependentReaction False kf H Ue
ces
MichaelisMentenReaction False keatup H uPe (K + H ufe)
ceS ceS

Table S1: Reaction rates currently implemented in ChemChaste. The rates include constants
k¢, kr, keat, Ky and labels for spectator chemicals.For the reversible reactions, the rates may
be negative R(u) € R implying the reaction occurs in the reverse direction while irreversible
reaction the rate must be positive R(u) € R>¢ The user may implement their own reactions
rates building upon these forms by adding a new reaction file to the inheritance structure of
ChemChaste (Section S3).

We use an inheritance strategy to readily build more complex reactions into ChemChaste,
Figure S2. Therefore the functionality of the base reaction, ZerothOrderReaction, is inherited
by all the upstream classes. The reactions currently implemented are considered foundational as
they focus on different reaction properties (i.e reversibility, rate dependent on spectator species
etc.) and may be easily built upon by a user to combine these properties under different rate
laws.

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

[ZerothOrderReaction ‘
[ZerothOrderReversibIeReaction ‘ [SpectatorDependemReaction]
[MassActionReaction] ‘MichaelisMentenReaction ‘

Figure S2: The inheritance structure for the bulk domain reaction files currently implemented
in ChemChaste. These reactions are shown in Table S1. The structure builds from the base
reactions, ZerothOrderReaction, to add more complex reaction rate laws.

S1.4 Simulations of coupled cell-domain systems: transport, 7(u,u’), and
membrane reactions, M (u,u’)

Simulations that couple a cell mesh to the reaction-diffusion domain utilise three different
reaction types; chemical reactions (Table S1), transport reactions (Table S2), and membrane
reactions (Table S3). The necessary file structure to call these reaction systems is given in
Figure S9a. The transport reactions model chemical transport across the membrane and directly
couple the cells to the domain, see Figure S1. Let the set of transported chemicals be denoted
by C and a single chemical by ¢ where ¢ € C. Let Cyomain denote the set of chemicals in the
transport process located in the domain external to the cell membrane and C.; be the set of
cellular chemicals. As the point x € € is associated with both the domain and the cell there
are two concentration vectors tied to the point, u for the chemical concentrations in the domain
and u’ for the concentrations within the cell. The lengths of these two vectors need not be the
same, as in general |Caomain| 7 |Ceelil-

Let the rate of the transport process connecting the two concentration vectors be denoted
by T'(u,u’)

dugell
o~ (fe—)T)
dugomain
—a (Be — ac)T(u,u’)

where a., 8. € N are the stoichiometric coefficients for chemical ¢ € C when considering the
transport process as a "reaction". Here « is the set of coefficients for the chemicals on the
domain side of the membrane, that is the quantity of each species consumed in the forward
sense of the process (i.e cell uptake), and j is the set of coefficients for the chemicals on the cell
side of the process, (i.e cell excretion). For example, consider the reaction occurring at a rate
T(u,u);

aA = BA'

where o denotes the amount of A in the domain that are consumed in the forward reaction to
produce 3 of A’ within the cell.

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

H Transport process name Reversible Transport rate T'(u,u’) H
ZerothOrderTransportIntoCell False kf
ZerothOrderTransportOut0fCell False kr
ZerothOrderReversibleTransport True kf —kr
MassActionTransportReaction True kf H uge — kr H u'fc
c€Ccenr c€Cdomain

Table S2: The foundational transport process types implemented at present, including whether
a process is reversible and the functional rate law utilised. The user may implement their own
laws by adding a new transport reaction file to the ChemChaste system (Section S4).

The rate constants are defined with appropriate units, such that the units for the transport
process are given in ’concentration per unit area per unit time’; i.e the amount of substance
passing through the membrane in an infinitesimal length of time.

For reactions defined at the membrane, two separate reactions occurring on either side of
the cell membrane, i.e. inside and outside, are coupled. Such reactions do not result in any
transfer of chemicals across the cell boundary, but they alter the concentrations of species in the
domain and inside the cell. The membrane reactions use two sets of stoichiometic coefficients.
Let (o, 8) be the stoichiometric coefficients for the reaction internal to the cell and (¢, 8) be
the coefficients for the external domain reaction. As before, we denote the membrane reaction
rate denoted by M (u,u’);

W — (B — o) M(u,w)
du'c _ rnal / /
dt - (Bc - OLC)M(U, u)

where variables and parameters take on the meaning defined previously. For two general
bi-molecular reaction systems coupled at the membrane, the system takes the form;

OZAA + aBB : ,BCC + IBDD
opE + opF = B,G + fyH
where the first and second reaction occur in the domain and inside the cell, respectively. The

concentrations are provided by the separate state vectors as in Section S1.3 but with a shared
rate, M (u,u’), which depends on both state vectors.

H Membrane reaction name Reversible Membrane reaction rate M (u, u’)
ZerothOrderCoupledMembrane False kf
ZerothOrderReversibleMembrane True kf—kr
. . > j B Bj
MassActionCoupledMembraneReaction True kf H u's H uj% — kr H u'; H u;’
i€Cceur J€Caomain i1€Ccen J€Cdomain

Table S3: The membrane reaction types implemented at present, including whether a reaction
is reversible and the functional rate law utilised. The user may implement their own membrane
reaction laws by adding a new reaction file to the ChemChaste system (Section S5).

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a) "ZerothOrderTransportlntoCeI| ‘

———

ZerothOrderTransportOutOfCell] [AhstractReversibleTransportReaction ‘

f

‘MassActionTransportReaction |

b) [ZerothOrderCoupIedMembrane ‘

[

[ZerothOrderReversibleMembrane |

T

| MassActionCoupledMembraneReaction ‘

Figure S3: The inheritance structure for the transport a) and membrane b) reaction types
currently implemented in ChemChaste. These reactions are shown in Table S2 and Table S3
respectively. a) The transport reactions build upon ZerothOrderTransportIntoCell as a base
while in b) the membrane reactions build upon ZerothOrderCoupledMembrane. These laws may
be built upon to add more complex transport and membrane reaction rates. The user may write
their own transport processes and membrane rate laws by following the file structure given in
Sections S4-S5.

