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Generating accurate 3D gaze vectors using synchronized eye
tracking and motion capture
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Abstract Assessing gaze behaviour during real-world tasks is difficult; dynamic
bodies moving through dynamic worlds make finding gaze fixations challenging.
Current approaches involve laborious coding of pupil positions overlaid on video.
One solution is to combine eye tracking with motion tracking to generate 3D gaze
vectors. When combined with tracked or known object locations, fixation detection
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can be automated. Here we use combined eye and motion tracking and explore how
linear regression models generate accurate 3D gaze vectors. We compare spatial ac-
curacy of models derived from four short calibration routines across three data types:
the performance of calibration routines were assessed using calibration data, a vali-
dation task that demands short fixations on task-relevant locations, and an object in-
teraction task we used to bridge the gap between laboratory and “in the wild” studies.
Further, we generated and compared models using spherical and cartesian coordinate
systems and monocular (Left or Right) or binocular data. Our results suggest that all
calibration routines perform similarly, with the best performance (i.e., sub-centimeter
errors) coming from the task (i.e., the most “natural”) trials when the participant is
looking at an object in front of them. Further, we found that spherical coordinate sys-
tems generate more accurate gaze vectors with no differences in accuracy when using
monocular or binocular data. Overall, we recommend recording one-minute calibra-
tion datasets, using a binocular eye tracking headset (for redundancy), a spherical co-
ordinate system when depth is not considered, and ensuring data quality (i.e., tracker
positioning) is high when recording datasets.

Keywords eye tracking · motion capture · gaze vector · calibration · linear regression

1 Introduction

The majority of laboratory examinations of eye gaze are highly unnatural [11]. Com-
mon sense says that where someone is looking is dependent upon both eye and head
movements [14, 28], meaning head position must be accounted for when calculat-
ing and analyzing gaze. Most studies investigating hand-eye coordination circumvent
this problem by restricting head movements through the use of a chin rest [16]. In the
real world, we are free to gaze at objects throughout our full field of view, or even
anywhere in our 3D space, provided we can turn and move. But, in the lab, the ar-
eas the participant can interact with are typically severely limited, such as restricting
gaze to a computer monitor or tabletop [27, 19]. Controlling for such environmental
variables lets researchers ask specific questions about the motor and neural mecha-
nisms that govern hand-eye coordination but fail to ask how gaze performs in natural
settings. When collecting data outside of the laboratory, it is simply not feasible nor
ecologically valid to restrict movement of the head or restrict gaze to the interaction
with a limited amount of space. Additionally, real-world data tends to be much more
difficult to process and analyze because of the permissive setting in which it is col-
lected; free movement of the body is encouraged, as it more closely reflects natural
behaviour.

Collecting data outside of the laboratory—or “in the wild”—is challenging [16];
determining fixations from dynamic bodies moving through dynamic worlds is a non-
trivial problem to solve. A few studies have collected data while performing simple
every-day activities [15, 13, 6, 29, 17]. For example, Land and Hayhoe [15] found
that eye behaviours were similar across different use cases, such as during making
a cup of tea or preparing a sandwich. They found eye movements could be broken
down into four systematic categories: locating (the target), directing (the hands to the
target), guiding (the hands during movement), and checking (if the condition has been
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satisfied). These general rules of interaction help inform us of potential systematic
analyses that can be performed on the data. Data recorded “in the wild” also tend to be
harder to parse into fractional chunks for analysis; Lappi [16] describes some of these
common issues when collecting real-world natural gaze behaviours. In his review,
Lappi suggests that complex eye movement behaviours are built from combinations
of primitive eye behaviours such as fixations, saccades, and pursuits. These primitive
building blocks can be used as indices to break complex tasks into digestible blocks
that can be analyzed more similarly to controlled lab-based experiments.

