
 

 

 
Single-cell transcriptional analysis of the immune tumour 

microenvironment during myeloma disease evolution 
 
 
 

Authors:  

Danielle C. Croucher1,2, Laura M. Richards1,2, Daniel Waller3, Zhihua Li2, Xian Fang Huang3, 

Marta Chesi4, P. Leif Bergsagel4, Michael Sebag3, Trevor J. Pugh1,2,5,6,*, Suzanne Trudel1,2,6,* 

 

Affiliations: 

1Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.  

2Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. 

3Department of Medicine, McGill University, Montréal, QC, Canada.  

4Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, USA.  

5Ontario Institute for Cancer Research, Toronto, ON, Canada. 

6These authors jointly supervised this work: Trevor J. Pugh, Suzanne Trudel 
 
*Correspondence to: trevor.pugh@utoronto.ca (T.J.P); Suzanne.Trudel@uhn.ca (S.T.) 
 
The authors declare no potential conflicts of interest. 

 
 
  
  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.464971doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.464971
http://creativecommons.org/licenses/by-nd/4.0/


Submitted Manuscript: Croucher et al. 2021 bioRxiv 

1 

Abstract 

Multiple myeloma is universally preceded by a premalignant disease state. However, efforts to 

develop preventative therapeutic strategies are hindered by an incomplete understanding of the 

immune mechanisms associated with progression. Using single-cell RNA-sequencing, we profiled 

104,880 cells derived from the bone marrow of Vκ*MYC mice across the myeloma progression 

spectrum, of which 97,720 were identified as non-malignant cells of the tumour microenvironment. 

Analysis of the non-malignant cells comprising the immune microenvironment identified 

mechanisms associated with disease progression in innate and adaptive immune cell populations. 

This included activation of IL-17 signaling in myeloid cells from precursor mice, accompanied by 

upregulation of Il6 gene expression in basophils. In the T/Natural killer cell compartment, we 

identified Tox-expressing CD8+ T cells enriched in the tumour microenvironment of mice with 

overt disease, with co-expression of LAG3 and PD-1, as well as elevated T cell exhaustion 

signatures in mice with early disease. We subsequently showed that early intervention with 

combinatorial blockade of LAG3 and PD-1 using neutralizing monoclonal antibodies delayed 

tumor progression and improved survival of Vκ*MYC mice. Together, this work provides insight 

into the biology of myeloma evolution and nominates a treatment strategy for early disease. 

 

Introduction 

Multiple myeloma (MM) is a hematological malignancy characterized by accumulation of clonal, 

terminally-differentiated plasma cells in bone marrow (BM). Previous studies have confirmed that 

MM is universally preceded by premalignant precursor disease states [1, 2], including monoclonal 

gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). However, there 

are no reliable methods to predict if or when precursor patients will progress to overt disease. 

Therefore, a better understanding of the molecular processes contributing to progression is 

needed to improve surveillance, clinical management and treatment. 

 

The challenge of risk-stratifying patients with precursor disease has been approached using 

several different methods. Kauffmann et al. used serial BM specimens to show that primary driver 

events such as the recurring immunoglobulin translocations are not sufficient to drive progression, 

as these alternations are present in both MGUS with stable disease and MM patients [3]. Similarly, 

while Lopez-Corral et al. detected significantly more copy number variants (CNVs) in MM 
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compared to MGUS/SMM, alternations that appeared exclusive to MM, such as 1q+, 21q+, 

del16q, and del22q, were subsequently shown to be present in plasma cell subclones at the 

precursor stages [4]. These data suggest that most, if not all chromosomal aberrations are already 

present in the early stages of disease. Similarly, exome analysis of paired precursor and MM 

samples demonstrated that most somatic mutations in MM predate the onset of clinical 

malignancy [5], as does intratumoural heterogeneity within the malignant cell compartment [6]. 

Thus, there is significant evidence that somatic mutations and CNVs alone cannot account for 

MM disease evolution. 

 

Gene expression profiling is an alternative readout to explore the molecular underpinnings of high-

risk precursor disease. Transcriptional signatures derived from bulk BM plasma cell samples have 

been generated to define high-risk MM [7], as well as to risk-stratify patients with precursor 

disease [8]. More recently, gene expression profiling at single-cell resolution has been used as a 

tool to precisely define the transcriptional heterogeneity of precursor and myeloma tumours. 

These studies have revealed substantial intratumoural heterogeneity and defined subclonal 

transcriptional populations [9], highlighting the value of exploring gene expression at the single-

cell level. However, the fact remains that most tumours from MGUS and SMM patients exhibit 

clinical stability in spite of advanced genomic complexity and subclonal evolution. Therefore, 

progression to overt MM may also depend on factors that are extrinsic to tumour cells, including 

the immune cells that comprise the tumour microenvironment (TME). This is supported by studies 

demonstrating progressive growth of tumour cells derived from clinically-stable precursor patients 

upon xenotransplantation into a humanized mouse model, thereby bypassing host 

immunosurveillance [10]. More recently, a key role for the cytokine IL-17 has been identified in 

promoting MM progression, with high IL-17 levels predictive of progression from SMM to 

malignant MM [11]. 

