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Abstract

Identifying the structure of motion relations in the environment is critical for navigation, tracking, prediction, and
pursuit. Yet, little is known about the mental and neural computations that allow the visual system to infer this
structure online from a volatile stream of visual information. We propose online hierarchical Bayesian inference as
a principled solution for how the brain might solve this complex perceptual task. We derive an online Expectation-
Maximization algorithm that explains human percepts qualitatively and quantitatively for a diverse set of stimuli,
covering classical psychophysics experiments, ambiguous motion scenes, and illusory motion displays. We thereby
identify normative explanations for the origin of human motion structure perception and make testable predictions
for new psychophysics experiments. The algorithm furthermore affords a neural network implementation which
shares properties with motion-sensitive cortical areas and motivates a novel class of experiments to reveal the neural
representations of latent structure.

Introduction
Efficient behavior requires identification of structure in a continuous stream of volatile and often ambiguous visual
information. To identify this structure, the brain exploits statistical relations in velocities of observable features, such as
the coherent motion of features composing an object (Fig. 1a). Motion structure thus carries essential information about
the spatial and temporal evolution of the environment, and aids behaviors such as navigation, tracking, prediction,
and pursuit [1–8]. It remains, however, unclear how the visual system identifies a scene’s underlying motion structure
and exploits it to turn noisy, unstructured, sensory impressions into meaningful motion percepts.

In recent years, Bayesian inference has provided a successful normative perspective on many aspects of visual mo-
tion perception [9–17]. Human perception of motion stimuli spatially constrained by an aperture is well-explained by
Bayesian statistical inference [9–11, 14], and neural circuits that integrate local retinal input into neural representations
of motion have been identified [18–23]. For the perception of structured motion spanning multiple objects and larger
areas of the visual field, however, a comprehensive understanding is only beginning to emerge [15, 24–27]. While
“common fate”, that is, the use of motion coherence for grouping visual features into percepts of rigid objects, received
some experimental support [24, 28], the perception of natural scenes requires more flexible structure representations
(e.g., nested motion relations and non-rigid deformations) than common fate alone. Recent theoretical work [15]
has introduced a representation of tree structures for the mental organization of observed velocities into nested
hierarchies. Theory-driven experiments subsequently demonstrated that the human visual system indeed makes use
of hierarchical structure when solving visual tasks [16], and that salient aspects of human motion structure perception
can be explained by normative models of Bayesian inference over tree structures [17]. Because these studies were
restricted to modeling motion integration only with regard to the perceptual outcome—they analyzed presented
visual scenes offline using ideal Bayesian observer models—it remained unclear how the visual system solves the
chicken-and-egg problem of parsing (in real time) instantaneous motion in a scene while simultaneously inferring the
scene’s underlying structure.
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We address this question by formulating visual motion perception as online hierarchical inference in a generative
model of structured motion. The resulting algorithm is able to explain human perception of motion stimuli covering
classical psychophysics experiments, ambiguous motion scenes, and illusory motion displays. The algorithm, which
relies on online Expectation-Maximization [29–31], separates inference of instantaneous motion from identifying a
scene’s underlying structure by exploiting the fact that these evolve on different time-scales. The resulting set of
interconnect differential equations decomposes a scene’s velocities with the goal of minimizing prediction errors for
subsequent observations. Beyond capturing human percepts in many psychophysics experiments qualitatively, the
online algorithm explains human motion structure classification quantitatively with higher fidelity than a previous
ideal observer-based model [17]. Furthermore, the algorithm provides a normative explanation for the putative origin
of human illusory motion perception, and yields testable predictions for new psychophysics experiments.

Finally, we address how motion structure discovery could be supported by neural circuits in the brain. Studying
the neural representations underlying motion structure perception is challenging, as the perceived structure often
has no direct physical counterpart in the environment (e.g., the concept of a flock velocity in Fig. 1a). We derive a
recurrent neural network model that not only implements the proposed online algorithm, but shares many properties
with motion-sensitive middle temporal area (MT) [21] and dorsal medial superior temporal area (MSTd) [19, 32].
This model in turn allows us to propose a new class of stimuli for neuroscientific experiments that make concrete
predictions for neural recordings.

Results
In what follows, we first present the online algorithm for simultaneous hierarchical inference of instantaneous motion
and of the scene’s underlying structure. Next, we demonstrate the algorithm’s ability to explain human motion
perception across a set of psychophysics experiments and discuss testable predictions for novel studies. Finally,
we propose a biologically realistic neural implementation of online hierarchical inference and identify targeted
experiments to reveal neural representations of latent structure.

Online hierarchical inference in a generative model of structured motion
A structural understanding of the scene in Fig. 1a requires the observer to decompose observed velocities of objects
or their features into latent motion sources, s, that, together, compose the scene (Fig. 1b). These latent sources might
or might not have a direct counterpart in the physical world. In Fig. 1b, for instance, each bird’s velocity on the
observer’s retina can be decomposed into the observer’s self-motion, sself, the flock’s motion, sshared, plus a smaller,
animal-specific component, sind. Here, “flock motion” is an abstract mental concept that is introduced to organize
perception, but doesn’t have an immediate physical correlate. A correct decomposition leads to motion sources
that aid interpretation of the visual scene, and thus supports behaviors such as navigation, tracking, prediction and
pursuit. Such decomposition requires knowledge of the scene’s structure, like the presence of a flock and which birds
it encompasses (Fig. 1c). Wrong structural assumptions might lead to faulty inference of motion sources, like wrongly
attributing the flock’s motion in the sky to self-motion. Thus, the challenge for an observer is to simultaneously infer
motion sources and structure online from a stream of noisy and ambiguous visual information.

We formalized the intuition of structured motion in the generative model shown in Fig. 1d-g. The stochastic model,
first introduced in [16], accommodates fundamental principles of physics (isotropy and inertia) and psychophysics
(continuity of trajectories [33] and slow-velocity priors [9]), without making assumptions on specific object trajectories.
For example, the motion of three flocking birds viewed by a stationary observer (motion tree in Fig. 1d) can be
decomposed into four independent motion sources—one shared (magenta) and three individual (green, one per
bird)—that evolve according to Ornstein-Uhlenbeck processes [34], generating smooth motion with changes typically
occurring at time scale τs (Fig. 1e). The resulting speed (absolute velocity) distribution of each motion source is
governed by an associated motion strength, λ, such that the expected speed is proportional to λ. The observable
velocities, vt, are in turn noise-perturbed (noise magnitude σobs; Fig. 1g) sums of the individual motion sources
(collected in vector st), with the contribution of each individual motion source specified by a different column of the
component matrix C (see Fig. 1f). This formalizes the intuition that observable velocities are the sum of their ancestral
motion sources in the tree.

In this model, the structure of a scene is fully characterized by the vector of motion strengths, λ = (λ1, .., λm, .., λM),
which describe the presence (λm>0) or absence (λm=0) of motion components, as well as their typical speed. In
other words, given a reservoir of components, C, which might have been learned to occur in visual scenes in general,
knowing λ is equivalent to knowing the motion structure of the scene. Inferring this structure in turn becomes
equivalent to inferring the corresponding motion strengths.
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Figure 1. Visual motion perception as an online hierarchical inference task. (a) Scene with nested motion relations. Observed
velocities reaching the observer’s retina are perceived as a combination of self-motion, flock motion and every bird’s individual
motion relative to the flock. (b) Formal decomposition of the scene’s motion into latent motion sources. (c) Tree-structured graph
representation of the underlying motion structure with nodes corresponding to latent motion sources. Self-motion contributes
in the opposite direction to retinal velocity (−1). Vertical distances between nodes, termed motion strengths, λ, describe the
long-term average speed of the source. Vanishing motion strength indicates that the corresponding motion source is not present
the scene. (d)–(g) Generative model of structured motion. (d) Graph for a simpler motion scene with three flocking birds and
a stationary observer. (e) Latent motion sources follow independent Ornstein-Uhlenbeck processes. (f) The component matrix,
C, composes noise-free velocities from the motion sources, such that each velocity is the sum of all its ancestral sources. (g)
Observed velocities are noisy versions of the noise-free velocities. (h) Inverting the generative model according to Bayes’ rule
poses an online hierarchical inference task characterized by interdependent updates of motion sources and structure. (i) Using an
adiabatic approximation, the motion sources’ posterior variances reduce to a function of the motion strengths.