Over the last decade eye tracking technology has become cheaper and easier to
use. Traditional eye-tracking headsets tended to be bulkier and required the head
position to be fixed, whereas newer eye-trackers such as the Pupil Labs Core [10]
are more portable and do not require a fixed head. One common consideration of
designing an eye tracking study is the time-consuming manual labour required for
cleaning and analysis [17, 29, 32, 21]. Much of this manual labour is centred around
two primarily video based categorization steps: 1) the cleaning of the pupil data, most
of which is difficult to automate because of the nature of data quality from individual
participants and 2) the assignment of fixations to objects in the world on the “world
camera”, an outward facing camera attached to a head mounted eye tracker. This
portion of analysis is so time consuming that many researchers will only analyze a
subset of data rather than the whole [33, 30, 21]. For example, Parr et al. [21] were
only able to analyze every third trial of their prosthetic hand-eye coordination task. A
major concern is that a subset of data does not always represent the population-level
statistics of the entire dataset—effects could be driven by outliers. Secondly, this
leaves open the possibility of incorrect coding, leading to lower quality data that may
contain additional errors, influencing statistical tests. Optimizing the volume of data
analysis possible would have great benefits for statistical power and data reliability.

Motion capture (mo-cap) is a technique used to record human movement in 3D
space [12] and, when combined and synchronized with eye tracking, offers a so-
lution for automating real-world gaze analysis. Human movement science greatly
benefits from this technology, as it allows for the quantification of movements during
reach-to-grasp [3, 34] or reach-to-point [24, 23, 31] behaviours. Additionally, mo-cap
technology comes in many forms, including infrared-based or the burgeoning field of
markerless-motion-capture [18], both of which are typically capable of integrating
with eye-tracking headsets. Tracking gaze during movement grants insight into the
strategies that different populations may use when completing the same task. For ex-
ample, research into gaze strategies during reach-to-grasp behaviours has uncovered
key strategic differences in normative [21] versus prosthetic arm users [32, 17, 8],
where prosthesis users tend to move much slower, fixate longer, and do not “look
ahead” to the intended target location after grasping.

While the synchronized collection of eye tracking and motion tracking data is not
trivial, tools such as Lab Streaming Layer (LSL; SCCN [25]) have made this process
much easier. However, once you have two synchronized data streams, it is not easy to
determine where someone is looking based on raw data. Here we explore a technique
requiring the experimenter to collect a separate eye-calibration data file, specifically
for the purposes of building a model that will map head and pupil positions to a three
dimensional (3D) gaze vector in a common world coordinate system. A 3D gaze
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vector is a line that extends from the head out into 3D space to predict where the
participant is looking in world-space [26, 2, 20]. During these eye-calibration trials,
participants are asked to focus on a tracked mo-cap marker (in our task on the tip
of a calibration “wand”) as it moves through space, typically for about a minute. To
our knowledge, despite the increasing number of studies that use 3D gaze vectors to
assess behaviour, no standardized or recommended calibration routine exists. That
is, how should you best move the tracked “wand”-marker through space? And, what
data should you use to build your predictive models - here you have many choices
including what coordinate frame(s) to use for your model as well as what eye data
to use - provided you have binocular data, you can choose to use one eye (the left or
right) or a combination of both.

With the goal of providing researchers recommendation and guidelines for ex-
pected accuracy, we generate and assess 3D gaze vector models generated from all
possible combinations of: four different calibration routines, two coordinate frames,
and three types of eye data. Our results describe an approach that is capable of gen-
erating accurate (sub-centimetre in the best case) 3D gaze vectors (GVs) using the
position of the pupils and the 3D location of the participant’s head in space. To create
the GVs, we use a linear regression algorithm to train models based on input pupil
positions time-synchronized to the 3D location of a calibration wand. Then, we assess
their spatial accuracy across a variety of data sets.

2 Methods

2.1 Equipment

Eye tracking data were collected using a Pupil Labs Core (200Hz; [10]) USB eye
tracking headset. Lab Streaming Layer (LSL; [25]) was used to synchronize eye
tracking and mo-cap data. The official Pupil Labs LSL plugin was used in conjunc-
tion with the Pupil Capture software to directly send data into the LSL datastream.
Mo-cap data were collected using an OptiTrack mo-cap system (two systems were
used throughout the study as the lab was upgraded: initially a 12-camera Flex 13 sys-
tem, 120Hz; then a 14-camera Prime 13-W system, 200Hz). A custom program was
written in C# to pass frame data from the OptiTrack Motive application to the LSL
datastream for synchronization. Rigid clusters of reflective markers were fixed to the
participant and objects in the environment to track the position and orientation of the
Head, Right Hand, Task Cart, Side Cart, Pasta Box (in task data), and a Calibration
Wand (in calibration data). Marker clusters were also fixed to the participant’s pelvis,
trunk, upper arms, forearms, and left hand in as described by Boser et al. [1], but
this data were not used in the current study. It is worth noting that theoretically any
combination of eye-tracker and mo-cap system could be used, provided they collect
time series data as synchronized 2D pupil positions (in eye camera coordinates) and
3D marker position (in mo-cap).
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2.2 Participants