 

In this study, we sought to understand how immune cell populations in myeloma change 

throughout disease evolution using single-cell RNA-sequencing (scRNA-seq) and, to then 

nominate novel mechanisms that drive tumour progression. To enable study of a longitudinal, 

genetically-uniform cohort of subjects, we employed a genetically-engineered, immune-

competent mouse model of MM (Vκ*MYC), which is biologically recapitulative of MM disease 

progression through precursor stages [12]. Vκ*MYC mice develop a progressive accumulation of 

clonal BM plasma cells that, as in the human disease, can be monitored indirectly by measuring 

monoclonal serum immunoglobulins (M-protein) in blood. Herein, we present a comprehensive 
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single-cell analysis of the natural progression of the immune TME in myeloma using this high 

fidelity model of human disease. 

 

Results 

Composition of the immune TME throughout disease progression in Vκ*MYC mice. To 

characterize how the immune TME changes during disease progression in Vκ*MYC mice, we 

performed scRNA-seq profiling of unselected BM cells from mice at various stages of progression 

(Figure 1A). After removal of low-quality cells and predicted doublets, our data set contained 

104,880 single cell expression profiles including 85,269 cells from a disease stage-spanning 

cohort of Vκ*MYC mice (n=15) and 19,611 cells from age-matched C57BL/KaLwRij control mice 

(n=3). Unsupervised clustering of all 104,880 cells revealed 42 transcriptionally distinct clusters 

(Figure 1B).  

 

We then assigned these clusters to major cell types using expression of known marker genes and 

reference-driven annotations from SingleR [13] (Figure 2A-C). As expected, we detected various 

non-immune populations resident to the BM such as erythroid and progenitor cells (C9, C12, C13, 

C15, C21, C32), as well as malignant plasma cell populations (C7, C16, C29). However, given 

the role of immune dysregulation in myeloma pathogenesis, we focused our analysis on immune 

cell populations, which included T/Natural killer (NK) cells (C6, C26, C37), B lymphocytes (C8, 

C10, C24, C25, C33), monocytes/macrophages (C3, C14, C19, C20, C22, C28, C34, C35, C36, 

C40, C41), plasmacytoid dendritic cells (pDC) (C18), neutrophils (C0, C1, C2, C4, C5, C11, C17, 

C23, C31, C38, C39), and basophils (C27, C30) (Figure 2B). Thus, our analysis of the immune 

TME during progression encompassed single-cell transcriptional profiles for 84,009 immune cells. 

 

To explore the relationship between immune cell composition and disease progression, we 

calculated the correlation between the relative proportion of each immune cell cluster within its 

respective lineage and disease burden as measured by % malignant cells in the BM. As shown 

in Figure 3A, our analysis revealed that disease progression is associated with a decrease in 

pDCs (Figure 3B; C18, Pearson’s r=-0.566, P=0.028) and an increase in the C28 population of 

macrophages (Figure 3C; Pearson’s r=0.682, P=0.006). Although the granulocyte cluster, C38, 

was also associated with disease progression (Pearson’s r=0.602, P=0.018), closer inspection of 

the data revealed that enrichment was driven by only one Vκ*MYC mouse (Figure 3D) and that 
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re-computation without this sample rendered the correlation not significant (Pearson’s r=0.359, 

P=0.207). Nonetheless, the observed compositional shifts in pDCs during progression in our 

analysis is consistent with the recently reported scRNA-seq study of MGUS, SMM and MM 

patients by Zavidij et al. [14] and thus, supports the validity of Vκ*MYC mice to recapitulate 

myeloma precursor biology. Moreover, it implicates myeloid cell populations in particular, with 

disease progression, providing rationale for a more in depth analysis of this cell lineage.  

   

Sub-clustering analysis of the myeloid compartment implicates IL-17 signaling in the 
intermediate stages of myeloma progression. To investigate myeloid cell subtypes and states 

in more detail, we re-clustered a subset of our single-cell expression data corresponding to cells 

of the myeloid lineage (n=13,594 cells) (Figure 4A). The resulting 23 myeloid sub-clusters were 

then annotated based on expression of known myeloid marker genes including Ly6c- monocytes 

(Itgax+, S1pr5+, SpnHI, SellHI), Ly6c+ monocytes (Ccr2+, SpnLO, SellLO), pDCs (Siglech+), 

classical DCs (Flt3+, Cd209+), macrophages (C1qa+), interferon-gamma-response monocytes 

(Cxcl10+, Ifit1+, Ifit2+, Ifit3+) and cell cycle high monocytes (Mki67HI) (Figure 4B).  

 

To determine whether any of these clusters were enriched at a particular stage of disease, we 

assigned mice to one of three disease stage groups based on age and serum M-protein levels 

(Figure 5A-B), which ultimately included 5 Vκ*MYC mice without detectable disease (early-MM, 

EMM1-5, 27-31 weeks), 3 Vκ*MYC mice with intermediate disease (int-MM, IMM1-3, 49 weeks), 

and 3 Vκ*MYC mice with active MM (active-MM, AMM1-3, 61-74 weeks), plus the 3 age-matched 

control C57BL/KaLwRij mice (Control, Cont1-3, 55-72 weeks). The C14 macrophage cluster, 

which corresponds to C28 from Figure 1B and Figure 2B, was almost exclusively found in mice 

with active-MM, consistent with the association of these cells with disease burden (Figure 5C). 