An agent faces two challenges when performing inference in this generative model (Fig. 1h). First, inference needs
to be performed on the fly (i.e., online) while sensory information arrives as an ongoing stream of noisy velocity
observations. Second, how observed motion is separated into latent motion sources, s, and motion structure, λ, is
inherently ambiguous, such that inference needs to resolve the hierarchical inter-dependence between these two
factors. We address both challenges by recognizing that motion structure, λ, typically changes more slowly than the
often volatile values of motion sources, s, facilitating the use of an online Expectation-Maximization (EM) algorithm
to infer both. This separation of time scales yields a system of mutually dependent equations for updating λ and
s and furthermore affords a memory-efficient, continuous-time online formulation that is amenable to a neural
implementation (see Methods for an outline of the derivation, and Supplemental Information, Section 3 for the full
derivation). While the algorithm is approximate, it nonetheless performs adequate online hierarchical inference and
closely resembles more accurate solutions, even for deeply nested motion structures (see Supplemental Figure S1).

Our online algorithm computes, at any time, a posterior belief over the latent motion sources, st, which is Gaussian
with mean vector µt and covariance matrix Σt, as well as an estimate, λt, of the underlying structure. The dynamics of
µt, Σt, and λ2

t (the algorithm is more elegantly formulated on the squared values) read:

∂tλ
2
t =− 1

τλ
λ2

t + α�
(
µ2

t + fΣ(λ
2
t )
)
+ β , (1)

∂tµt =− 1
τs

µt + fΣ(λ
2
t )� CT εt with εt =

vt
σ2

obs
− C µt

σ2
obs

, (2)

and Σt = diag
[

fΣ(λ
2
t )
]

. (3)
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Figure 2. Online hierarchical inference replicates human perception of classical motion displays. (a) In object-indexed
experiment designs, every observable velocity is bound to an object irrespective of its location. Many psychophysics studies fall
into this class of experiment design. (b) Johansson’s 3-dot motion display. Humans perceive the stimulus as shared horizontal
motion with the central dot oscillating vertically between the outer dots. (c) The online algorithm’s estimate of the motion strengths,
λt (a single motion strength is shared across both spatial dimensions). The component matrix, C, is shown in the top-left as a
legend for the line colors. Circles next to the matrix show the assignment of the rows in C to the dots in panel b. (d) The algorithm’s
posterior distribution over the motion sources, st, during the gray-shaded period in panel c. Shown are the mean values, µt, as lines
along with the algorithm’s estimated standard deviation (shaded, only for two components for visual clarity). (e) The Duncker wheel
resembles a rolling wheel of which only the hub and one dot on the rim are visible. (f) Despite its minimalist trajectory pattern,
humans perceive a rolling wheel. (g) Inferred motion strengths, λt. The algorithm identifies shared motion plus an individual
component for the revolving dot. (h) Inferred motion sources, µt, for the duration in panel g. Color gradients along the lines indicate
time (from low to high contrast). For visual clarity, µt has been smoothed with a 50 ms box filter for plotting.

The coupled equations (1)–(3) support the following intuition. Eqn. (1) calculates a running average of the motion
strengths λ2

t by use of a low-pass filter with time scale τλ. Here, � denotes element-wise multiplication and the
function fΣ(λ

2
t ) (Fig. 1i) estimates the variance of the s-posterior distribution according to an adiabatic approximation

(cf. eqn. (3), see Methods). The constants α and β contribute a sparsity-promoting prior, p(λ2), for typical values of the
motion strengths (see Methods for the their full expressions). By eqn. (2), the motion source means µt are estimated by
a slightly different low-pass filter that relies on a prediction error, εt, between the model’s expected velocities, C µt,
and those actually encountered in the input, vt (both normalized by observation noise variance to facilitate the later
network implementation). This prediction error on observable velocities is transformed back to the space of latent
motion sources via the transposed component matrix CT and then, importantly, gated by element-wise multiplication
(�) with the variance estimates fΣ(λ

2
t ). This gating implements a credit assignment as to which motion source was the

likely cause of observed mismatches in εt, and thus uses the scene’s currently inferred motion structure to modulate
the observed velocities’ decomposition into motion sources. For flocking birds, for example, a simultaneous alignment
in multiple birds’ velocities would only be attributed to the shared flock velocity if such a flock had been detected in
the past (λshared large, and λind small). Otherwise it would be assigned to the birds’ individual motions, sind.

Together, eqns. (1) and (2) implement a coupled process of structure discovery and motion decomposition, which
distinguishes them through different time-scales. Notably, the proposed algorithm is not a heuristic, but is derived
directly from a normative model of online hierarchical inference. Next, we explored if the algorithm can explain
prominent phenomena of human visual motion perception.

Online inference replicates human perception of classical motion displays
To explore if the proposed online algorithm can qualitatively replicate human perception of established motion displays,
we simulated two classical experiments from Gunnar Johansson [25] and Karl Duncker [35]. These experiments belong
to a class of visual stimuli which we refer to as object-indexed experiments (Fig. 2a) because the observed velocities, vt,
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belong to objects irrespective of their spatial locations. (Location-indexed experiments will be discussed below.)
In Johansson’s experiment, three dots oscillate about the screen with two of the dots moving horizontally and the

third dot moving diagonally between them (see Fig. 2b and Supplemental Video S1). Humans perceive this stimulus
as a shared horizontal oscillation of all three dots, plus a nested vertical oscillation of the central dot. Similar to
previous offline algorithms [15], our online algorithm identifies the presence of two motion components (Fig. 2c): a
strong shared motion strength, λshared (magenta) and weaker individual motion, λind, for the central dot (green). The
individual strengths of the outer two dots (light and dark green), in contrast, decay to zero. Most motion sources
within the structure are inferred to be small (dotted lines in Fig. 2d). Only two sources feature pronounced oscillations:
the x-direction of the shared motion source, µshared, x, (magenta, solid line) and the y-direction of the central dot’s
individual source, µind,y, (green, solid line), mirroring human perception. As observed velocities are noisy, they
introduce noise in the inferred values of µt, which fluctuate around the smooth sine-functions of the original, noise-free
stimulus. As expected from well-calibrated Bayesian inference, the magnitude of these fluctuations is correctly

mirrored in the algorithm’s uncertainty, as illustrated by the posteriors’ standard deviation
√

fΣ(λ
2
t ) (shaded areas in

Fig. 2d).
In the second experiment, known as the Duncker wheel, two dots follow the motion of a rolling wheel, one marking

the hub, the other marking a point on the rim (Fig. 2e). The two dots describe an intricate trajectory pattern (see Fig. 2f
and Supplemental Video S2), that, despite its impoverished nature, creates the impression of a rolling object for human
observers, a percept that has been replicated by offline algorithms [15]. Likewise, our online algorithm identifies a
shared (magenta in Fig. 2g) plus one individual (dark green) component, and decomposes the observed velocities
into shared rightward motion plus rotational motion for the dot on the rim (see Fig. 2h). Notably, the shared motion
component is discovered before the revolving dot’s individual motion, leading to a transient oscillation in the inferred
shared motion source, µshared (see light magenta trace in Fig. 2h) — an onset effect that could be tested experimentally.