Twenty-one undergraduate and graduate students from the Department of Psychology
research pool at the University of Alberta participated in this study. Eight participants
were collected using the OptiTrack Flex 13 system at 120 Hz, and 13 were collected
on the OptiTrack Prime 13-W system at 200 Hz. One participant was removed due
to recording errors, for a total of twenty participants. This study was approved by
the University of Alberta Health Research Ethics Board under protocol Pro00087329
and ethical protocols were in adherence to the 1964 Declaration of Helsinki.

2.3 Procedure

Each experiment consisted of 3 sets of Calibration/Validation trials and 2 sets of 10
Task trials, proceeding in the following order:

1. Calibration/Validation trials
2. Task trials
3. Calibration/Validation trials
4. Task trials
5. Calibration/Validation trials

Each Calibration/Validation trial set included four calibration trials (one of each type
described below) and one validation trial, presented in a pseudo-random order. Each
set of task trials included 10 repetitions of the previously published Pasta Box task
(see [29] for a full description of the task parameters). In total, participants performed
12 calibration trials (3 repetitions of each of 4 types), 3 validation trials and 20 task
trials. Not all participants had usable data for every trials - we discuss dealing with
missing data and removal in the 2.4.1 section.

2.3.1 Calibration Trials

Participants were asked to track the position of a single spherical mo-cap marker (14
mm diameter) with their gaze for about 1 min per trial. The participant could move
their head freely while tracking the marker. The marker was placed at the tip of a 40
cm wand which moved through the task space in one of four calibration routines:

1. Experimenter Sweep (ES): The experimenter moved the wand in slow S-shaped
curves along each of the room-coordinate axes (parallel to floor, left/right, parallel
to floor in/out, parallel to wall up/down).

2. Self Sweep (SS): Replicating ES but with the participant holding the wand and
replicating the movements.

3. Experimenter Paint (EP): The experimenter moved the wand to each of the rel-
evant locations in the Pasta Box Task (minus Neutral, see below) and explored
small (10-20 cm in each dimension) volumes at these locations.

4. Stationary Target (ST): The wand was fixed to the table directly in front of the
participant (˜60 cm away), who was asked to maintain fixation on the wand-tip
while nodding their head up and down, returning to centre, then turning it left and
right, then rotating it in a clockwise then counterclockwise spiral.
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Fig. 1 The calibration routines used in the present study, with traces in grey showing example wand
movements. Each routine takes approximately one minute to complete. A) The Experimenter Sweep (ES)
routine. The experimenter stands to the participant’s left and waves the wand in s-shaped patterns through
space, covering all three dimensions roughly equally (only up/down movements shown in figure). B) The
Self Sweep (SS) routine. Identical in procedure to the ES routine, but the participant themselves carry out
the wand movements. C) The Experimenter Paint (EP) routine. The experimenter stands to the right of the
participant and moves the wand for approximately 15 seconds in small volumes at four locations relevant
to the later Task trials: the Side Cart, the Home position, the Green Shelf and the Blue Shelf. D) The
Stationary Target (ST) routine. The participant locks their gaze on the wand, which is fixed to the table.
The participant moves their head up, then down, then centers, then left, then right (i.e., in the form of a
cross), then rotates their head in swirl-like motions while maintaining fixation on the tip of the wand.

The intention for each of these trials was to create calibration routines with a
diversity of different coverages in terms of both task and pupil-position space (see
Fig. 1 for the wand movements, and Fig. 2 for the corresponding pupil positions).

2.3.2 Validation Trials

Participants were asked to fixate on 5 stationary targets (see Fig. 3 for locations)
presented at task relevant locations for ˜5 s, in a specific sequence, and at least 2
times each. An auditory beep signalled the start of the first fixation and beeped every
5 seconds thereafter to signal a switch to the next task relevant location in this order:

Neutral → Side Cart → Blue Shelf → Home → Blue Shelf → Green Shelf →
Home → Green Shelf → Side Cart → Home → Neutral.