Moreover, the expression profile of these cells is consistent with that of CD16+ monocytes 

described by Zavidij et al. [14] including upregulation of Ms4a7, Lst1, Aif1, Fcer1g and Fcgr4 

(Figure 5D). Thus, our data provide additional support for the association of these cells with 

disease progression and provide further rationale for future work to explore their role in myeloma 

biology. 

 

Our focused subclustering analysis of myeloid subtypes and cell states also revealed a 

significantly different distribution of Ly6c+ monocyte clusters amongst Vκ*MYC mice (Figure 6A-

B), with enrichment of C0 in int-MM compared to early-MM and active-MM (Figure 6B, p=0.026 

and p=0.003, respectively). Therefore, Ly6c+ monocytes from mice with int-MM demonstrate a 
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distinct transcriptional shift during progression. To further investigate the heterogeneity of Ly6C+ 

monocyte cellular states and the association between these programs and disease progression, 

we explored the expression profiles of all Ly6c+ monocyte clusters (C0, C1, C2). Using differential 

expression analysis, we found 31, 52 and 12 marker genes upregulated in C0, C1 and C2, 

respectively (Figure 6C), and then investigated the pathways associated with the 31 genes 

significantly upregulated in int-MM-associated C0 cells with gene set enrichment analysis. 

Accordingly, one of the more highly enriched pathways in C0 was related to IL-17 signaling (Figure 

6D, FDR=0.000643), which is of interest given that higher IL-17 cytokine in the BM is associated 

with acceleration of disease progression in SMM patients [158].  

 

Mechanistically, it has been shown that IL-17 in this context induces IL-6 expression in eosinophils 

[11], which is a cytokine with well-established, pro-survival effects on myeloma cells [15, 16]. 

Assuming that activation of IL-17 signaling in C0 cells reflects the presence of IL-17 in the TME 

of Vκ*MYC mice, we explored the possibility of IL17-induced IL-6 expression in C0 cells, but 

observed no Il6 gene expression in any myeloid cells from our data set (Figure 7A). However, 

analysis of all 104,880 TME cells from our data set revealed that Il6 was highly expressed in 

basophils (Figure 7B-C), which, like eosinophils, belong to the polymorphonuclear leukocyte 

lineage. Moreover, Il6 expression in basophils positively correlated with the same IL-17 signaling 

gene signature identified in C0 (Figure 7D , R=0.504, P<2.2e-16). Thus, our data reveal that a 

link between IL-17 signaling and Il6 expression, previously only reported in eosinophils [11], is 

also active in basophils. Furthermore, it demonstrates that this IL-17-basophil-IL-6 transcriptional 

axis is specifically relevant during the int-MM transition phase of disease. 

  

T cell exhaustion occurs early in Vκ*MYC mice and is accompanied by expression of 
multiple immune checkpoint receptors. Given the direct role for T cells in mediating anti-

tumour effector functions, we next performed an in-depth re-clustering analysis of the T/NK cell 

compartment using the same cohort of mice described above (n=5,101 cells). This analysis 

yielded 15 subpopulations (Figure 8A), which we annotated as the following cell subtypes using 

a combination of known marker genes [17, 18] (Figure 8B): Naïve T cells (Cd3+, Ccr7+, Sell+), 

CD4 Helper T cells (Cd3+, Cd4+), Regulatory T (Treg) cells (Cd3+, Cd4+, Foxp3+), T Helper 17 

(Th17: Cd3+, Il17a+), CD8 T cells (Cd3+, Cd8a+), NK cells (Cd3d-, Cd3e-, Ncr1+), Innate 

Lymphoid Cells (ILC), Type 2 (ILC2: Cd3-, Rnf128+), and ILC3 (Cd3-, Ncr1+, Klrb1b+).  
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To determine whether T/NK cell subtypes or transcriptional programs are associated with disease 

progression, we evaluated the proportion of each cluster across disease stages. The CD8 T cell 

cluster, C0, was significantly enriched for cells from mice with active-MM compared to control 

(P=0.0154), early-MM (P=0.0147) and int-MM groups (P=0.0171) (Figure 9A). To identify marker 

genes that define the transcriptional program of these cells, we performed differential expression 

analysis between C0 and all other T/NK clusters, which revealed only 12 genes to be significantly 

upregulated in C0 T cells (Figure 9B). Interestingly, this included two transcriptional factors 

associated with T cell exhaustion, Tox [19] and Eomes [20], suggesting that the immune TME of 

mice with active-MM is enriched for T cells with an exhausted phenotype. Given the role of 

immune checkpoint receptors (ICRs) in mediating T cell exhaustion [21], we explored the 

expression of various ICRs on C0 cells including Btla (CD272), Cd244, Ctla4, Entpd1 (CD39), 

Havcr2 (TIM-3), Lag3, Pdcd1 (PD-1) and Tigit. This analysis revealed that the most highly 

enriched ICRs on C0 cells were Lag3 (8.86%) and Pdcd1 (8.13%), suggesting that exhaustion 

may be mediated by co-expression of these ICRs (Figure 9C). Interestingly, Lag3 and Pdcd1 

expression was enriched in cells from both int-MM and active-MM (Figure 9D) suggesting that co-

expression of LAG3 and PD-1 cell surface receptors occurs earlier in disease progression. Flow 

cytometric analysis confirmed a strong positive association between disease progression and 