In summary, the online hierarchical inference algorithm successfully identified the structure underlying the motion
displays, provided Bayesian certainty estimates for the inferred motion, and replicated human perception in these
classical psychophysics experiments.

Online inference outperforms ideal observers in explaining human structure perception
Having qualitatively replicated motion structure inference in common motion displays, we next asked if our online
algorithm could quantitatively explain human motion structure perception. To address this question, we reevaluated
behavioral data from Yang et al. [17], where participants had to categorize the latent structure of short motion displays
(see Fig. 3a). Motion scenes followed one of four structures (Fig. 3b) and were generated stochastically from the same
generative model underlying our algorithm. Owing to their stochastic generation, scenes often were ambiguous with
regard to their latent structure, prompting distinct error patterns in human responses (see confusion matrix in Fig. 3c).
For instance, independently moving dots were more frequently misclassified as clustered motion (I-C element) than
vice versa (C-I element), global motion was highly recognizable, and nested hierarchical motion was more frequently
misperceived as clustered than as global.

To test if human responses arise from normative, Bayesian motion structure inference, Yang et al. modeled these
responses in two steps (blue branch in Fig. 3d): first, an offline Bayesian ideal observer, which was provided with
the trajectories of all objects within a trial, calculated the likelihood for each of the four structures. Then, these four
probabilities were fed into a choice model with a small set of participant-specific fitting parameters (see Methods).
This model captured many aspects of human responses, including task performance, typical error patterns, single-
trial responses, and participant-specific differences. Yet, the model arrived at these probabilities by comparing the
likelihoods of the full sequences for all four candidate structures, and so had no notion of how a percept of structure
could emerge over the course of the trial.

Thus, we next asked if our online inference algorithm, which gradually infers the structure during the stimulus
presentation, was better able to account for the observed response pattern. As our algorithm by design inferred
real-valued motion strengths λ rather than only discriminating between the four structures used in the experiment,
we added an additional stage that turned the inferred motion strengths into a likelihood for each of the four structures
at trial end (red branch in Fig. 3d, see Methods). To do so, we computed five hand-designed features from the seven-
dimensional vector λt (besides one global and three individual strengths, there are three possible two-dot clusters),
and trained a multinomial logistic regression classifier on the features to obtain likelihood values for each of the
structures. The classifier was trained on the true structures of the trials, and thus contained no information about
human responses. Finally, we fitted the same choice model as Yang et al. to the participants’ responses.

The confusion matrix predicted by our model shows an excellent agreement with human choices, both when
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Figure 3. The model quantitatively explains human perception of nested and ambiguous motion scenes. (a) Stochastic
motion stimulus from Yang et al. [17] consisting of three dots rotating on a circle. (b) Each trial followed one of four motion structures.
If clustered motion was present (C or H structure), any pair of dots could form the cluster. (c) Confusion matrix of human responses,
averaged over all 12 participants. (d) Models for predicting human responses. Yang et al. employed a Bayesian ideal observer
as the basis for fitting a participant-specific choice model. Our algorithmic model, in contrast, calculates the likelihood for each
structure from the motion strengths, λt, at trial end and then fits the same choice model as Yang et al. for translating probabilities
into human responses. (e) Confusion matrix of our algorithmic model. (f) Log-likelihood of human responses relative to chance
level, for both models. The analyses in panels e and f are leave-one-out cross-validated to prevent overfitting.

averaged across participants (Fig. 3e), and on a per-participant basis (see Supplemental Figure S3 and S4). Indeed, our
model beats the original computational model in terms of response log-likelihoods for all of the 12 participants (see
Fig. 3f; p<0.001, two-sided paired Wilcoxon signed-rank test). Furthermore, the algorithmic model overcomes the
systematic under-estimation of global motion (G-G matrix element) that previous, ideal observer-based approaches
suffered from [16, 17]. Importantly, in our model, any information connecting the stimulus to the eventual choice
is conveyed through the motion strengths, λt, as a bottleneck. The fact that the online hierarchical inference-based
approach describes human responses better than the ideal observer-based model of Yang et al. indicates that our
algorithm may share mechanistic features with the human perceptual apparatus.

Explaining motion illusions that rely on spatial receptive fields
In contrast to the object-indexed experiments discussed above, another class of psychophysics experiments employs
velocity stimuli that remain at stationary locations (see Fig. 4a), typically in the form of apertures of moving dots or
drifting Gabors. This class, which we refer to as location-indexed experiments, is furthermore popular in neuroscience as
it keeps the stimulus’ local visual flow within an individual neuron’s spatial receptive field throughout the trial [21].
We investigated our model’s ability to explain illusory motion perception in two different types of location-indexed
experiments: motion direction repulsion in random-dot kinematograms (RDKs) [36, 37, 39, 40], and noise-dependent
motion integration of spatially distributed stimuli [38, 41].

We modeled perception in these experiments by including a self-motion component and added a vestibular input
signal to the observables (see Fig. 4b, and cf. Fig. 1a-c). The vestibular input, which we fixed to have zero mean
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Figure 4. Hierarchical inference explains motion illusions in location-indexed experiments. (a) In location-indexed exper-
iments, motion flow is presented at stationary spatial locations. (b) Considered latent motion components. Self-motion, which
affects all retinal velocities in the opposite direction (-1) integrates both visual input and a vestibular signal (here: zero + noise).
(c) Perceived object velocities, relative to the environment, are the sum of all inferred motion components excluding self-motion. (d)
In motion direction repulsion experiments, two groups of dots move at constant velocity with opening angle γ. (e) The direction in
which human perception of the opening angle is biased depends on the true opening angle. Black dots: human data, reproduced
from [36]. Purple line: model precept. Insets: the algorithm’s inferred motion decomposition. (f) Varying the contrast of one dot
group modulates the biased percept of the angle of the other group. Purple: model percept for γ=45°, qualitatively matching data
from [37]. Blue: predicted inversion of the bias for smaller opening angles. (g) Same as panel f, but for varying the speed of the
second group. Purple: model prediction for γ=90°, qualitatively matching data from [36]. Blue: predicted biphasic function for
smaller opening angles. (h) In the motion illusion from Lorenceau [38], a vertically and a horizontally oscillating group of dots
maintain a 90°-phase shift consistent with global clockwise rotation (indicated as gray arrow). (i) The noise-free stimulus (top)
evokes transparent motion with an additional counter-clockwise rotating percept in human observers. Adding motion noise by
disturbing dot trajectories orthogonal to their group’s oscillation axis (bottom; modeled by increased observation noise σ2

obs) flips
the percept to a single coherent rotation of all dots in clockwise direction. (j) The algorithm’s perceived velocities in both stimulus
conditions (time = color gradient from low to high contrast; t≤2s in noise-free condition; t≤5s in noisy condition). For visual clarity,
perceived velocities have been smoothed with a 200 ms box filter for plotting. (k) Illustration of the algorithm’s inferred motion
decomposition. For noise-free stimuli, clockwise rotating self-motion is compensated by counter-clockwise rotating group motion
(sketched here for the vertical group). With motion noise, only a single, clockwise rotating shared motion component is inferred for
all dots.

plus observation noise, complemented the visual input, which is ambiguous with regard to self-motion and globally
shared object motion and can induce illusory self-motion (“vection”) [42, 43]. In turn, we model the subjectively
perceived velocity of objects, relative to the stationary environment, as the sum of all inferred motion sources excluding
self-motion (see Fig. 4c and Methods).

In the RDK experiment, a participant fixates the center of an aperture in which two groups of randomly positioned
dots move linearly with opening angle γ (see Fig. 4d) and subsequently reports the perceived opening angle. Motion
direction repulsion occurs if the perceived angle is systematically biased relative to the true opening angle.