This order of 11 fixations mirrors the order these locations are visited during the
actual Task trials.
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A) B)

C) D)

Fig. 2 The corresponding gaze patterns associated with each of the calibration routines. A) The Experi-
menter Sweep (ES) routine: the gaze seems to be slightly jittery because the participant has to constantly
adjust to the experimenter’s wand position. B) The Self Sweep (SS) routine: the gaze pattern is much more
smooth, because the participant is moving the wand while simultaneously fixating on the tip. C) The Ex-
perimenter Paint (EP) routine: gaze locks to four different locations, which slightly overlap because the
participant was free to move their head and likely tends toward central fixation on each location. D) The
Stationary Target (ST) routine: the head is moved in a cross-like movement (up, down, centre, left, right)
then in swirl-like movements for approximately one minute.

2.3.3 Task Trials

The set-up for the Pasta Box task can be found in full detail in the methods described
by Valevicius et al. [29]. Participants began each task trial with their hand on the
Home position and their eyes fixating on the Neutral target, marked by a mo-cap
marker. A beep then cued them to initiate an object interaction sequence consisting
of three movements:

1. Reach and grasp the Pasta Box at the Side Cart, move it to Green Shelf then return
hand to Home;

2. Reach and grasp the Pasta Box at Green Shelf, move it to Blue Shelf then return
the hand to Home;

3. Reach and grasp the Pasta Box at Blue Shelf, move it to the Side Cart then return
the hand to Home. At the end of the task the participant also returns their gaze to
the neutral marker.

The task was demonstrated to each participant visually. The participant was given
as many practise trials as they felt necessary to be comfortable with the sequence of
movements.
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Fig. 3 The locations, objects, and markers critical for all three tasks. The five locations are shown: Neutral,
Side Cart, Home, Green Shelf, and Blue Shelf. For the Pasta Box task, the participant moved the box from
location to location (see 2.3.3). The Head rigid body was used to determine the origin of the resulting
gaze vectors. The Right Hand’s velocity profile was used to determine when the participant picked up or
dropped off the pasta box (see 2.4.3). All 72 gaze vectors generated are shown in pink, with most being
close to the target object (pasta box), and some performing rather poorly.

2.4 Data Processing

2.4.1 Pre-processing

Mo-cap data were exported from Motive and run through custom MATLAB scripts
to check for marker name consistency and remove residual sections of noisy data
(marker displacements of more than 5 mm between frames, and islands of data less
than 100 ms in duration). Mo-cap and eye tracking data were then synchronized to
the mo-cap frame rate using the common timestamps in the LSL datastream files.
The combined data were imported into our custom software platform for integrated
analysis of eye and motion tracking data; the Gaze and Movement Assessment Tool
(GaMA; [32]). Within GaMA, raw pupil position data was cleaned by: 1) Removing
any data points outside of pupil camera bounds (<0 or >1); 2) Removing any data
points more than 4 standard deviations away from the mean position; 3) Removing
any data points with velocities greater than 6 (meaning the pupil was travelling across
the entire camera 6 or more times per second). After this removal, any gaps < 50
ms were filled using the inpaint nans [5] function in MATLAB then, any remaining
islands of data < 50 ms were deleted. Finally, the pupil data were filtered in MATLAB
using a 4th order zero-lag low-pass Butterworth filter with a cutoff frequency of 10
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Hz. Also within GaMA, the mo-cap data were filtered using a 4th order zero-lag low-
pass Butterworth filter with a cutoff frequency of 6 Hz. Rigid bodies, represented as
both a position and rotation, were defined using the clusters of markers attached to
the participant’s head and hand, as well as objects in the environment. For the Task
trial data, virtual objects were also created to represent the position, orientation and
extent of the objects in the environment (Task Cart, Side Cart, Pasta Box).