LAG3/PD-1 co-expression on CD8+ T cells in the Vκ12598 transplantable model of Vκ*MYC 

(Figure 10A, R = 0.950, P=4.484e-11). Moreover, using our scRNA-seq data, we found that CD8+ 

T cells from mice with int-MM and active-MM displayed high levels of exhaustion (Figure 10B), as 

did cells co-expressing Pdcd1 and Lag3 (Figure 10C-D). Thus, these results support that T cell 

exhaustion occurs early in the course of disease progression and may be mediated by multiple 

ICRs during disease evolution. 

   

Combinatorial ICR blockade delays disease progression if administered early. Our data 

thus far supports that transcriptional shifts in the immune compartment occur early during the 

process of disease evolution and nominates potential drivers of progression. Therefore, we next 

aimed to evaluate whether early therapeutic intervention could delay disease progression 

focusing on our findings related to early onset of T cell exhaustion and co-expression of LAG3/PD-

1. The rationale for this investigation is further supported by the observation that anti- (α)- PD-1 

treatment in Vκ*MYC mice with overt disease fails to induce tumour regression [22]. We therefore 

treated Vκ12598-engrafted mice with combinatorial α-LAG3 and α-PD-1 monoclonal antibodies, 

initiating treatment 7 days post-tumour engraftment, before evidence of disease (Figure 11A). 

Disease burden was significantly reduced in mice treated with combinatorial α-LAG3/α-PD-1 
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compared to isotype-control treated mice as evidenced by lower serum M-protein after 3 weeks 

of treatment (Figure 11A-B, P=0.000094) and lower plasma cell infiltration in the BM (Figure 11C-

D, P=0.00079) and spleen (Figure 11E-F, P=0.000096) at the time of sacrifice. Notably, disease 

burden was not significantly different between mice treated with either of the single-agent 

monoclonal antibodies and isotype control (Figure 11G). Finally, mice treated with combinatorial 

α-LAG3/α-PD-1 had significantly improved survival compared to mice treated with isotype controls 

(Figure 11H P=0.0013). These data therefore suggests that the associated increase in ICR-

mediated T cell exhaustion observed by scRNA-seq reflects a causative mechanism of disease 

progression and supports dual blockade of these ICRs as a potential therapeutic strategy for high-

risk precursor patients. 

 

  

Discussion 

Immune dysregulation plays a role in controlling disease progression in cancer [23], including 

myeloma [24–26]. However, it is only with the rapid uptake of single cell profiling that we are now 

beginning to unravel the diverse landscape of cell types, their molecular states, and dynamic 

interactions associated with disease processes in myeloma [14, 27–30].  Challenges towards 

these efforts remain, including extreme inter-patient variability and a paucity of samples from 

patients with early precursor disease. By employing a transgenic mouse model of myeloma, we 

performed a controlled, systematic analysis of immune dysregulation throughout progression. In 

doing so, we comprehensively characterize the features of the immune TME over the course of 

disease, from the earliest stages (prior to disease detection by traditional serological 

measurements), through intermediate and late-stage disease. This approach revealed novel 

immune-based targets for delaying disease progression, which we validated in vivo. 

 

We acknowledge that the current study is not the first to employ scRNA-seq to profile immune 

alterations throughout disease progression [14, 28]. Using primary BM samples that span the 

myeloma disease spectrum, Zavidij et al. importantly reported that the immune TME is 

compromised early in MM [14]. Although our work did not identify all of the same changes in the 

immune TME as reported by Zavidij et al., our finding that T cell exhaustion occurs early supports 

their major conclusion that immune dysfunction is an early event in myeloma evolution. Our study 

further provides a unique perspective by surveying progression on a uniform genetic background. 
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Nonetheless, additional studies will be required to understand whether the compositional 

alterations and immune-associated changes throughout progression identified in our study are 

specific to a molecular subgroup or if they are an underlying feature of disease progression in all 

myeloma patients. To do this, future work will need to focus on applying single-cell approaches 

to larger patient cohorts. 

 

Our analysis of the myeloid cell fraction identified several different populations that implicate IL-

17 signaling in Vκ*MYC disease progression. Although we show elevated IL-17 signaling in Ly6c+ 

monocytes from the TME of mice with intermediate disease, we cannot say whether this merely 

reflects a bystander effect of IL-17 being present in the TME or if activation of IL-17 signaling in 

these cells has a direct causative role in progression. Nonetheless, previous work has established 

that inhibition of IL-17 in the TME delays disease progression and clearly supports IL-17 as an 

important player in the biology of precursor disease, both as a marker of high-risk disease and as 

a target for therapeutic intervention [11, 31]. In our study, IL-17 signaling was also activated in 

basophils and correlated with Il6 expression, a potent pro-MM cytokine [15, 16, 32]. Because 

basophils are typically depleted from myeloma samples during processing, little is known about 

their role in disease biology. However, it is well-known that basophils migrate to sites of 

inflammation, and these cells have been identified in human lung, gastric, pancreatic and ovarian 

cancer [33]. Thus, our findings of an IL-17-basophil-IL-6 axis activated during earlier stages of 

disease warrant further attention in future studies and provide rationale for investigating the role 

of cell types in disease progression that are traditionally disregarded during sample 

collection/processing.  