As previously reported, the repulsion bias can change from an under-estimation of the opening angle for small
angles to an overestimation for large angles (data from [36] reprinted as black dots in Fig. 4e). We replicated this effect
by simulating two constant dot velocities with opening angles that varied across trials. Our algorithm decomposed
the stimulus into self-motion, shared motion and individual (group) motion. Across opening angles, it featured a
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triphasic psychometric function with angles smaller than ~40° being under-estimated, angles between ~40° and ~110°
being over-estimated, and even larger angels being unbiased (purple curve in Fig. 4e). The match with human biases
arose without systematic tuning of simulation parameters (the simulations presented in this manuscript were mostly
performed with a set of default parameters, see Methods). Inspecting the algorithm’s inferred motion components
revealed that, for small γ, the negative bias arose from integrating all dots into a single, coherent motion component
while disregarding individual dot motions (left inset in Fig. 4e). Intermediate γ, in contrast, caused the shared
component to be correctly broken up into two individual components—plus a small illusory self-motion component
(right inset in Fig. 4e). This self-motion, which is ignored in the perceived velocities, widened the perceived opening
angle between the two groups of dots. For even larger γ, the illusory self-motion vanished yielding unbiased percepts.

For fixed opening angles, motion direction repulsion is furthermore modulated by relative contrast and speed
difference between the two motion components. Specifically, for an opening angle of γ=45°, Chen et al. [37] has
shown that increasing the contrast of one dot group inflates the perceived opening angle—here measured relative to
horizontal to separate cause and effect—of the other, constant-contrast group (Fig. 4f, left). We replicated this effect in
simulations that operationalized visual contrast as an (inverse) multiplicative factor on the observation noise variance,
σ2

obs. For an opening angle of γ=45°, our algorithm featured a positive and monotonically increasing repulsion bias as
the second group’s contrast increases (purple line in Fig. 4f, right), similar to what has been previously reported. For
smaller opening angles, in contrast, our algorithm predicts an inversion of the repulsion bias, which first decreases at
low contrast and then increases again for higher contrast (blue line in Fig. 4f, right)—a prediction that remains to be
tested. Increasing the speed of one motion component for large opening angles also introduces a positive bias in the
perceived opening angle of the other component in human participants [36]. We replicated this effect by increasing
the second group’s speed, which, for a γ=90°opening angle, yielded a relatively stable bias of ~5° across different
motion speeds (purple line in Fig. 4g), in line with the aforementioned experimental data from Braddick et al. [36].
Furthermore, our algorithm predicts that the speed-dependent bias changes to a biphasic curve for smaller opening
angles (blue line), providing another testable prediction.

Turning to noise-dependent motion integration of spatially distributed stimuli, we investigated a motion illusion
by Lorenceau [38] which has received little attention in the literature. Two groups of dots oscillate in vertical and
horizontal orientation, respectively (see Fig. 4h and Supplemental Video S3). Both groups follow sine-waves with
identical amplitude and frequency, but maintain a relative phase shift of π/2 that is consistent with an imaginary
global clockwise (CW) rotation (indicated by a gray arrow in Fig. 4h). This stimulus can be considered location-indexed,
as the small oscillation amplitude of less than 1 degree of visual angle caused the stimulus to conveniently fit into
the receptive fields of individual neurons of the human homologue of area MT [44]. Interestingly, the stimulus’
percept changes once disturbances orthogonal to the axes of oscillation are added (called “motion noise” in [38], see
Fig. 4i). Without motion noise, participants perceive transparent motion, that is, the dots within either group are
combined to a rigidly moving object according to “common fate”, and both groups are perceived as moving separately.
Their movement, however, is not perceived as strictly vertically and horizontally, but rather the stimulus induces
an impression of slight counter-clockwise (CCW) rotation, that is, “opposite to veridical” [38]. With motion noise, in
contrast, the percept switches in two ways: all dots appear to move coherently along a circle, and the perceived
direction of movement becomes CW. These percepts are illustrated in Fig. 4i.

Applied to this stimulus, our algorithm replicates the perceived rotation direction reversal with increased motion
noise, which we simulated through an increase in the observation noise σ2

obs. Specifically, the algorithm’s perceived
velocities for both groups of dots featured a slight global CCW rotation on top of two generally separated groups for
the noise-free stimulus, and a single global CW rotation once observation noise is increased (Fig. 4j). Inspecting the
algorithm’s motion decomposition provides a possible answer to how this flip in perceived rotation emerges, which is
illustrated in Fig. 4k by the example of the vertical group. On noise-free presentation, dot motion was decomposed
into clockwise rotating self-motion (golden arrow) plus a vertically elongated, yet slightly CCW rotating group motion
(green arrow), leading to the transparent CCW motion percept. Once observation noise increased, the inferred motion
structure discarded the separated groups in favor of a single global motion component (magenta), leading to the
percept of coherent CW rotation for all dots (see Supplemental Figure S5 for trajectories of the motion strengths and
sources under both conditions).

Experimental predictions from a biological network model of hierarchical inference
Finally, we asked whether and how a biologically plausible neural network could implement our online hierarchical
inference algorithm. To this end, we devised a recurrent neural network model of rate-based neurons. Naturally, such
modeling attempt relies on many assumptions. Nonetheless, we were able to identify several experimentally testable
predictions that could help guide future neuroscientific experiments.
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Figure 5. Hierarchical inference can be performed by a biologically realistic network model. (a) Network model implementing
the online algorithm. Linear and quadratic interactions are indicated by direct arrows and “Quad” boxes, respectively. In parentheses,
the variables represented by each population. (b) Rotational stimulus in a location-indexed experiment. Besides translational
(Cartesian) motion, the inference algorithm also supports rotational, sϕ, and radial motion, sr. (c) Tuning centers in a model of area
MT. A local population of neurons, which share the spatial receptive field highlighted in panel b, cover all directions and speeds with
their velocity tuning centers. (d) Response function for the neuron highlighted in panel c. The neuron responds strongly to local
velocities into the upper-right direction with a speed of ~5°/sec. Max. rate = 29.5 spikes / s. (e) Motion structure used for the network
simulation in panels f–j, including simultaneous translational, rotational and radial motion sources. (f) Illustration of the stimulus.
After 1s of counter-clockwise rotation around the fixation cross, the rotation switches to clockwise. At t=2s, rightward translation is
superimposed on the rotation. (g) Motion sources inferred by the network (solid lines: distributed population read-out; dotted lines:
online algorithm solution). Shown is µt for translational, rotational, radial and individual motion. Only 4 individual components (2 x-
and 2 y-directions) are shown for visual clarity. (h) Firing rates of the 1-to-1 population. Rates are in arbitrary units (a.u.) because
the theory supports scaling of firing rates with arbitrary factors. (i) Same as panel h, but for a random subset of 25 neurons of the
distributed population. (j) Same as panel h, but for a random subset of 40 neurons of the input population, and smoothed with
a 50 ms box filter for plotting. (k) Stimulus of a proposed neuroscience experiment. Velocities in distributed apertures follow the
generative model from Fig. 1 using shared motion and individual motion. (l) Different trials feature different relative strengths of
shared and individual motion, ranging from close-to-independent motion (left) to highly correlated motion (right). (m) Linear readout
of the fraction of shared motion from neural activity. Seven different fractions of shared motion were presented (x-axis; noise in
x-direction added for plotting, only). A linear regression model was trained on the outermost conditions (blue dots). Intermediate
conditions were decoded from the network using the trained readout (red dots). Only a subset of 7 × 500 = 3500 points is shown for
visual clarity.

Following Beck et al. [45], we assumed that task-relevant variables can be decoded linearly from neural activity
(“linear population code”) to support brain-internal readouts for further processing, actions and decision making.
Furthermore, we employed a standard model for the dynamics of firing rates, ri(t), and assumed that neurons can
perform linear and quadratic integration [45–47]:

τi ∂tri =−ri + fi(wT
i r + rT Q(i) r) , (4)

with time constant τi, activation function fi(·), weight vector wi and matrix Q(i) for linear and quadratic integration,
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respectively. The rate vector, r(t), here comprises all presynaptic firing rates, including both input and recurrent
populations. With these assumptions, we derived a network model with the architecture shown in Fig. 5a, which
implements the online algorithm via its recurrent interactions and supports linear readout of all task-relevant variables.
That is, for every task-relevant variable, x, there exists a vector, ax, such that x = aT

x r (see Supplemental Information,
Section 5 for the derivation).