2.4.2 Gaze Vector Modelling

The cleaned eye and motion data were then used to generate predictions of the direc-
tion the participant was looking in 3D space, herein referred to as GVs. The process
of generating a single GV consists of two steps:

1. Generate eye gaze models using data from a specific Calibration trial
2. Use the eye gaze models to predict the GV direction at each frame in a given trial

In step 1, calibration data are used to fit three eye gaze models. Each model takes
eye data as input and predicts a single coordinate of the 3D gaze fixation point relative
to the Head rigid body coordinate system in the 3D mo-cap space. For example:
one model might use eye data to predict only the x-coordinate of the fixation point
relative to the head, a second, separate model would be used to predict only the y-
coordinate, etc. Each eye gaze model was generated using the built-in MATLAB
function fitlm with the ‘quadratic’ model specification and robust fitting using the
‘bisquare’ weight function. i.e.:

1 eyeGazeModel = fitlm(modelInput , modelResponseVar , ‘quadratic ’, ‘

RobustOpts ’, ‘on ’)

In this study we explored three options for model input (eye data from right eye
only [xr,yr], left eye only [xl,yl], or binocular data [xl,yl,xr,yr]), as well as two options
for expressing the fixation point relative to the Head coordinate system (Cartesian
[x,y,z] coordinates, or Spherical [r, θ , φ ] coordinates). We anticipated that using the
Spherical coordinate system would increase accuracy of the GV direction because it
isolates depth of fixation to the ‘r’ model, whereas in Cartesian, all three models are
influenced by depth of fixation.

In step 2, once the eye gaze models were generated for a given Calibration trial
and set of parameters (left/right/both eyes × cartesian / spherical coordinate system),
they were used to predict the coordinates of the fixation point relative to the head at
each frame in a given Calibration, Validation, or Task trial. The fixation point is then
transformed so that it is expressed relative to the global mo-cap coordinate system,
and the GV is represented by the line originating at the head rigid body origin (mid
forehead), passing through the fixation point, extending infinitely forward and away
from the head in the direction of the fixation point (see Fig 4). It is important to note
that only the direction of the GV was used in subsequent analysis, the distance from
the head to the predicted fixation point was not considered.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465332doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465332
http://creativecommons.org/licenses/by-nc/4.0/


10 bioRχiv — Stone et al, 2021

Fig. 4 A visual demonstration of the differences between the Cartesian and Spherical coordinate systems
used. A) The Cartesian coordinate system: coordinates are represented by coordinate triplets of [x,y,z].
Here, the wand tip is only represented by its offset from the origin. A consequence is that the depth of the
wand is embedded in all of the dimensions. B) The Spherical coordinate system: coordinates are encoded
as triplets of [r,θ , φ ]. Here, the wand tip is described in terms of the angular and euclidean distance from
the head. As a consequence, euclidean distance (i.e., depth) can be sequestered to a single coordinate. As
our goals did not require depth estimates, we were able to train our models without the depth information.

2.4.3 Dependent Measures

We conducted separate analyses to assess GV accuracy in each of the three types
of data collected (Calibration, Validation and Task). For each analysis, we collapsed
across the 3 repetitions of a given Calibration type by finding which of the repetitions
performed the “best” on that data. This involved eliminating abnormally poor GVs
(those whose average distance from the target of analysis were 30 cm or more away),
then taking the remaining GV with the lowest average distance to targets (see below).
An advantage of this approach was this it allowed participants to be included for
analysis that may have had errors in recording one repetition of Calibration data.

Calibration Trials The dependent measure for Calibration trials was the mean three-
dimensional distance between a given GV and the Wand Tip over the entire trial.
To reiterate from above, distances were always calculated as the minimum distance
between the GV line and the Wand Tip point, meaning the depth of fixation along the
GV was not a determinant of accuracy.

For each of the 12 calibration trials we generated all 72 possible GVs (12 cali-
bration files × 2 coordinate systems × 3 eye data types). For each coordinate system
and input data combination, we compared the three repetitions of GVs of the same
type (e.g., across the 3 ES GVs that were Cartesian and with Both eyes) across all
12 Calibration trials to find the one that performed the best. Note that trials were not
tested on the data used to train the model. First, we eliminated GV outliers (those
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with GV to Wand Tip distances > 30 cm), then we took the median performance
for each of the 3 repetitions across the remaining Calibration trials. The repetition
with the lowest median performance was then selected as the Best and used for the
remaining analyses.