 

In addition to providing insight into the molecular processes that underlie disease progression 

from early-MM to active disease, we aimed to nominate novel therapeutic interventions in the 

immune TME that could be exploited to delay disease progression. Towards this, we identified 

exhausted CD8+ T cells to be enriched in mice with intermediate and active disease and showed 

that these cells co-express the immune checkpoint receptors, LAG3 and PD-1. These cells also 

demonstrated upregulation of the transcription factor Tox, which has been shown to play a role in 

T cell exhaustion by positively regulating the expression of several ICRs [34]. We also 

demonstrated that co-inhibition of LAG3/PD-1 can delay disease progression and improve 

survival of mice if administered during early disease stages. These data are consistent with a 

model proposed by Jing et al., where reactivation of MM-specific T cells that were previously 

rendered dysfunctional by ICR proteins could be achieved by whole body irradiation-induced 
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lymphopenia [35]. In this model, subsequent ICR blockade allowed reactivated T cells to remain 

functional and eliminate MM cells. Our study supports a similar model whereby ICR treatment 

allows reactive T cells to remain functional by administering early (versus by lymphodepletion). 

Thus, in certain biological contexts, there may be an advantage to using ICR blockade to prevent 

the onset of T cell dysfunction as opposed to reversing it once established.  

 

Alternatively, the effectiveness of ICR blockade during earlier disease stages may be related to 

specific cell types that are present in precursor disease stages but subsequently lost during 

progression. For example, there is increasing support in the literature that a TCF1+ subset of 

exhausted T cells with “stem-like” features mediates the effects of α-PD-1 in models of chronic 

viral infection [36] and anti-tumour immunity [37]. Interestingly, a similar subset of TCF1hi memory 

T cells was recently described to be enriched in MGUS compared to MM [28]. Although we did 

not observe differential enrichment of a similar cell type in Vκ*MYC mice with early disease, this 

could be due to an insufficient number of cells profiled. Thus, future scRNA-seq studies could 

consider enriching samples for T cells specifically, as this would provide more insight into the 

heterogeneous transcriptional programs of dysfunctional T cells during precursor progression and 

preventative treatment. Moreover, given that PD-1 inhibitors have failed to demonstrate clinical 

activity as single agents in patients with active myeloma [38, 39], these findings have direct 

translation implications and support evaluating the clinical utility of this combination in pre-

malignant or low tumour burden settings. 

 

In conclusion, we present an in-depth analysis of immune dysregulation during disease evolution 

in the Vκ*MYC model, which provides insights into mechanisms driving progression to overt MM 

that may serve as biomarkers of high-risk smoldering myeloma. Our data also reveal tumour-

extrinsic vulnerabilities that can be exploited as anti-MM therapies. We believe that findings from 

this study provide rationale for preventative treatment strategies in precursor disease stages of 

myeloma and more broadly, reveal critical insight into how immune cell populations contribute to 

disease evolution in cancer. 
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Methods 

Mice and BM specimen processing 

Animals used in this study were housed in pathogen-free facilities at either the Montreal University 

Health Centre or University Health Network under the following conditions: 21˚C ambient 

temperature, 40-60% humidity, 12 hour dark/light cycle. All related experiments were approved 

by institutional Animal Care Committees and performed in accordance with the Canadian Council 

on Animal Care Guidelines (University Health Network Protocol #958.23, Montreal University 

Health Centre Protocol #2012-7242). For all scRNA-seq experiments, we employed the Vκ*MYC 

transgenic mouse model [12] cross-bred onto C57BL/KaLwRij given the latter model’s increased 

propensity for developing spontaneous monoclonal gammopathies and bone disease [40, 41]. To 

evaluate disease burden, we measured M-protein by SPEP. Mice were assigned to disease 

groups according to age and M-protein levels as follows (Figure 5A-B): early disease (early-MM: 

27-33 weeks, not detected/trivial M-protein), intermediate-MM (int-MM, 49 weeks, trivial M-

protein), and active-MM (61-74 weeks, major M-protein). Non-transgenic age-matched 

C57BL/KaLwRij mice (55-72 weeks) were also included to control for the effects of aging. For 

validation and in vivo treatment studies using the transplantable Vκ12598 model [42], we injected 

1x106 Vκ12598 cells in phosphate buffered saline (PBS), or PBS only, into 4-6 week old female 

C57BL/6J mice (tail vein). At the indicated time points, mice were sacrificed and BM material was 

extracted by flushing femurs and tibias with ice cold PBS. Cells were then dissociated by passing 

through a 23-gauge needle and debris removed using a 35 µm cell strainer. The resulting BM 

cells were subject to red blood cell lysis (ACK buffer), washed and resuspended in appropriate 

buffer for downstream analyses. 

 

Monitoring serum M-protein levels  

To monitor the onset of disease in mice, 50 uL of tail vein blood was collected into microcuvettes 

(Sarstedt Inc, Newton, NC, USA) and centrifuged for 5 minutes at 10,000xg to separate serum. 