The network consists of three populations. The input population (bottom in Fig. 5a) encodes the observed velocities,
vt/σ2

obs, and observation precision, 1/σ2
obs, in a distributed code. While any code that supports linear readout of these

variables could serve as valid neural input, we chose a specific model that, as shown below, captures many properties
of motion-sensitive area MT. The distributed population (center in Fig. 5a) simultaneously represents the squared motion
strengths, λ2

t , mean of the sources, µt, and prediction errors, εt, in a distributed code with linear readout. For those,
almost arbitrary readouts suffice, such that we chose randomly generated readout vectors, a. Notably, we propose
the prediction errors, εt, to be linearly decodable, which allowed eqn. (2) to be implemented with the neuron model
in eqn. (4) (see Supplemental Information, Section 5.3 and 5.4). All neurons in the distributed population have simple
activation functions, fi(·), that are linear around some baseline activity. The linear decodability of λ2

t , µt, and εt are
testable predictions. Finally, the 1-to-1 population (top in Fig. 5a) represents the uncertainty, Σ= fΣ(λ

2), in a one-to-one
mapping, rm ∝ fΣ(λ

2
m), with rm being the firing rate of either a single cell or, more likely, a small population. The

theoretical motivation behind this representation is two-fold: on the one hand, the non-linear form of fΣ(·) prevents
a distributed, linearly decodable representation (see Supplemental Information, Section 5.5); on the other hand, the
particular shape of fΣ(λ

2
m), shown in Fig. 1i, mirrors the typical activation function of Type-I neurons [48], such that

the proposed representation emerges naturally for the activation function, fΣ(aT
λ2

m
r), in the 1-to-1 population (using

the fact that λ2
m can be read out neurally with weights w = aλ2

m
). Overall, the network structure predicts λ2

t , µt, and
εt to be linear decodable, and the components of fΣ to be independently encoded in single neurons or small neural
populations.

Even though the network model supports both the object-indexed and location-indexed experiments from Fig. 2 – 4,
the retinotopic organization of the early visual system [21, 49] brings a location-indexed perspective closer in line
with our understanding of how the cortex encodes visual information. Furthermore, as we show in Supplemental
Information, Section 2.5, our model can be extended to support motion sources in polar coordinates (see Fig. 5b),
such that it supports salient real-world retinal input motifs, such as rotation and radial expansion/contraction about
the fovea. Representations of angular motion, sϕ, and radial motion, sr, can also coexist with translational motion
(i.e., linear motion in Cartesian coordinates) within the same population. Selective neural response to rotation,
expansion/contraction and translation, as well as combinations thereof, such as spiraling, has been frequently reported
in the dorsal medial superior temporal area (MSTd) [19, 50].

Before demonstrating this capability in simulations, let us provide further information about the model’s input
population, and how it relates to known properties of area MT. To do so, consider the location-indexed stimulus in
Fig. 5b. During fixation, each aperture stimulates a population in retinotopically organized, motion sensitive area
MT [21]. Neurons in MT are tuned to respond preferentially to a certain direction and speed (Fig. 5c), such that the
full population jointly covers all velocities in a polar grid [51, 52]. The response of individual neurons to velocities
within their spatial receptive field is commonly modeled by a log-normal function for speed [52] and a von Mises
function for direction [53], leading to the bump-like response function shown in Fig. 5d. As a third factor, higher
visual contrast (smaller σ2

obs) leads to higher firing rates [54]. As we derive in Supplemental Information, Section 5.6, a
neural population with these response functions supports linear readout of input velocities, vt/σ2

obs, and precision,
1/σ2

obs, in Cartesian coordinates. This provided us with a biologically realistic and, at the same time, theoretically
grounded input population model which we used in the following network simulations.

We tested the network’s ability to perform online hierarchical inference in the simulation shown in Fig. 5e–j. To
challenge the network, we employed a stimulus that combined shared rotation and shared translation (motion tree
in Fig. 5e). Six input populations with receptive fields shown in Fig. 5f projected to a distributed population of 100
neurons and a 1-to-1 population of size 8 (one per motion strength). After one second of retinal velocities of counter-
clockwise rotation (Fig. 5f, left), these velocities switched to clockwise rotation (center), followed by a superposition of
clockwise rotation and rightward translation (right). As the network response for the three populations to this stimulus
shows (Fig. 5h–j), input neurons fired sparsely and were only active if the stimulus matched their preferred direction
or speed. Neurons in the distributed population, in contrast, showed fluctuating activity with little apparent structure,
and exhibited population-wide transients upon changes of the input. Finally, the 1-to-1 population responded more
graded and with a short delay, suggesting that every rate, rm, describes a small cortical population rather than
individual neurons. Knowledge of the (randomly drawn) vectors, ax, of the simulated network, allowed us to read out
the network’s latent motion decomposition at each time point (solid lines in Fig. 5g). This revealed that the network
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correctly decomposed the input, including the overlaid rotational and translational motion, and closely matched the
online algorithm (dotted lines).

In experiments with humans and animals, we have no access to these readout vectors, ax. We therefore simulated
a possible experiment that tests our model and doesn’t require this knowledge (see Fig. 5k–m), while benefiting from
precise stimulus control. Several apertures, located at the receptive fields of recorded neurons in motion sensitive
areas (e.g., area MT or MSTd), present a motion stimulus according to the generative model from Fig. 1. Velocities
across the apertures are positively correlated owing to a shared motion source, but also maintain some individual
motion (see Fig. 5k and Supplemental Video S4). A series of trials varies the fraction of shared motion in the stimulus,
q := λ2

shared/(λ2
shared+λ2

ind), ranging from almost independent motion (Fig. 5l, left) to almost perfect correlation
(right). According to the network model, λ2 can be read out linearly. For the simulation in Fig. 5m, we presented the
network with trials of seven values of q. We then trained a linear regression model to predict q from the neural activity
for the two most extreme structures (blue dots in Fig. 5m), and decoded q for the intermediate structures using this
regression model (red dots in Fig. 5m). Owing to the stochastic stimulus generation, the network’s motion structure
estimates, λt, fluctuate around the true strength—yet, on average, the trained linear readout correctly identified the
fraction of global motion in the stimulus. This is a strong prediction of the network model, which could be tested in a
targeted neuroscientific experiment.

Discussion
We have proposed a comprehensive theory of online hierarchical inference for structured visual motion perception.
The derived algorithm decomposes an incoming stream of retinal velocities into latent motion components which
in turn are organized in a nested, tree-like structure. A scene’s inferred structure provides the visual system with
a temporally robust scaffold to organize its percepts and to resolve momentary ambiguities in the input stream.
Applying the theory to human visual motion perception, we replicated diverse phenomena from psychophysics in
both object-indexed and location-indexed experiment designs. Furthermore, inspection of the algorithm’s internal
variables provided normative explanations for putative origins of human percepts and spawned concrete predictions
for new psychophysics experiments. Finally, the algorithm afforded a recurrent neural network model with visual
inputs reminiscent of cortical area MT and latent structure representations reminiscent of area MSTd.