S2 Setting up a ChemChaste simulation with user-defined model
properties and parameters

ChemChaste has been developed with the user in mind and simulations are defined in three steps.
(i) The overall simulation parameters (Table S4) and file paths are specified in a configuration
file; example configuration files are given in Figures S5 and S8. (ii) The reaction-diffusion system
in the bulk is defined. The name of the directory is specified within the previous simulation
configuration file (see Figure S5b). The reaction system (Table S1) and bulk domain information
are stored in TXT and CSV files; exemplars are given in Figures S7 and S6 respectively. (iii) If
coupling to a discrete cell-based model, the cell population and individual cell type properties
are specified. The cell model information is given a separate directory within the simulation
directory, as shown in Figure S9 for a two cell type example. For each cell type given in the
TXT files, a cell-based reaction system is defined (Table S1) with cell-specific transport laws
(Table S2) and membrane bound reactions (Table S3); example cell reaction files are given in
Figure S10. The topology of the cell layer, i.e. the initial location of cells at the start of a
simulation, is supplied by a CSV file together with a key file translating the cell ID used in the
topology file to the names of the cell types (which are also used in the file directories for cell
files).

In the following sections, we explain each of the required configuration files and their contents
to run a ChemChaste simulation. These configuration files are parsed and fed into a C++
ChemChaste simulation through the help of a "run-script".

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

S2.1 ChemChaste run script

To run a ChemChaste simulation, users can make use of a "run-script" file, which is a command
line script written in Phyton 3 language (see example in Figure S4). A new "run-script"
file should be supplied for each simulation, although simulations with same files but different
parameters, e.g. for parameter ’'sweeping’, can be provided through the same "run-script" file
(see example). The run-script sets the ChemChaste executable to run in naive parallel, that is
one simulation per processor, and runs the testing and compilation features of Chaste. Within
the "run-script" file the user defines the relative directories for the different configuration files,
as well as some of the global simulation parameters. The full set of parameters that can be set
in the "run-script" file are given S4. Here, the configuration files for the Cross feeding (Section
52.3) and Schnackenberg spatial patterning (Section S2.2) are used as examples. In the example
file provided, a total of 10 simulations are executed, 5 of type complex_cell and 5 of type
domain_only, and distributed over 3 cores. Some of these parameters can also be set in other
configuration files, as discussed below.

10

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

This script generates and submits jobs for a parameter sweep
import multiprocessing

import Ei)

from ChemChasteDefinitions import *

generate a list of bash commands

command_list = []

config files for each of the simulations

configCrossfeeding = "/home/chaste/projects/ChemChaste/DataInput/ChemChasteConfigCrossFeedingEnzyme.txt" t))
configPatterning = "/home/chaste/projects/ChemChaste/DataInput/ChemChasteConfigSchnackenberg.txt"

timesteps = [1,0.1,0.01,0.001,0.0001] C)
simulation id = 1

for dt in timesteps:
simulationExecutable = str(determineExecutable(configCrossfeeding))
command = simulationExecutable + str(simulation_id)
add config

command += " --config="+configCrossfeeding

add simulation type (default "coupled cell")

command += " --simulation_ type=complex cell" e (j)
add additional commands to override config

command += " --simulation timestep="+str(dt)

command += " --sampling timestep=le-1"

add simulation to the list
command_list.append(command) <

for dt in timesteps:
simulationExecutable = str(determineExecutable(configPatterning))
command = simulationExecutable + str(simulation_id)
add config

command += " --config="+configPatterning

add simulation type (default "coupled cell") > GB)
command += " --simulation_ type=domain only"

add additional commands to override config

command += " --simulation timestep="+str(dt)

command += " --sampling timestep=le-1"

add simulation to the list /

command_list.append(command)

use “count' no of processes

count = 3 # use multiprocessing.cpu_count() for the number of cores on your machine

generate a pool of workers f)
pool = multiprocessing.Pool(processes=count)

... and pass the list of bash commands to the pool

pool.map(execute command, command list)

Figure S4: Example "run-script" file for defining features of ChemChaste simulations. The
structure of this "run-script" file is such that it is divided into sections, as shown with a
letter-based labelling on the figure and as explained next. a) This section defines the import
files used for running parallel simulations and controlling the simulation compilation and
implementation. b) This section defines the configuration files for each user simulation that
are contained within the Datalnput directory of ChemChaste. ¢) This section defines the global
simulation parameters, in particular those that are used for parameter sweeping. The simulation
ID created in this section is shared across a set of simulations to be run in parallel. For these
simulations, a different parameter value is to be used - in this example the "time step size"
parameter. d) This section defines the command to be used in the command-line initiation of a
simulation. The command is created in a series of steps, by appending different aspects of the
simulation command together. First the simulation executable, in this case the cross feeding
simulation, is created and then appended the simulation type. Then, the desired simulation
parameters are amended to the command. In this case, note that the simulation timestep is
set by grabbing its value from the provided parameter list and by making use of a for loop
structure. Finally the destination for the data file is appended to the command using the
parameter sampling_rate and a value of le~!. e) This section is a repeat of section d) but
using a reaction only simulation example. The Schnackenberg simulation is used with the same
parameters as in d) but where simulation_type is set to domain_only. f) This section defines
final aspects of simulations, such as number of processor cores. The parallel simulations are
mapped to count number of processor cores. 11

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

H Parameter ‘ Default value Description H
simulation_type coupled_cell String keyword for type of simulation to run
simulation_timestep 1/120 Timestep for simulation solvers, Atgim,.
sampling_timestep 1/120 Timestep for writing simulation results,
Atsampling > Atsim-

output_filename ChemChasteExecutable Where to write simulation results

simulation_end_time 10.0 The maximum timestep value for the
simulation.

number_cells_across 1 The rectangular cell mesh width, for when a
cell domain file is not used.

number_cells_high 1 The rectangular cell mesh length, for when a
cell domain file is not used.

number_of_reaction_pdes 1 Number of RD state variables

spatial_dimensions The spatial dimension of the computational
domain.

FE_element_dimensions 2 The dimensions of the elements used in the
finite element (FE) method.

node_cuttoff_length 1.5 The cutoff length to label two cells in the
cell mesh as interacting, used to set the forces
between the cells.

cell_mesh_origin -4.0 The origin location of the cell mesh with respect
to the domain FE mesh.

linear_force_cutoff 1.5 The force constant for the linear Hookean
spring force between cells.

Table S4: ChemChaste simulation parameters that can be set via the "run-script" file. These
parameters control the type of simulation to run, the solver properties such as end time and
solver time step, and finite element properties such as spatial domain dimensions and element
dimensions for the FE implementation. KEach parameter is set by name in the simulation
configuration file, an example is provided in Figure Sba.