SPEP was performed with 0.5-1 μL of serum using the QuickGel System (Helena Laboratories, 

Beaumont, Texas, USA) according to manufacturer’s instructions. Densitometric quantification of 

bands was performed using Image J software (NIH, Open Source) as M-protein/total protein. 
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Single-cell library preparation and sequencing 

Single-cell suspensions were obtained from BM as described above and examined for cell 

number and viability using trypan blue and a Countess II automated counter (Thermo Fisher 

Scientific, Burlington, ON, Canada). Cell viability was greater than 70% for all samples described 

in this study. Single-cell libraries were constructed using the V2 chemistry kit from 10X Genomics 

(Pleasanton, CA, USA) according to manufacturer’s instructions. Libraries were sequenced on an 

Illumina HiSeq 2500 targeting 60,000 reads/cell at the Princess Margaret Genomics Centre 

(www.pmgenomics.ca). 

 

Sequence data pre-processing 

The 10X Genomics CellRanger software suite (v2) was used to process raw sequencing reads, 

for alignment and to generate a digital gene expression (DGE) matrix of genes-by-cell counts. To 

account for the human MYC transgene in Vκ*MYC mice, the 10X Genomics GRCm38 genome 

reference package was supplemented with the GRCh38 MYC sequence and gene annotation. 

Total read counts for each cell barcode were calculated using BAMTagHistogram (Drop-seq 

Cookbook v1-2.12 [43]), followed by cell barcode calling using findInflectionPoint (dropbead v0.3 

[44]). The resulting DGE matrices containing cell-associated barcodes only were merged for multi-

sample analyses. Low-quality cells (<500 genes, <1000 transcripts (unique molecular identifier 

(UMI)), and/or >15% mitochondrial UMIs) and lowly expressed genes (expressed in less than 

0.1% of the average number of cells per sample) were identified and removed from analysis. 

Finally, suspected doublets were removed from the dataset if identified using doubletFinder [45] 

(v2.0.3).  

 

Single-cell RNA-seq secondary analyses 

All subsequent analysis steps were performed using Seurat [46] (v3.2.1) in R v3.6.1 unless 

otherwise stated. This included log-normalization (NormalizeData), identification of top 3000 

variably expressed genes (FindVariableFeatures, “vst” method) and data scaling (ScaleData, 

regression on the proportion of mitochondrial transcripts). The top variably expressed genes were 

used for principal component analysis (PCA, RunPCA), with significant principal components 

identified using KneeArrower (v0.1.0). Data were embedded in two-dimensional space using t-

distributed stochastic neighbor embedding (t-SNE) [47] and/or Uniform Manifold Approximation 
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and Projection (UMAP) [48]. Batch effect correction was applied using Harmony [49] 

(group.by.vars = sequencing batch, theta = 0.5) prior to clustering with the graph-based algorithm 

implemented by Seurat. 

 

Cell types were assigned to each cluster using SingleR (v1.0.6) [13], which automatically 

annotates scRNA-seq expression data using a reference data set with known labels. Since our 

data set was derived from mouse BM cells, we used the ImmGen [17] reference data set 

(ref=immgen), which is comprised of bulk gene expression profiles from highly purified mouse 

immune and hematopoietic cell populations (GSE15907, GSE37448). Clusters were assigned to 

a “fine.label” cell type if it represented the majority proportion, and then adjustments were made 

based on visual inspection of the “main.label” cell type. 

 

Differential gene expression was assessed with FindMarkers or FindAllMarkers using the 

Wilcoxon rank sum test and a significance of P<0.05 after Bonferroni correction. Enrichment 

analysis was performed using Enrichr [50, 51]. Gene signature scores were computed with 

AddModuleScore. 

 

Flow cytometry 

Samples of 0.5-1 x 106 cells were suspended in staining buffer (PBS, 2% FBS, 0.5mM EDTA) 

containing the indicated fluorophor-conjugated antibodies (CD138-APC [281-2] and B220-PE 

[RA3-6B2] purchased from BD Biosciences; CD3-FITC [17A2], CD8-APC-CY7 [53-6.7], PD-1-

APC [RMPI-30] and LAG3-PE [C9B7W] purchased from Biolegend). After staining for 30 minutes 

at room temperature, cells were washed and re-suspended in staining buffer containing viability 

dye (4′,6-diamidino-2-phenylindole (DAPI) or 7-Aminoactinomycin D (7AAD)). Data were acquired 

on a Canto II cytometer (BD Biosciences, San Diego, CA, USA) and analyzed using Flowjo 

(v10.7.1). 

 

In vivo antibody treatment 

Anti-mouse LAG3, PD-1 and isotypic IgG1-control monoclonal antibodies (provided generously 

by Bristol Myers Squibb) were administered via intraperitoneal injection in doses of 10 mg/kg each 

for LAG3/PD-1 and 20 mg/kg for IgG1 isotype control. For monotherapy, 10 mg/kg of single-agent 
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monoclonal antibodies were combined with 10 mg/kg IgG1. These were administered every 3 

days beginning seven days post-engraftment of Vκ12598 cells for a total of 10 doses. Disease 

was monitored by SPEP and mice were sacrificed when M-protein represented >20% of total 

serum proteins or physical signs of disease were observed. Upon sacrifice, BM was extracted as 

described above. 