In the main text, we have for the sake of clarity limited the presentation of the theory to a basic version that
nonetheless covers all essential concepts. In Supplemental Information, Section 4, we present several extensions that are
naturally covered by the algorithm: (i) observation noise, σobs, can be time- and object-dependent, which is relevant
for modeling temporary occlusion of a subset of stimuli; (ii) observation noise can be non-isotropic (different values in
x- and y-direction), which is relevant for angle-dependent edge velocities in apertures [55]; (iii) for optimal inference,
different motion components can feature different time constants, since velocity is expected to change more slowly for
heavy objects due to higher inertia; (iv) different motion components may tend to co-occur or exclude one another in
real-world scenes, which can be modeled by an interaction prior of pairwise component compatibility; and (v) when
motion components are not present for a long time, they will decay to zero, preventing their rediscovery, which can be
mitigated by a prior on motion strengths.

The current theory is limited to velocities as input, thereby ignoring the well-documented influence of spatial
arrangement on visual motion perception, such as center-surround modulation [56, 57], adjacency [26] or motion as-
similation [58]. Furthermore, the algorithm does not solve the correspondence problem in object-indexed experiments,
but simply assumes that velocities are correctly assigned to the input vector as objects move about the visual field.
Our work focuses on the simultaneous inference of motion sources, st, and motion strengths, λt. Other quantities,
such as time constants and, probably more importantly, the motion components, C, have been assumed to be given. It
is worth noting, however, that gradient-based learning of C is, in principle, supported by the theory on long time
scales (see Supplemental Information, Section 4.5). Finally, limited experimental evidence of the neural correlates of
motion structure perception required the neural network model to rely on many modeling assumptions. The model’s
predictions should act as a starting point for further scientific inquiry of these neural correlates.

Even though the sensory processes underlying object-indexed motion perception necessarily differ from those of
location-index perception, the online inference algorithm describes human perception for both types of experiments.
Thus, both types might share the same underlying neural mechanisms for structure inference. This raises the intriguing
question whether there exist stable, object-bound neural representations of velocity. Furthermore, our work points
towards a tight link between neural representations of latent structure and representations of uncertainty in that the
estimated motion strengths, λt, determine the credit assignment of prediction errors through the gating function,
fΣ(λ

2
t )—a function that also computes the variance of motion components, e.g., the brain’s uncertainty about flock

velocity. Behaviorally, sensory noise directly impacts the perceived structure of a scene as demonstrated experimentally
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by the perceptual reversal in the motion illusion of Lorenceau [38] (cf. Fig. 4h–k). More generally, our theory predicts
that the visual system will organize its percepts into simpler structures when sensory reliability decreases. Moreover,
the reliability of visual cues plays a role in multisensory integration [59], with area MSTd [60, 61], but not area MT
[62], exhibiting tuning to vestibular signals. Thus, MSTd may be a candidate area for multisensory motion structure
inference. Overall, we expect our theoretical results to guide targeted experiments in order to understand structured
visual motion perception under a normative account of statistical information processing.

Methods
In what follows, we provide an overview of the generative model, the online inference algorithm, the computer
simulations, and the data analysis. A more detailed presentation is found in the Supplemental Information.

Generative model of structured motion. We consider K observable velocities, vk,d(t), in D spatial dimensions. For
notational clarity, we will consider in this Online Methods section only the case D=1 and use the vector notation,
vt=(v1(t), .., vK(t))T. The extension to D>1 is covered in Supplemental Information, Section 2.4. Observable velocities, vt,
are generated by M latent motion sources, sm,d(t), abbreviated (for D=1) by the vector st=(s1(t), .., sM(t))T. Velocities
are noisy instantiations of their combined ancestral motion sources, vt ∼ N

(
C st, σ2

obs/δt I
)
, where Ckm= + 1,−1,

and 0 in K×M component matrix, C, denote positive, negative and absent influence, respectively. For the formal
definition, observations, vt, remain stable within a short time interval [t, t+δt), and the observation noise variance,
σ2

obs/δt, ensures a δt-independent information content of the input stream. In the online inference algorithm, below,
we will draw the continuous-time limit, which will become independent of δt. In computer simulations, δt is the
inverse frame rate of the motion display (default value: 1/δt=60Hz). Each motion source (in each spatial dimension)
follows an Ornstein-Uhlenbeck process, dsm = −sm/τs dt + λm dWm, with time constant τs, motion strength λm
(shared across dimensions), and Wiener process Wm. The resulting marginal stationary velocity distribution of vk is
vk ∼N

(
0, σ2

obs/δt + τs
2 ∑M

m=1 C2
km λ2

m
)
.

Radial and rotational motion sources. In location-indexed experiments, the input’s location (e.g., a neuron’s receptive
field) remains fixed. For D=2, input vk has fixed polar coordinates (Rk, ϑk) with radial distance Rk and angle ϑk,
relative to the pivot point. Denoting radial and rotational motion sources by sr and sϕ, we obtain for the noise-free part
of vk in Cartesian coordinates: vk,x = sr cosϑk − sϕ Rk sinϑk, and vk,y = sr sinϑk + sϕ Rk cosϑk. Since Rk and ϑk are fixed
coefficients, the mapping (sr, sϕ) 7→ (vk,x, vk,y) is linear and, thus, can be described by the component matrix C. The
full derivation and an illustration of the velocity relations in polar coordinates are provided in Supplemental Information,
Section 2.5.

Online inference algorithm. The goal of motion structure inference is to simultaneously infer the value of motion
sources, st, and the underlying structure, λ, from a stream of velocity observations. The number of spatial dimensions,
D, component matrix, C, time constant τs, and observation noise σobs are assumed to be known. The EM algorithm
leverages that changes in st and λ (if changing at all) occur on different time scales, τs and τλ, respectively. For τλ� τs,
the EM algorithm treats λ as a constant for inferring st (E-step), and optimizes an estimate, λt, online based on the
inferred motion strengths (M-step).

E-Step. For fixed λ, the posterior p( st |v0:t; λ ) is always a multivariate normal distribution, N (µt, Σt), and can be
calculated by a Kalman-Bucy filter [63, 64]; see Supplemental Information, Section 3.1, 3.2, and 3.3.1 for the derivation.
This yields coupled differential equations for the time evolution of µt and Σt. To reduce the computational complexity
of the system, we perform an adiabatic approximation on the posterior covariance, Σt, by assuming (a) that it has
always converged to its stationary value, and (b) that off-diagonal values in Σt are zero, that is, we ignore correlations
in uncertainty about latent motion sources in the posterior distribution. As shown in the full derivation in Supplemental
Information, Section 3.3, the first assumption is warranted because the stationary value of Σt depends only on the
current structure estimate, λt; then, because Σt decays to stationarity at time scale τs/2, it can always follow any
changes in λt which happen at time scale τλ�τs. The second assumption is a modeling assumption: that biological
agents might disregard the subtle (and complicated) interactions between the uncertainties of different motion sources
and rely on their individual uncertainties, instead. Using the two assumptions we derive a closed-form solution for
the posterior variance,

Σmm =
σ2

obs
τs ‖cm‖2

(
−1 +

√
1 +

τs2 ‖cm‖2

σ2
obs

λ2
m

)
=: fΣ(λ

2
m) , (5)

with ‖cm‖2 = ∑K
k=1 C2

km denoting the vector-norm of the m-th column of C. This is eqn. (3) of the main text. The plot in
Fig. 1i has parameters ‖cm‖2=4, τs=300ms, and σobs=0.05. By plugging the adiabatic approximation of the variance
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into the time evolution of µt, we arrive at eqn. (2) of the main text (see Supplemental Information, Section 3.3.4 for the
derivation).