Among the different parameters that can be set in the "run-script" file, and listed in S4, we
highlight here some of the key ones. The simulation_type parameter, which sets the solver
methods used in ChemChaste. This parameter may be specified in either the configuration file
or in the run-script (Figures S5 and S4). The parameter options; domain_only, coupled_cell,
complex_cell, control how the ChemChaste system builds the simulations. The domain_only
option is used to solve a reaction-diffusion system in a domain without cells (removing the
summation term from equation (1)), while the coupled cell-domain simulations are simulated
using either the coupled_cell model and the complex_cell model. These two models share
the same parameter sets and file systems, see Table S4 and Figure S9, but differ in the cell
division implementation. The coupled_cell simulations model the cells divide into a parent
and offspring cell. The concentration contents of the parent cell are duplicated and copied over
to the offspring cell. In contrast, for the complex_cell model the concentration contents of the
parent cell are either divided equally between the parent and offspring or duplicated and a further
"speciesDivisionRules.csv" file is needed for each cell type to control the sharing behaviour.

The cell population may be defined using the file system (see Section S2.3) or by
providing the population size. The size is provided through the number_of_cells_high and
number_of_cells_across configuration parameters. These parameters are used to construct a
honeycomb mesh of length number_of_cells_high and width number_of_cells_across with
the origin of the mesh compared to the PDE domain provided by cell_mesh_origin. The
cell_mesh_origin value is added to the x and y direction to translate the positions of the
nodes in the cell mesh. The edges of the mesh denote which cells are nearest neighbours and
whether these cells interact depends on the distance between the cells. These neighbours interact
if their positions are within the cut off distance, node_cuttoff_length, and the strength of the

12

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

linear Hookean force for the interaction is provided by linear_force_cutoff.

S2.2 Configuration files for Domain only simulation

For reaction-diffusion simulations, the user provides a set of files specifying the domain
topology, boundary conditions (BCs), initial conditions, and reactions systems (see examples
in Figures S6-S7). These files are provided to ChemChaste by defining their file paths in the
configuration file and an associated directory structure (see examples in Figure Sba Figure S5b).

a) # simulation
output filename = ChemChaste/SchnackenbergCases/CaseA
simulation_end time = 100.0
number of reaction pdes = 2
spatial dimensions = 2
FE element dimension = 2

bulk

domain_file root = /home/chaste/projects/ChemChaste/DataInput/Data/SchnackenbergCases/CaseA/
domain file = Domain.csv

domain_key file = DomainKey.csv

ode file = NodeSelector.csv

ode key file = OdeReactionFileKey.csv

diffusion database = DiffusionDatabaseFile.csv

initial conditions = InitialConditionFile.csv

boundary conditions = BoundaryConditionFile.csv

b) v SchnackenbergCases

v CaseA
B BoundaryConditionFile.csv
B DiffusionDatabaseFile.csv
B Domain.csv
B DomainKey.csv
B InitialConditionFile.csv
NodeSelector.csv
B OdeReactionFileKey.csv

SchnackenbergReactionFile.txt

Figure S5: The configuration file a) and overall directory structure b) for simulating a
reaction-diffusion system. a) The configuration file containing the basic simulation parameters;
output directory, simulation end time, number of chemical PDEs to simulate, the domain and
FE element dimensions. The configuration file also contains the directory paths and names
of the different files used in the simulation. The file structure used during the domain only
simulation b). The file paths are defined within the configuration file and follow CSV file types
for parameters and defining the domain while TXT files are used for writing the reactions.

S2.2.1 Building the domain with chemicals and setting the properties

Users can define the domain in a series of CSV files.

"Domain Key" and "Domain Information" CSV files: These two files together define the
domain topology. The "Domain Key" file introduces numeric id’s for different ’types’ of
sub-domains, which might be associated with different chemical diffusion rates. Here, we use
an example to define two sub-domains within the domain as 'bulk’ and ’film’, e.g. to mimic a
bulk and biofilm environment. The "Domain Key" file simply lists names for such sub-domains
and associates them with a numeric id. In the example given in Figure S6a-c, we defined two
sub-domains labelled as 'Bulk’, id 1, and ’Film’, id 2, and then distributed them on the domain
in such a way that the left section is ’bulk’ and right section is 'film’. Note that the "Domain
Information" file is organised as a 2D matrix, which is mapped on to the mesh implemented in

13

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

the FE simulations. This mapping stretches each matrix entry into 10 elements in the FE mesh.
That is, a 10x10 file matrix would map onto a 100x100 FE mesh.

"Boundary Condition" and "Diffusion Database" csv files: Chemicals that diffuse and react
within the domain are first defined in a "Boundary Condition" file. This file introduces each
chemical in the system and sets the boundary conditions for them. In the example given in
(Figure S6, we define two chemicals, U and V, and set the boundary conditions for both
as zero-Neumann (zero-flux). Each chemical’s diffusion in the different sub-domains (in this
example, 'film’ and ’bulk’) are then defined in a file called, "Diffusion Database". Here, the user
can use the defined sub-domain names (see above) to then specify the diffusion rate for each
chemical in that sub-domain (see Figure S6d). Occasionally, a model may require the diffusion
of a chemical to be completely inhibited in a specific sub-domain, this may be done by setting
the diffusion rate value to 0.

"Initial Condition" csv file: The initial concentrations of each chemical in each sub-domain
are given in a file called ’Initial Condition’. The file should specify one initial concentration value
for each chemical and for each sub-domain (Figure S6e). This initial value is then applied to
all mesh nodes associated with that sub-domain (see equation 4. While this approach provides
a homogenous condition across all nodes of a given sub-domain, the values at the individual
nodes may be perturbed through the addition of random noise value defined on a nodal basis
during the setup of the simulation. That is, for states U,V with initial value wug,vg for a given
sub-domain, Qg the perturbed initial values U(z,0),V (z,0) are given by;

U(z,0) =Up+ X and V(z,0) =V +Y (11)

where the node location x € Q4 and X, Y ~ Uniform(—1,1) are uniformly distributed random
noises on the interval [—1,1]. This random perturbation occurs only if the perturbation option
in the initial condition file is set to true (see Figure S6e).