 

Statistics 

Statistical tests performed are as indicated in figure legends. Sample size was determined by the 

availability of subjects for scRNA-seq, but a minimum of 3 samples for each disease stage group 

was decided upon upfront to capture potential biological heterogeneity between tumours. 

Measurements were taken from distinct samples unless otherwise stated. Boxplots represent the 

distribution of each measurement within defined groups, where the central rectangle spans the 

interquartile range, the central line represents the median, and “whiskers” above and below the 

box show the value 1.5x the interquartile range. 

  

Data and code availability 

All data described in this study were deposited to the National Center for Biotechnology 

Information Gene Expression Omnibus (GSE134370) and Sequence Read Archive 

(SRP214856). Data generated from this study is also available through the interactive single-cell 

portal CReSCENT (CRES-P32, https://crescent.cloud/) [52]. Code supporting this study is 

available at github.com/pughlab/scMM_VkMYC_2020_bin. 

 
 
 
 
 
 

 
 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.464971doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.464971
http://creativecommons.org/licenses/by-nd/4.0/


Submitted Manuscript: Croucher et al. 2021 bioRxiv 

14 

Figures 
 
 
 
 
 
 
Title: Single-cell transcriptional analysis of the immune tumour microenvironment during 
myeloma disease evolution 
 
 
Authors: Danielle C. Croucher1,2, Laura M. Richards1,2, Daniel Waller3, Zhihua Li2, Xian Fang 
Huang3, Marta Chesi4, P. Leif Bergsagel4, Michael Sebag3, Trevor J. Pugh1,2,5,6, Suzanne 
Trudel1,2,6 

Affiliations: 
1Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. 2Princess 
Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. 3Department of 
Medicine, McGill University, Montréal, QC, Canada. 4Division of Hematology/Oncology, Mayo 
Clinic, Scottsdale, AZ, USA. 5Ontario Institute for Cancer Research, Toronto, ON, Canada. 
6These authors jointly supervised this work: Trevor J. Pugh, Suzanne Trudel 
 
Contents: 
 

● Figures 1-11 
  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.464971doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.464971
http://creativecommons.org/licenses/by-nd/4.0/


Submitted Manuscript: Croucher et al. 2021 bioRxiv 

15 

 