M-step. Using the posterior from the E-step, motion strengths, λ, are optimized to maximize the likelihood of the
observed velocities. This optimization further incorporates prior distributions, p(λ2

m), most conveniently formulated
over the squared motion strengths, for which we employ a scaled inverse chi-squared distribution,

p(λ2
m) = Iχ(λ2

m ; νm, κ2
m) =

1

λ
(2+νm)
m

exp
[
−νmκ2

m
2λ2

m
− A(νm, κ2

m)

]
, (6)

owing to its conjugacy to estimating the variance of sm (this is what λ2
m controls). The prior features two hyper-

parameters, νm and κ2
m, which give rise to an intuitive interpretation as νm pseudo-observations of average value κ2

m.
The partition function, A(νm, κ2

m), only serves for normalization. By default, we employ a Jeffreys prior (νm=κ2
m=0),

which is a typical choice as a non-informative prior in Bayesian statistics and promotes a preference for finding simple
structures by assigning higher beliefs to small values of λm (and highest to λm=0). The only exception is the motion
strength assigned to self motion, λself, for which we employ a uniform prior distribution, formally by setting νself= − 2
and κ2

self = 0. These choices reflect the a-priori belief that motion components supported by C will usually be absent or
small in any given scene—with the exception of self-motion-induced velocity on the retina, which occurs with every
saccade and every turn of the agent’s head (see Supplemental Information, Section 3.1.2 for the formal calculation of the
M-step).

In the online formulation of EM (see Supplemental Information, Section 3.2.3 and 3.3.4 for the derivation of the online
EM algorithm and of the proposed adiabatic inference algorithm, respectively), these priors give rise to the low-pass
filtering dynamics in eqn. (1) for updating λ2

m, with constants

αm =
2

τs2 (2 + νm + τλ/τs)
, and (7)

βm =
νm κ2

m
τλ (2 + νm + τλ/τs)

. (8)

This completes the derivation of the online algorithm for D=1 spatial dimensions. The extension to multiple
dimensions is straightforward and provided in Supplemental Information, Section 3.1.3, 3.2.3 and 3.3.4 alongside the
respective derivations.

Preference for simple structures. The above Jeffreys prior on motion strengths, p(λ2
m), facilitates the discovery

of sparse structures. This property is important when a large “reservoir” of possible motion components in C is
considered: the algorithm will recruit only a small number of components from the reservoir. In Supplemental Figure S2,
we demonstrate this ability for the example of the Johansson experiment from Fig. 2b–d by duplicating the shared
motion component, i.e., the first two columns in C are all 1’s. As Supplemental Figure S2 shows, the online algorithm
recruits only one of the two identical components and discards the other. This example of identical components in the
reservoir represents the theoretically hardest scenario for maintaining a sparse structure.

Computer simulations. Computer simulations and data analysis were performed with custom Python code (Python
3.8, Numpy 1.21, Scipy 1.7, scikit-learn 0.24, Matplotlib 3.4, Pandas 1.3, xarray 0.19). The code package supports most
of the extensions presented in Supplemental Information, Section 4.

For the numerical simulation, input was drawn with observation noise variance σ2
obs/δt, at the time points of input

frames (every δt). The drawn input remained stable until the next frame. Between frames, the differential equations
for online hierarchical inference were integrated with SciPy’s explicit Runge-Kutta method “RK45” which adapts the
step size. This integration method combines numerical accuracy with a parameterization that is almost invariant to
the input frame rate. The default parameters that we used are listed in Table 1.

Hierarchical motion experiments (Fig. 2). For the Johansson experiment, all K=3 dots followed sinusoidal velocities
with frequency 0.5Hz. Horizontal amplitudes were 2

√
τs for all dots; vertical amplitudes were 0 for the outer dots and

cos(45◦) · 2√τs for the inner dot. For the Duncker wheel, we set the wheel radius to R=1 and the rotation frequency to
1Hz. This leads to the hub velocity vhub, y=0 and vhub, x=2π s−1 because the hub must travel 2πR during one period
for slip-free rolling. For the rim velocities, being the derivatives of location, we thus find vrim, x=vhub, x + R ω cos(ω t)
and vrim, y= − R ω sin(ω t), with ω=2π s−1. For the simulation, we increased the observation noise to σobs=0.15 and
set λm(t=0)=0.1 to highlight the gradual discovery of the motion components.
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Description Variable Object-indexed Location-indexed Network

Time const. motion sources τs 0.300 s 0.100 s 0.100 s
Time const. motion strengths τλ 1.000 s 0.333 s 0.333 s
Inv. observation frame rate δt 1/60 s 1/60 s 1/120 s
Observation noise σobs 0.05 0.017= 0.05 ÷ 3 0.017
Initial motion strength λm(t=0) 0.5 0.5 0.5
No. of pseudo observation νm 0 0 / −1 0
Val. of pseudo observations κm 0 0 0

Vestibular input vvst – 0 –
Obs. noise for vestibular input σvst – 0.05 –

Time const. for pred. err. τε – – 0.050 s

Table 1. Default parameters of the computer simulations. Most parameters are maintained throughout all computer experiments.
Deviations from these parameters are listed in the respective experiment description. The value νm= − 1 in location-indexed
experiments relates to self-motion. For D=2 spatial dimensions, νself= − 2/D= − 1 yields a uniform prior distribution (see
Supplemental Information, Section 3.1.3).

Structure classification (Fig. 3). The stimulus data and human responses were released by [17] on GitHub. The
experiment is described in detail in [17]. There were 12 participants with each participant performing 200 trials. Each
trial consisted of three dots moving on a circle for 4 s. Dots had different colors to prevent their confusion, but colors
did not convey any information on the dots’ roles within the structure. No data was excluded. Trials were generated
stochastically from the same generative model that is considered in this work, with uniform probability for each of the
four structures (Independent, Global, Clustered, Hierarchical) to underlie the trial. Motion strengths were chosen such
that all dots had identical marginal velocity distributions, p(vk), across all structures—leaving motion relations as the
only distinguishing information (see [17], for detailed stimulus parameters and λ-values of all structures). Like [17],
we treated the experiment as one-dimensional (D=1), operating directly on the angular velocities. Noise-free angular
velocities were calculated from the circular distance of subsequent stimulus frames, and we set 1/δt=50Hz to match
the experiment’s frame rate.

For presenting the trials to our inference algorithm, we initialized each of the λm at its average value (average taken
across the ground truth of all structures). At trial end, the inference algorithm yielded M=7-dimensional λ-vectors
associated with 1 shared component, 3 cluster components (one per possible pair), and 3 individual components (see
Supplemental Figure S3 for example trials). For logistic regression, we calculated 5 features, Ti, from λ, namely:

T1 = λ1

/
∑

i
λi “Does shared motion stand out?” (9)

T2 = max{λ2,λ3,λ4}
/

∑
m=2,3,4

λm “Does one cluster dominate the others?”

T3 = max{λ5,λ6,λ7}
/

∑
m=5,6,7

λm “Does one individual component stand out?”

T4 = λ2
c

/
∑

m=c,Ch1(c),Ch2(c)
λ2

m with c = argmax(λ2,λ3,λ4) “Does the strongest cluster dominate its children?”

T5 = λ2
c

/
∑

m=c,¬Ch(c)
λ2

m with c = argmax(λ2,λ3,λ4) “Does the strongest cluster dominate the 3rd dot?”

Here, Ch1,2(c) denote the individual motion components of the two dots within the cluster component c, and ¬Ch(c)
denotes the dot not being in cluster c. The features were hand-designed based on the reasoning that they may be useful
for structure classification. Their most important property is that all information about a trial is conveyed through λ
as a bottleneck. A multinomial logistic regression classifier was trained with L1-regularization on the feature vectors,
(T1, .., T5), to classify the ground truth structures of the trials. Then, we fitted the same choice model as [17] to the
human choices, but replaced the ideal observer log-probability, log p(S |v0:T ), which was used in [17], with the class
probability from the trained classifier, log p(S |λ ):

P(choice=S) = πL
1
4
+ (1− πL) exp [β (log p(S |λ ) + bS)]

/
Norm. , (10)
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with lapse probability, πL, inverse temperature, β, and biases, bS, for all structures, S = G, C, H, relative to the
independent structure (bI=0 by convention). Note that, in contrast to [17], we do not need to consider structure
multiplicities here because the features are already symmetric with regard to the three possible cluster assignments.
Like [17], we did not apply observation noise to the presented velocities, but maintained a non-zero observation noise
parameter, σobs, for the inference algorithm. Observation noise, σobs, and lapse probability, πL, were shared parameters
for all participants and were fitted jointly via a simple grid search. We obtained σobs=0.04 and πL=4% (compared to
14% in [17]). The remaining 4 parameters, {β, bG, bC, bH}, were fitted via maximum likelihood for each participant.
All reported confusion matrices and log-likelihoods were obtained by fitting the 4 per-participant parameters using
leave-one-out cross-validation. The log-chance level in Fig. 3f is 200 · log(1/4) since each participant performed 200
trials.