14

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a) Domain.csv b) BoundaryConditionFile.csv c) DomainKey.csv

Domain Label Matrix # Boundary conditions on the full domain edge: # Domain Label Key
1,1,1,1,1,2,2,2,2,2 # Variable, Type, Value 1,Bulk
1,1,1,1,1,2,2,2,2,2 U,Neumann,0.0 2,Film
1,1,1,1,1,2,2,2,2,2 V,Neumann, 0.0

t1,1,1,1,2,2,2,2,2 4 piffysionDatabaseFile.csv e) InitialConditionFile.csv
L1,1,1,1,2,2,2,2,2 # Heterogeneous Diffusion rates # initial conditions for the states:
1,1,1,1,2,2,2,2,2 # Variable, Domain, Value # Variable, Domain, Value, Perturb?
L1,1,1,1,2,2,2,2,2 U,Bulk,le-4 U,Bulk,2.5,true
LL,1,1,1,2,2,2,2,2 y,Film, le-4 U,Film,2.5,true
1,1,1,1,1,2,2,2,2,2 v pulk.1 ‘Bulk.1.0.

1.1.1.1,1,2.2.2.2.2 vV Filn 1 V,Bulk,1.0,true

V,Film,1.0,true

Figure S6: Files defining the domain topology and providing simulation parameters. a) CSV file
defining the domain topology. The nodes on the domain are labelled according to this matrix
where sub-domains are specified by using different labels. The size of the matrix specified in
this file is directly proportional to the size of the simulation mesh after scaling. Therefore a
rectangular domain specified in this file will produce a rectangular domain mesh. b) Boundary
conditions are implemented on the outside nodes of the FE mesh. The conditions are specified
as "state variable", "BC type", and "BC value". ¢) Domain key file, which connects the ‘simple’
labels used in the domain topology file with the domain names. d) Diffusion in the simulations
is modelled as isotropic diffusion where the coefficient value is the same in all directions. These
values for each state variable are provided for all sub-domains names in c¢). e) The initial
conditions in the domain are defined for each state variable (chemical) on each sub-domain. The
value can differ for each sub-domain and the user can specify whether to perturb the value by
a uniform random value.

S2.2.2 Chemical reactions and the "Reaction Information" and "ODE Reaction
Key" CSV files

To define domain reactions the user provides a set of files, similar to those used for defining
sub-domains. The user first creates a file called "ODE Reaction Key", specifying a reaction file
name and an associated numeric id for that reaction (see Figure S7b). The reaction id can then
be used to specify the nodes that are associated with specific reactions in the domain. This
information is provided in a file called "Reaction Information", which should provide a matrix
of the equal size to that given in the "Domain Information" file, where the reaction id’s on
the nodes are listed (Figure S7a). In the provided example, we have defined a reaction with
reaction id 0 and attached this reaction to all of the nodes in the domain. Details of each of the
implemented reactions are provided in a separate TXT file, which is referred to in the "ODE
Reaction Key" file. In this example, we called this file "Schnackenberg Reaction" file. This
file describes the reactions among the chemical species (see previous section), as well as the
associated reaction parameters (Figure S7c). This description file utilises the provided reaction
types and reaction parameters, as detailed in Section S1.3. Note that, as seen in the provided
example, the file describing the ODE reactions can feature multiple reactions and all of the
reactions defined in the file will be performed on the associated nodes (see Figure S7).

15

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a) NodeSelector.csv b) OdeReactionFileKey.csv

Reaction Label Matrix # Reaction File Label Key

©,0,0,0,0,0,0,0,0,0 0,SchnackenbergReactionFile. txt
9,0,0,0,0,0,0,0,0,0

9,0,0,0,0,0,0,0,0,0

9,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0 c) SchnackenbergReactionFle.txt

9,0,0,0,0,0,0,0,0,0 . . .
0.0.0.00.0.0.0.0.0 # Reaction Type : Chemical Equation ; Rate Parameters
0,0,0,0,0,0,0,0,0,0 MassActionReaction : 2U + V -> 3U ; kf =
0,0,0,0,0,0,0,0,0,0 MassActionReaction : 0 <-> U ; kf = 0.1 kr = 0.2
0,0,0,0,0,0,0,0,0,0 MassActionReaction : 0 -> V ; kf =

Figure S7: The implementation of bulk reactions in user defined files. a) A CSV file defining
the numeric ID of reaction files, which describe a series of chemical reactions. The reactions
defined in a file associated with a node will determine those reactions to be active on that node.
This allows for the creation of reaction sub-domains, which are not necessarily the same as the
diffusion sub-domains. b) A reaction key file that connects the numeric IDs used in part a) to
actual reaction file names. These names refer to TXT files containing the reaction system that
are to occur on the associated nodes (creating the reaction sub-domain). ¢) An example reaction
file, SchnackenbergReactionFile.txt. Each line denotes a separate reaction. Reactions are
defined using a standard form composed of: “rate law", “ : " rate delimiter, reaction equation,

“ " reaction delimiter, and the rate law parameters.

S2.3 Defining a cell simulation - Cooperator-cheater system

The hybrid continuum-discrete models of cells coupled to a bulk require a modified file structure
and additional files. In particular, the cell-coupled simulation defines an additional cell mesh
whose nodes denote the cell locations. The cell nodes are associated with a cell type and a cell
object is formed with the cell properties and reactions corresponding to that cell type label. The
simulation parameters for a cell-coupled simulation are presented in Figure S8 with the directory
file structure given in Figure S9. The directory structure is such that the domain files are stored
within a DomainField sub-directory of the simulation directory (Figure S9a).

16

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

simulation

output filename = ChemChaste/ChemChasteExample
simulation end time = 10.0
number of reaction pdes = 4

spatial dimensions = 2

FE element dimension = 2

bulk

domain file root = /home/chaste/projects/ChemChaste/Datalnput/Data/ChemChasteExample/DomainField/
domain file = Domain.csv

domain key file = DomainKey.csv

ode file = NodeSelector.csv

ode key file = OdeReactionFileKey.csv

diffusion database = DiffusionDatabaseFile.csv

initial conditions = InitialConditionFile.csv

boundary conditions = BoundaryConditionFile.csv

cell

cell file root = /home/chaste/projects/ChemChaste/DataInput/Data/ChemChasteExample/Cell/
cell file = CellLayerTopology.csv

cell key file = CelllLayerKey.csv

mesh
cell mesh origin = -14.0
linear force cutoff = 1.5

Figure S8: The configuration file for the cell-coupled simulations. This configuration file defines
the directory paths to associated files and includes some parameters specific to cell-coupled
simulation. The files, accessible via the defined directory paths, define the structure and
sub-populations of cells; the information is stored in the files cell_file_root, cell_file,
cell_key_file. See example given in Figure S10. Simulation parameters used to couple the
cell and domain mesh are also provided. "cell_mesh_origin" denotes the origin of the cell
population structure with respect to the domain mesh. "linear_force_cutoff" is used as an
interaction strength parameter for the Hookean linear spring force which connects the cells in
the simulation.