 
Figure 1. Single-cell profiling of the immune TME landscape in Vκ*MYC mice. (a) Overview 
of study design, cohort composition, sample workflow and analysis strategy. (b) UMAP 
visualization of 104,880 cells from BM of full study cohort, coloured by transcriptionally-defined 
population. 
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Figure 2. Cellular composition of the immune TME. (a) UMAP visualization of 104,880 cells 
from BM of full study cohort, coloured by lineage annotation (left), and cell type classification 
(right). (b) Flow diagram depicting assignment of clusters (bottom track) to  lineage annotation 
(top track). Colours correspond to SingleR ID from (a) and are scaled to the number of cells 
within each cell type/cluster. (c) UMAP visualization of 104,880 cells from BM of full study 
cohort, coloured by relative expression of depicted marker genes.  
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Figure 3: Compositional changes in the immune TME throughout progression. (a) 
Correlation plot relating disease burden to immune TME composition using the full set of 
scRNA-seq profiles. For each sample, the number of cells in each cluster was divided by the 
total number of cells in that lineage. Each point reflects a cluster-specific test for association 
(Pearson’s R) between the calculated lineage-wise proportion and the total number of malignant 
plasma cells (mPCs) detected from scRNA-seq analysis, coloured by lineage. (b-d) Scatter plots 
revealing sample-level relationship between disease burden and immune TME composition for 
clusters with significant correlation from (a) including (b) C18, (c) C28, and (d) C38. Each data 
point represents one sample.  
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Figure 4: Transcriptional heterogeneity within the myeloid lineage as determined by 
scRNA-seq. (a) Subclustering analysis of 13,594 myeloid cells revealing transcriptionally- 
distinct populations as visualized using UMAP plot. Each population is labeled by a specific 
colour/number and annotated using (b) select myeloid marker genes. 
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Figure 5: Defining myeloid subpopulations associated with defined disease stage 
groups. (a) SPEP gels depicting M-protein bands (γ-globulin) across defined disease stage 
groups. (b) Disease burden across disease stage groups as determined by quantification of M-
protein measurements from SPEP. Each point represents one mouse and is coloured by age of 
mouse at the time of sacrifice. (c) Disease stage-specific UMAP plots from myeloid 
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subclustering analysis, highlighting cluster containing putative CD16+ monocytes (C14). (d) 
Violin plot depicting expression of CD16+ monocyte marker genes from Zavidij et al. [81] across 
myeloid clusters from Vκ*MYC mouse cohort. 
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Figure 6: Precursor disease is marked by elevated IL-17 signaling in the immune TME. (a) 
Disease stage-specific UMAP plots from myeloid subclustering analysis, highlighting Ly6c+ 
monocyte cluster differentially enriched throughout progression (C0). (b) Ly6c+ monocyte 
cluster distribution across control, early-MM, int-MM and active-MM disease stages. Each point 
represents the proportion of the indicated cluster within all Ly6c+ monocytes for a given sample. 
(c) Heatmap depicting marker genes for each of three Ly6c+ monocyte clusters as determined 
by differential expression analysis. Data represent scaled expression values (any values outside 
a range of -2.5 to 2.5 were clipped). (d) Top 20 positively enriched terms from Enrichr gene set 
enrichment analysis (FDR<0.05) computed using C0 marker genes from (c). 
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Figure 7: Single-cell analysis establishes novel IL17-basophil-IL6 transcriptional axis in 
the precursor immune TME. (a) UMAP visualization of log-normalized Il6 expression in 
myeloid cells. (b) UMAP visualization of log-normalized Il6 expression in all BM cells. (c) Box 
plots depicting distribution of Il6 expression in full BM data set, grouped by transcriptional 
cluster (top) and cell type/lineage annotation (bottom). (d) Relationship (Pearson’s R) between 
IL-17 signaling gene set score and Il6 expression in basophils (n=958), coloured by disease 
stage group. 
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Figure 8: Unsupervised subclustering of 5,101 T/NK cells reveals cell subtypes from 
scRNA-seq data. (a) Subclustering analysis of 5,101 T/NK cells revealing transcriptionally-
distinct populations as visualized using UMAP plot. Each population is labeled by a specific 
colour/number and annotated using (b) select T/NK marker genes. Dot plot in (b) depicts 
expression of T cell-related marker genes (y-axis) across clusters (x-axis), which are 
ordered/grouped by similar cell subtypes for ease of interpretation. The size of the dot encodes 
the percentage of cells within a cluster, while the color encodes the average expression level 
across all cells within a cluster. 
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Figure 9: Defining T/NK subpopulations associated with defined disease stage groups. 
(a) Fractional composition of T/NK cell subpopulations, with data representing the average 
proportion within each disease stage cohort and error bars depicting standard deviation of the 
mean. Statistical comparisons were performed using a one-way ANOVA with Tukey multiple 
pairwise comparison and only P values for statistically significant comparisons are listed. (b) 
Heatmap depicting expression of C0 marker genes across all T/NK clusters (FDR<0.05). Data 
represent scaled expression values (any values outside a range of -2.5 to 2.5 were clipped). (c) 
UMAP visualization of log-normalized immune checkpoint receptor expression in C0 cells from 
all mice. (d) Disease-stage specific expression of Lag3 and Pdcd1 in C0 cells. Percent of cells 
expressing respective genes (UMI count ≥ 1) is listed above each plot in (c) and (d). 
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Figure 10. T cell exhaustion is detected early in Vκ*MYC disease progression and is 
associated with co-expression of immune checkpoint receptors. (a) Workflow for and 
results of validation experiments using the transplantable Vκ12598 model. Flow cytometric 
analyses of Vκ12598 samples, depicting correlation (Pearson’s R and regression line from 
linear model) between disease burden in BM (%CD138+B220-) and co-expression of PD-1 and 
LAG3 on CD8+ T cells. Each dot represents one mouse. (b) Distribution of T cell exhaustion 
gene signature scores in C0 cells across disease stage groups calculated using a gene set from 
Tirosh et al. [165]. (c) Scatter plot of Lag3 and Pdcd1 expression in C0 cells used to define 
expression groups for (d). (d) Distribution of Exhaustion gene signature scores in C0 cells 
amongst assigned expression groups based on Lag3 and Pdcd1 expression. Mean gene 
signature scores in (b) and (d) were compared across all groups using the Wilcoxon rank sum 
test (two-sided) corrected for multiple testing (Benjamini-Hochberg, *P<0.05, ***P<0.001, 
****P<0.0001, ns=not significant). 
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Figure 11: Early intervention with combinatorial ICR blockade can delay disease 
progression and improve survival. (a) Study design for in vivo combinatorial αLAG3/αPD-1 
treatment experiments using Vκ12598 mice. (b) Serum M-protein measurements taken three 
weeks post-treatment initiation. (c) Bone marrow disease burden at time of sacrifice, as 
measured by flow cytometric analysis of %CD138+B220- plasma cells. (d) Scatter plots from 
flow cytometric analysis of BM disease burden (CD138+B220-) in representative mice treated 
with either Ig Control or αLAG3/αPD-1. Quadrants corresponding to myeloma/plasma cells are 
highlighted in red. (e) Splenic disease burden at time of sacrifice, as measured by flow 
cytometric analysis of %CD138+B220- plasma cells. (f) Scatter plots from flow cytometric 
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analysis of splenic disease burden (CD138+B220-) in representative mice treated with either Ig 
Control or αLAG3/αPD-1. Quadrants corresponding to myeloma/plasma cells are highlighted in 
red. Statistical comparison of means in (b), (c), and (e) were performed using a two-sided t-test. 
(g) Serum M-protein measurements taken three weeks post-treatment initiation in mice treated 
with either Ig control, monotherapy αLAG3, monotherapy αPD-1 or combinatorial αLAG3/αPD-1 
(Wilcoxon rank sum test (two-sided) corrected for multiple testing with Benjamini-Hochberg). (h) 
Kaplan-Meier survival plot of Vκ12598 mice treated with control or combinatorial αLAG3/αPD-1 
(log-rank test). 
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