Location-indexed experiments (Fig. 4). To support self-motion, we introduce a column of −1’s in C as an additional
component, which is connected to all visual velocity inputs and to a vestibular input vvst. In our simulations,
the vestibular input is always stationary, but noisy: vvst ∼ N

(
0, σ2

vst
)
. The associated self-motion strength, λself,

uses a uniform prior (see discussion under eqn. (6)). Perceived velocities are the sum over all-except-self-motion:
vperceived= ∑m 6=self C∗m µm.

In the RDK experiments, input was modeled as K=3 velocities: two for the two groups of dots, plus the vestibular
input. Repulsion angles were estimated from 20 repetitions of 30 s long trials, with vperceived averaged over the last
10 s of each trial. Error bars from the simulations were too small to be shown in Fig. 4e–g.

In Fig. 4e, the velocities for opening angle, γ, were given by (vx, vy)=v0 · (cos(γ/2), sin(γ/2)) for the first group,
with v0=2

√
τs, and v0 · (cos(γ/2),−sin(γ/2)) for the second group. As in Figure 3 of [36], the repulsion bias was

measured with respect to the full opening angle.
In Fig. 4f, increasing contrast of the second group was modeled as dividing the observation noise variance by a

factor, f , between 0.001 and 10, leading to variance σ2
obs/ f for this group’s input. As in [37], the repulsion bias was

measured only with respect to the first group’s perceived direction. The expressed similarity to experimental data
refers to the “2-motion condition” in Figure 7 of [37].

In Fig. 4g, the velocity of the second group was multiplied by a factor between 0 and 2, and the repulsion bias
was measured only with respect to the first group’s perceived direction. A direct quantitative comparison to the
human data from Figure 4b in [36] is difficult because they had measured the point of subjective equality (PSE) to a 90°
opening angle for this stimulus condition, finding a 10° bias for the full opening angle.

For the Lorenceau illusion in Fig. 4h–k, we modeled each dot’s velocity as a separate input owing to the spatially
distributed nature of the stimulus. As in [38], the two groups of 10 dots each oscillated at a frequency of 0.83Hz. For
the oscillation amplitude, we chose R=1/2 (arbitrary units), leading to velocities vx(t)=R ω cos(ω t) for the horizontal
group and vy(t)= − R ω sin(ω t) for the vertical group, with ω = 2π · 0.83s−1. As shown in Supplemental Figure S5,
the inference algorithm decomposes this stimulus into a deeply nested structure comprising self-, shared-, group-,
and individual motion. For the noise-free stimulus condition, we used the default simulation parameters. For the
condition with motion noise, the observation noise, σobs, of the visual inputs (not the vestibular input) was multiplied
by 25.

Network implementation (Fig. 5). A detailed derivation of how to implement the online inference algorithm in a neural
network model is provided in Supplemental Information, Section 5. In the following, we will focus on the specific model
parameters used in the simulations of Fig. 5.

For both simulations (the demonstration in Fig. 5e–j and the proposed experiment in Fig. 5k–m), there were
K=6 location-indexed input variables in D=2 spatial dimensions. Input was encoded according to the model of
area MT presented in Supplemental Information, Section 5.6. Each velocity, vk, was encoded by a population of 192
neurons, with tuning centers organized on a polar grid with Nα=16 preferred directions, and Nρ=12 preferred speeds
(sketched in Fig. 5c for smaller values of Nα and Nρ). Each neuron in each of the K populations thus has “coordinates”
(nα, nρ) describing its preferred direction and speed. To account for the reported bias of MT tuning toward slow
speed [52], the density of preferred speeds became sparser for higher speeds, which we modeled in Supplemental
Information, eqn. (70) by µρ(nρ) = ρmin + dρ n1.25

ρ , with dρ = (ρmax − ρmin)/(Nρ − 1)1.25, and ρmin=0.1, ρmax=8.0, for
neurons nρ=0, .., Nρ−1. Preferred directions covered the circle equidistantly. The remaining parameters in the tuning
function were κα=1/0.352 and σ2

ρ =0.352 for the angular and radial tuning widths, respectively, and ψ=0.1Hz for
the overall firing rate scaling factor. For the network simulations, we increased the frame rate to δt=1/120Hz for the
sake of a higher sampling rate on the x-axis in Fig. 5h–j (the simulation software stores firing rates only at the time of
frames).

The distributed population comprised 100 neurons. Readout vectors, ax, for all variables represented by this
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population were drawn i.i.d. from a standard normal distribution, N (0, 1), for each vector element. Adjoint matrices
were calculated numerically to fulfill the required orthonormality conditions (see Supplemental Information, Section 5.4).
The low-pass filtering time constant of the prediction error was τε=τs/2=0.050s, such that the prediction error could
react to changes in µt.

The one-to-one population comprised M neurons (or small populations; M=8 for the demo, and M=7 for
the proposed experiment), one per function value, fΣ(λ

2
m). The proportionality constant for the readout was

fΣ(λ
2
m)=0.001r1-to-1,m.

Given the parameters and decoding vectors, the simulation software automatically transforms the differential
equations of the online algorithm into the corresponding neural dynamics, according to the rules stated in Supplemental
Information, Section 5.4. Numerical integration of neural dynamics was performed by the same “RK45” method used in
the previous simulations.

For the demonstration in Fig. 5e–j, inputs were arranged on a ring of radius Rk=1 with angular location ϑk=60◦ · k
(measured from the x-axis in counter-clockwise direction). Presented velocities were (vx, vy)=(−2 sin(ϑk), 2 cos(ϑk))
for t≤ 1s, (2 sin(ϑk),−2 cos(ϑk)) for 1s < t≤ 2s, and (2+ 2 sin(ϑk),−2 cos(ϑk)) for 2s < t. In the C-matrix underlying
the network construction, the shared polar visual component was constructed according to Supplemental Information,
eqn. (6). The shared translational and the 6 individual components were Cartesian (as in all other experiments).

In the proposed experiment in Fig. 5k–m, all motion components and the input were “Cartesian” such that input
location played no role (formally, we maintained the circular arrangement of the previous network simulation).
Input was generated from the inference algorithm’s underlying generative model for a motion tree comprising
1 shared component and 6 individual components. For a given fraction of shared motion, q, we set λ2

shared=22 q and
λ2

ind=22 (1− q). Maintaining constant total squared motion strength, λ2
shared+λ2

ind=4, ensures that the (marginal)
input velocity distributions are statistically identical across all input locations and all values of q. In total, seven
fractions, q=1/8, 2/8, .., 7/8, of shared motion were presented. Per simulation run, each fraction was presented for 10s,
and simulations were repeated for 10 runs. For the subsequent data analysis, the neural responses of only the 2nd half
(5s≤ t) of the stimulus presentation were considered to avoid potential initial transients. A standard linear regression
model (with intercept; class sklearn.linear_model.LinearRegression) was trained to decode the correct
q from the distributed population’s response, rdis, for the fractions q=1/8 and q=7/8. The resulting linear readout
(with intercept) was employed to decode q from rdis for the remaining stimuli in Fig. 5m.
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