S2.3.1 Including cells into the simulation

The coupled_cell and complex_cell simulation types add cells to the reaction-diffusion
domain. Each cell has a type and the properties of each type are stored within a series of
files contained in a directory, Figure S9a. The population is given a structure by constructing a
mesh and associating a cell object to each node. Example files defining the mesh dimensions and
cell-node labelling can be seen in Figure S10a-b. The initial structure of the cell population, at
simulation start, is provided as a matrix in the "CellLayerTopology" CSV file (Figure S10a).
The matrix is required to be smaller than that of the domain (Figure S6). The entries in this
matrix refer to the type of a single cell which are mapped onto honeycomb mesh of equal length
and width to the input matrix. If an input matrix is not specified and instead the configuration
parameters, number_cells_high and number_cells_across, are provided then these values are
used for the length and width of the honeycomb mesh. The cells are labelled by a numeric ID with
cell type names provided in the "CellLayerKey" file. In the example shown in (Figure S10 two
cells are defined with one cell of each type in the domain and are then provided the names 'CellA’
and 'CellB’. These names are also used as sub-directory names for the following cell specific files.
The initial cell concentrations and the concentration thresholds for the chemicals within the cell
are given with a separate file for each cell type (see Figure S9b—c). The concentration thresholds
provide a lower and upper bound for each of the chemical concentrations, which are used to
implement cellular ‘rules’. If the cellular concentration falls below the lower threshold the cell

17

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

is marked for death while cells with concentrations above the upper threshold will undergo cell
division. The cell reaction systems are provided (Sections S1.3 and S1.4) see Figure S10c—e.
The reactions occurring within the cell are located in the "Srn" text file while the transport and
membrane reactions are located in the "TransportReactions" and "MembraneReactions" files.

As with the nodal initial conditions for the reaction-diffusion simulation, the initial conditions
for the cellular concentrations may be perturbed by adding a random noise value at the beginning
of the simulation. For the concentration w(t), with initial concentration ug and with the
perturbation option set to true, the starting cell concentration is given by;

u(t = 0) = up + X (12)

where X ~ Uniform(—1,1) is uniformly distributed random noise on the interval [—1, 1].
During the simulation the conditions for cell division and death are determined by the species
threshold file, Figure S10c. Each chemical in the cell reactions is provided with a maximum,
Umaz, and a minimum, ,,;,, concentration threshold. If the concentration reaches the threshold
Umaze for at least one chemical the cell division process is triggered. If the simulation type is set
to coupled_cell then the cell concentrations are duplicated and copied during division. For
the complex_cell simulation the cell contents of the parent are shared with the offspring. That

. arent
is for each cell chemical ¢ of parent concentration u. at division the new concentrations u?

of fspring .
and uc are given by

arent of fsprin
ub = u and w2/ /PN — 4,

for the coupled_cell simulation type and for the complex_cell simulation type
uparent _ d of fspring __ —
b = pu, and u =(1—p)uc

where p is the splitting ratio (p = 0.5 by default). Cell death is implemented by the removal of a
cell and its associated cell mesh node. This apoptosis process is triggered when the concentration
of a chemical falls below the minimum threshold for that species, 4 < tpi,. To remove this death
functionality, users should set ,,;, = 0.0. This will prevent the apoptosis process being triggered
by that chemical. To remove the cell division functionality, users should set u;qr < Upin O
Umaz = 0.0.

In the example presented in Figure S9 we define two cell types, {CellA,CellB}, and the
corresponding cell directories. The initial conditions and species thresholds are presented for
Cell A covering each chemical found in the reactions, Figure S9. The cell division/death processes
are dependent on the threshold values for each chemical but this has been set to ignore all of
the chemicals, by setting both the upper and lower thresholds to zero, except for Biomass which
will trigger division at a concentration u,,q,; = 1.5 and apoptosis at um, = 0.1.

18

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

@) v ChemchasteExample b) CellA/InitialCellConcentrations.csv
« cell # Initial cell concentrations
Chemical, Concentration, Perturb?
v CellA
B InitialCellConcentrations.csv E,1.0,false
S5,0.0,false
MembraneReactions.txt ES,0.0,false
B SpeciesThreshold.csv Oxygen,1.0,false
Srn.txt NAD, 0.5, false
TransportReactions.txt NADH, 0.5, false

ADP,0.5, false
ATP,0.5, false
H20,1.0,false
Precursor,1.0,false

v CellB
B InitialCellConcentrations.csv

MembraneReactions.txt

B SpeciesThreshold.csv Biomass, 1.0, false
Srn.txt
TransportReactions.txt c) CellA/SpeciesThreshold.csv
B CellLayerKey.csv # Cell chemical concentration bounds
B CellLayerTopology.csv # Chemical, Maximum, Minimum
v DomainField E,0.0,0.0
B BoundaryConditionFile.csv 5,0.0,0.0
ES,0.0,0.0
E DiffusionDatabaseFile.csv Oxygen,0.0,0.0
B Domain.csv NAD,0.0,0.0
E DomainKey.csv NADH,0.0,0.0
ExtracellularReaction.txt ADP,0.0,0.0
B InitialConditionFile.csv ATP,0.0,0.0
H20,0.0,0.0

HH

NodeSelector.csv

Precursor,0.0,0.0
E OdeReactionFileKey.csv 0.1

Biomass,1.5,0.

Figure S9: Description of directories and cell properties files for the cell-coupled simulations. a)
The directory structure for a cell-coupled simulation. Files relating to the domain structure, as
detailed in Figure S6, are contained within DomainField directory. The cell files are provided
within the Cells directory. Each cell type is provided its own sub-directory, with the same name
as the label name in the CellLayerKey.csv, Figure S10d. For each cell type we define an initial
concentrations file b) and a species threshold file ¢). b) The initial conditions are provided
for each cellular state variable (chemical) following the form; name, value, and whether to
perturb the initial value on a nodal basis. ¢) The threshold values for each cellular state variable
(chemical) are provided in the order; name, maximum value, minimum value.

19

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a) CellLayerTopology.csv b) CellLayerKey.csv
Cell population # Cell label key
1,2 1,CellA

2,1 2,CellB

c) CellA/Srn.txt

Reaction Type : Chemical Equation ; Rate Parameters
MassActionReaction : ES <-> E + S ; kf = 1.0 kr = 1.0

MassActionReaction : S + NAD + ADP <-> Precursor + NADH + ATP ; kf = 1.0 kr = 1.0
MassActionReaction : NADH + ADP + Oxygen <-> NAD + H20 + ATP ; kf = 1.0 kr = 1.0
MassActionReaction : Precursor + ATP <-> Biomass + ADP ; kf =1.0 k =1.0

r
MassActionReaction : Precursor + ATP <-> E + ADP ; kf = 0 kr 1.0

d) CellA/TransportReactions.txt

Transport Type : Bulk Chemical <-> Cell Bound Chemical ; Rate Parameters
MassActionTransportReaction : Oxygen <-> Oxygen ; Kkf = 1.0 kr = 1.0
MassActionTransportReaction : ES <-> ES ; kf = 1.0 Kk .0
MassActionTransportReaction : E <-> E ; kf = 1.0 kr

I =
=l

1
.0

e) CellA/MembraneReactions.txt

Membrane Reaction Type : Bulk Chemical Equation | Cell Chemical Equation ; Rate Parameters
MassActionCoupledMembraneReaction : S <-> S | S <->S ; kf =1.0 kr = 1.0

Figure S10: The files associated needed to form the cell mesh and populate the cells with
chemical reactions. These files are to be placed in the Cell sub-directory of the ChemChaste
main directory (see Figure S9a). a) The "CellLayerTopology.csv" file provides the information
for the initial cell mesh topology. It is written in the same format as the domain layer FigureS6a.
In this example, a rectangular mesh of two cells is defined where the first cell is labelled "1" and
the second labelled "2". This mesh is aligned with the domain mesh through translating the
origin of the cell mesh as specified by the cell_mesh_origin parameter in the configuration file
(see Figure S8). b) The "CellLayerKey.csv" files contains the key mappings from the numeric
ID label used in "CellLayerTopoogy.csv" to the cell type used for the directory names. In this
example two cell types are used CellA, CellB. The cellular reactions for CellA are provided
in three TXT files; ¢) the internal reactions, d) the transport reactions, and e) the membrane
reactions. ¢) The "Srn.txt" file contains the cellular reaction system. Each line contains one
reaction. The reactions are written in the standard form; reaction kinetic law, “ : " reaction law
delimiter, reaction chemical equation, * ; " parameter delimiter, kinetic law parameters. d) The
file "TransportReactions.txt" lists the reactions/processes that couple the cells to the external
domain. The reactions in this file are written in such a way that the chemicals on the left hand
side represent the species in the bulk domain, while those on the right hand side represent the
species inside the cell. Otherwise they follow the form in ¢) but using an appropriate set of
reaction rate laws. e) The file "MembraneReactions.txt" lists the reactions that are coupled at
the cell membrane and with reaction occurring on outside of the cell and one on the inside of
the cell. These reactions are separated by the membrane delimiter, ¢ | ", when written and the
reaction rate law belongs to the membrane reaction set.

S3 Adding a new reaction rate law

Chemical reactions occurring in the cell or in the domain follow a set of reaction rate laws
defined in Table S1. However, new chemical reaction types may be added by the user and
then freely implemented within the reaction system files. To introduce a new reaction rate,
a new reaction header, which inherits from a previous reaction class, needs to be created and
placed into the inheritance hierarchy (Figure S2). The user would then populate the class,

20

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

update the inherited virtual functions, and then update the ReactionTablet function within
the ReactionTypeDatabase file. From there on, the reaction rate type may be called by name,
in the same manner as with the in-built reaction rates; e.g MassActionReaction.

The reaction header file needs to include the falling classes as “includes"; AbstractChemical,
AbstractChemistry, and AbstractReaction. This will allow the class definitions to inherit
publicly from the core reaction types. For example, AbstractReaction for a general irreversible
reaction or AbstractReversibleReaction for a general reversible reaction. This inclusion is
needed (useful), since these inherited reaction types provide a set of virtual functions that are
useful to construct the reaction mechanism. In the following, we briefly describe these virtual
functions, which the user will have to consider changing when creating a new rate law.

1. React()

e Function description: Virtual function that implements the core dynamics of a
chemical reaction. This function takes in the current system concentrations and
outputs a vector describing the change in concentrations for the next timestep. The
function calls UpdateReactionRate() function and then applies the reaction rate to
the reaction stoichiometry, so to calculate the change in the species concentration.

e Function input variables:

— |systemChemistry (AbstractChemistry™)|
— |eurrentChemistryConc (const std::vector<double>&)|
— |changeChemistryConc (std::vector<double>&)|

e Note: It might not be necessary to change this virtual function when creating a new
rate law. This is because calculating the change in the chemical concentrations as
the product of the reaction rate and stoichiometry vector is a standard method for
implementing chemical reactions in a dynamical simulation. However, this function is
explained here so that users are aware of it and can have the flexibility to implement
other modelling approaches to chemical reactions by changing it.

2. UpdateReactionRate ()

e Function description: This function calculates the reaction rate scalar value for a
given reaction. If the reaction being operated on is an irreversible reaction inheriting
from AbstractReaction, then this function calculates the forward reaction
rate, forward_rate, and calls the function SetReactionRate(forward_rate).
If the reaction being operated on inherits from AbstractReversibleReaction
and has a calculated reverse reaction rate, reverse_rate, then this function
calls both of the functions SetForwardReactionRate(forward_rate) and
SetReverseReactionRate(reverse_rate).

e Function input variables:
— |systemChemistry (AbstractChemistry®)]
— |currentChemistryConc (const std::vector<double>&)|

e Note: This function is the main function to modify when creating a new reaction
rate type. It essentially determines how reaction rates are calculated from current
system concentrations and stoichiometries. The MassActionReaction class, which is
of the reversible reaction type, utilises the current system concentrations to calculate
reaction flux values in both reaction directions. The reaction rate values are calculated
for use in the React () method (see Table S1.

3. GetReactionType()

21

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

e Function description: This function returns a string type which provides the
name of the reaction type; for example returning MassActionReaction or
SpectatorDependentReaction. This function may also be used for reaction tracking
purposes, but in the current implementation, it is used in the ReactionTablet
function. This name needs to be the name in which the reaction files label the
reaction type in order for the correct class calls to be made.

4. UpdateReaction()

e Function description: This is a void function with no inputs. It is provided for
the case that a reaction’s behaviour needs to be altered outside of the React ()
function. Possible utilities include a switching of behaviour in reaction style based
on concentrations, time, or system properties.

5. ParseReactionInformation()

e Function description: This function parses the parameters and variables needed to
process a reaction. In terms of the written file reaction, these data values occur in
the string after the ; delimiter. This string is parsed into the data values provided
by the user using a string delimiter. The user needs to identify the delimiter of this
string as a member value in the reaction class. The values parsed are to be also stored
as member values and may be utilised in the UpdateReactionRate () function where
necessary.

e Function input variables:

— reaction_information (string)
— IsReversible (bool)

S4 Adding a new transport process law

The cells and the reaction-diffusion domain are coupled through the transport processes
transferring chemical species to either side of the cell membrane, see Section S1.4. As these
processes require the chemical concentrations of both the cellular species and the corresponding
external species at that domain location to be known, transport rules have a different
construction to the reaction rate laws described in the previous section. ChemChaste has a
set of transport rates already defined, Table S2, but new transport process rates may be added
by the user and integrated with ChemChaste.

Transport processes in ChemChaste follow the general form of a reaction where the
Substrates are chemical species in the domain and the Products are species in the cell. For
the introduction of a new transport process, users would need to create a new transport reaction
header, which inherits from a previous transport reaction class (see Figure S3a for the inheritance
structure for transport reactions).

Within the new transport reaction the user would populate the class with updated inherited
virtual functions, then update the TransportTablet function within the ReactionTypeDatabase
file. From there the reaction type may be called by name in the same manner as the in-built
reactions; i.e MassActionReaction.

The reaction header file needs as ’includes’; AbstractChemical, AbstractChemistry,
and the appropriate abstract transport reaction base. The available abstract bases
are; AbstractTransportReaction for single direction domain to cell transport,
AbstractTransportOutReaction for single direction cell to domain transport, or
AbstractReversibleTransportReaction for reversible domain-cell transport. Depending
on the abstract base selection, the class definitions needs to inherit publicly from the base
reaction types. These inherited base reaction types provide a set of virtual functions which

22

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

control the reaction mechanism. In the following, we briefly describe these virtual functions,
which the user will have to consider changing when creating a new transport rate.

1. React()

e Function description: Virtual function that performs the transport reaction. This
function takes in the current bulk domain and cell concentrations and computes a
vector describing the change in both concentration sets over the next timestep, i.e. the
reaction rate. The function calls UpdateReactionRate() function, which multiples
the reaction rate with the reaction stoichiometry to update the species concentrations.

e Function input variables:

— bulkChemistry (AbstractChemistry*)

— cellChemistry (AbstractChemistryx*)

— currentBulkConcentration (const std::vector<double>&)
— currentCellConcentration (const std::vector<double>&)
— changeBulkConc (std::vector<double>&)

— changeCellConc (std::vector<double>&)

e Note: It might not be necessary to change this virtual function when creating a new
transport rate. The input variables bulkChemistry and cellChemistry refer to the
chemical species outside the cell in the domain and inside the cell respectively. The
bulkChemistry species refer to the Substrates of the transport reaction and the
cellChemistry refers to the Products of the reaction.

2. UpdateReactionRate()

e Function description: This function calculates the reaction rate scalar value for
the given reaction. If the reaction being operated on is an irreversible reaction
inheriting from AbstractTransportReaction or AbstractTransportOutReaction,
then this function calculates the forward reaction rate, forward_rate, and
calls the function SetReactionRate(forward_rate). If the reaction being
operated on inherits from AbstractReversibleTransportReaction and
has a calculated reverse reaction rate, reverse_rate, then this function
calls both of the functions SetForwardReactionRate(forward_rate) and
SetReverseReactionRate(reverse_rate).

e Function input variables:

bulkChemistry (AbstractChemistry*)
— cellChemistry (AbstractChemistryx)
— currentBulkConc (const std::vector<double>&)

— currentCellConc (const std::vector<double>&)

e Note: This function is the main area to modify for new reaction types.
3. GetReactionType()

e Function description: This function returns a string type which provides the name
of the reaction type; for example returning MassActionTransportReaction. This
function may also be used for reaction tracking purposes, but is currently used in
the TransportTablet function. This name needs to be the same name in which the
reaction files label the reaction type in order for the correct class calls to be made.

4. UpdateReaction()

23

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

e Function description: Void function with no inputs provided for the case that a
reaction’s behaviour needs to alter outside of the React () function. Possible utilities
include a switching of behaviour in transport style based on concentrations, time, or
system properties.

5. ParseReactionInformation()

e Function description: This function parses the parameters and variables needed to
process the transport process. In terms of the written file reaction, these data values
occur in the space after the ; delimiter. This string is to be parsed into the data
values by the user using a string delimiter. The user needs to identify the delimiter of
this string as a member value in this reaction class. The values parsed are to be also
stored as member values and may be utilised in the UpdateReactionRate () function
where necessary.

e Function input variables:

— reaction_information (string)
— IsReversible (bool)

S5 Adding a new membrane reaction rate law

Besides reactions outside and inside the cell, chemical reactions may also be modelled as if
occuring at the cell membrane in a way that couples cell interior and external chemicals.
These reactions essentially couple two reactions, one occuring in the domain and another in the
cell. These membrane reactions are described in Section S1.4, with the currently implemented
membrane reaction rates in Table S3.

New membrane reaction rates may be added by the user by creating a new reaction class
inheriting from an existing membrane reaction class (Figure S3b), overriding the inherited virtual
functions. To integrate with the ChemChaste system the MembraneTablet function within
the ReactionTypeDatabase file is updated with the new membrane reaction. From there the
reaction type may be used by name in the same manner as the supplied membrane reactions;
i.e MassActionCoupledMembraneReaction. As the membrane reaction couples two separate
reaction systems, two reactions are provided per instance. These separate chemical reactions
within the membrane reaction are separated by the | delimiter, with the external domain reaction
before the delimiter and the internal cell reaction after.

The membrane reaction header file needs as “includes";
AbstractChemical, AbstractChemistry, and either of the base membrane
reaction types AbstractMembraneReaction for irreversible reactions or

AbstractReversibleMembraneReaction for reversible reactions. Coupling of a reversible
and irreversible reaction is not currently implemented. The class definitions then inherit
publicly from the appropriate base membrane reaction type. These inherited types provide
a set of virtual function which control the reaction mechanism. In the following, we briefly
describe these virtual functions, which the user will have to consider changing when creating a
new membrane-bound reaction rate.

1. React()

e Function description: Virtual function that performs the membrane reaction. This
function takes in the current bulk domain and cell concentrations, and computes a
vector for the change in both concentration sets over the next timestep. The function
then calls the UpdateReactionRate () function, which applies the reaction rate to the
stoichiometry to calculate the change in concentrations for both the domain and cell
chemicals.

24

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

e Function input variables:

— bulkChemistry (AbstractChemistryx*)

— cellChemistry (AbstractChemistry*)

— currentBulkConcentration (const std::vector<double>&)
— currentCellConcentration (const std::vector<double>&)
— changeBulkConc (std::vector<double>&)

— changeCellConc (std::vector<double>&)

e Note: Calling and modifying this function directly may not be necessary to
implement a new membrane reaction rate. The input variables bulkChemistry and
cellChemistry refer to the chemical species outside the cell in the domain and inside
the cell respectively. These separate chemistries are formed from both the substrates
and products of the separate chemical reactions.

2. UpdateReactionRate()

e Function description: This function calculates the combined reaction
rate scalar value for both the reactions at the membrane. After
calculating the reaction rate, forward_rate, the function calls the
function = SetReactionRate(forward_rate) for an irreversible reaction
inheriting from AbstractMembraneReaction. If the reaction inherits from
AbstractReversibleMembraneReaction and has a calculated reverse reaction rate,
reverse_rate, then both the functions, SetForwardReactionRate (forward_rate)
and SetReverseReactionRate(reverse_rate), are to be called.

e Function input variables:

bulkChemistry (AbstractChemistry*)
— cellChemistry (AbstractChemistryx)
— currentBulkConc (const std::vector<double>&)

— currentCellConc (const std::vector<double>&)
3. GetReactionType()

e Function description: This function returns a string type which provides the name
of the reaction type; for example returning MassActionCoupledMembraneReaction.
This function may also be used for reaction tracking purposes, but it is currently used
in the MembraneTablet function to set the name of the membrane rate type. This
name needs to be the name in which the reaction files label the reaction type in order
for the correct class calls to be made.

4. UpdateReaction()

e Function description: This is a void function with no inputs provided for the case
that a reaction’s behaviour needs to alter outside of the React () function. Possible
utilities include a switching of behaviour in transport style based on concentrations,
time, or system properties.

5. ParseReactionInformation()

e Function description: This function parses the parameters and variables needed to
process the transport process. In terms of the written file reaction, these data values
occur in the space after the ; delimiter. This string is to be parsed into the data values
by the user using a string delimiter. The user needs to identify the delimiter of this
string as a member value in this membrane reaction class. The values parsed are to

25

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

be also stored as member values and may be utilised in the UpdateReactionRate ()
function where necessary.

e Input variables:

— reaction_information (string)
— IsReversible (bool)

S6 Derivation of Schnakenberg parameter sets

The Schnakenberg reaction system involves chemical species U and V that are produced,
inter-converted, and removed via the reactions

k1

021, (13)
0225, (14)
2U +V 225 30, (15)

where k1, k_1, ko, k3 denote reaction rate constants. Applying mass action kinetics to these
reactions yields the ODE system

dU
E = k‘l — kLlU + k3VU2 = RU(Ua V), (16)
av
=k ksVU? = Ry(UV), (17)

for the concentrations of U and V. The Schnakenberg reaction-diffusion system extends this
model to include diffusion of U and V with constant diffusion coefficients Dy and Dy,
respectively, leading to the set of coupled PDEs

O~ DuYU = Ry(U,V), (18)
% — DyV?V = Ry (U, V). (19)

The Schnakenberg model is a spatial case of the Gierer-Meinhardt activator-inhibitor
model (Gierer and Meinhardt, 1972). Following previous mathematical analyses (Murray, 2003;
Korvasova et al., 2015; Guin et al., 2012; Gambino et al., 2013), we present necessary conditions
for pattern formation via diffusion-driven instability (DDI) in this model. For a DDI to occur,
we require the spatially uniform solution to (18)—(19) to be linearly stable in the absence of
diffusion, but unstable in the presence of diffusion. In the absence of diffusion (Dy = Dy = 0),
equations (18)—(19) have the unique steady-state solution

k1 + ko k‘gk‘%l)

20
ko1 ks(ky + k)2 (20)

(Uo, Vo) = <

By requiring both eigenvalues of the Jacobian to have negative real part, we find that (20) is
linearly stable in the absence of diffusion if

ORy ORy

and

ORy Ry _ ORy dRy

ou ov _ov au =% (22)

26

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.21.465304; this version posted October 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

where the partial derivatives of Ry and Ry are evaluated at (20). By requiring at least one
eigenvalue to have negative real part, we find that (20) becomes linearly unstable in the presence
of diffusion if

OR ORy

U
Dy —p + Dy >0 (23)
and
ORy ORy\? ORy ORy ORy ORy
(D“(‘JV+DV6U> _4DUDV<6U v ~ov au)" (24)

After some algebra, we find that the above conditions correspond to the following inequalities
on the reaction rate constants ki, ki, ko, k3 and diffusion coefficients Dy, Dy :

L (2ky — 1)E3 | > ks(ky + k2)? > 0. (25)

References

Gambino, G. et al. (2013). Pattern formation driven by cross-diffusion in a 2D domain. Nonlinear
Anal. Real World Appl., 14, 1755-1779.

Gierer, A. and Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik,
12(1), 30-39.

Guin, L. N. et al. (2012). The spatial patterns through diffusion-driven instability in a
predator—prey model. Appl. Math. Model., 36, 1825-1841.

Korvasova, K. et al. (2015). Investigating the Turing conditions for diffusion-driven instability
in the presence of a binding immobile substrate. J. Theor. Biol., 367, 286—295.

Logg, A. et al. (2012). Automated Solution of Differential Equations by the Finite Element
Method. Springer.

Murray, J. D. (2003). Mathematical Biology II: Spatial Models and Biomedical Applications.
Springer.

Pathmanathan, P. (2012). Chaste: Finite Element Implementations.
https://chaste.cs.ox.ac.uk/trac/wiki/Useful Notes.

Shapira, Y. (2012). Solving PDEs in C++: Numerical Methods in a Unified Object-Oriented
Approach. SIAM, 2nd ed.

27

https://doi.org/10.1101/2021.10.21.465304
http://creativecommons.org/licenses/by-nc-nd/4.0/