Validation Trials The dependent measure for Validation trials was the mean 3D dis-
tance between a GV and each of the Task Relevant target locations. To extract these
Task Relevant target looks, we isolated 1 second epochs of stable-gaze data in the 5
s between the cueing-beeps. For example, between the first and second beep, partici-
pants were instructed to look at the Neutral target. Within this 5 s window, we use a
modified moving mean algorithm to find the 1 s of data where 1) there was at least
50% of detected pupil and 2) the L or R pupil data has the lowest velocity. This pro-
cess generates 11 stable-gaze epochs, three for the Home location and two each for
the remaining four task relevant locations. For each of the 5 task relevant locations,
the reported distance is the mean over these stable-gaze epochs.

Similar to the Calibration trials, but across the 3 validation trials, we selected
the best GV within a set of repetitions by comparing their performance across the 5
locations. First, we eliminated outliers (over 30 cm mean distance from any location),
then took the one with the minimum median distance across all validation trials and
the five locations as the best GV.

Task Trials The dependent measure for the Task trials was the mean three-dimensional
distance between a given GV and the nearest bounding box face of the Neutral (4 cm
cube) or Pasta Box (9 x 4 x 18 cm; see Fig. 3) object at specific locations and times
during the interaction task. Eye gaze behaviour is well understood for this task, as de-
scribed in Lavoie et al. [17] and Williams et al. [32]. Following the same procedure
as in this earlier work, each task trial was segmented into specific movements and
movement-phases (Reach, Grasp, Transport and Release) using detailed procedures
described elsewhere [17]. For this analysis, we isolated looks toward the Neutral
marker at the start of the trial and looks toward the Pasta Box each time it was being
grasped (just prior to object pickup) and released (just after object dropoff). Previous
work using this identical task shows that there are fixations to these objects around
these times on almost every trial [17]. These were single frame events that occurred
once (for the look to Neutral) or twice (for the looks toward the Pasta Box at the Side
Cart, Green Shelf and Blue Shelf locations) per location. Distances to locations with
two looks were averaged.

Similar to the Calibration and Validation trials, across the 20 possible task trials
we selected the best GV within a set of repetitions by comparing their performance
across the 4 locations (note no interactions occurred at the Home location so it was
not included in the Task trial analysis). First, we eliminated outliers (over 30 cm mean
distance from any object), then took as the best GV the one with the minimum median
distance across all task trials and the four locations.
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3 Results

Statistical analysis was performed in JASP 0.15.0.0 [9]. Repeated-measures ANOVAs
(rmANOVAs) were used to analyze the three trial types, which used the same partic-
ipant pool but were statistically independent from one another. We opted to use a
conservative statistical approach, correcting α for the number of tests run in each
family as described by Cramer et al. [4]. Each of the trial types were considered a
family for this analysis. All p values were Greenhouse-Geisser corrected if sphericity
was violated and more than two levels existed in the factor.

3.1 Factors for rmANOVA

For clarity, here we lay out all of the factors and their levels input into each rmANOVA.
The Coordinate factor describes the type of coordinate frame used. The Eye factor de-
scribes whether monocular (left or right) or binocular data were used. The Calibration
factor describes the routine when testing on Calibration data. The PredictedCalibra-
tion factor describes what data were input into the model to calculate the errors. The
Location factor describes the specific location that the participant was to interact with.

Levels All Coordinates had two levels: Cartesian and Spherical. Eye had three levels:
Right, Left, and Both. Calibration had four levels: ExperimenterSweep, Paint, Self,
and Stationary (see 2.3.1). PredictedCalibration had four levels: ExperimenterSweep,
Paint, Self, and Stationary. Location had five levels in the Validation trials: Neutral,
SideCart, Home, GreenShelf, and BlueShelf but only four levels in the Task trials:
Neutral, SideCart, GreenShelf, and BlueShelf (see Fig. 3).

3.2 Calibration Trials

Here, we ran an rmANOVA on a 2 (Coordinate) × 3 (Eye) × 4 (Calibration) × 4
(PredictedCalibration) design.

A significant main effect of Coordinate was detected (F(1,1) = 72.984, p < 0.001,
η2 = 0.024), where a model generated using Spherical data had lower error than
with Cartesian data (see Fig. 5). A significant main effect of Calibration was detected
(F(1,1.971) = 11.894, p < 0.001, η2 = 0.050), with Stationary data on average per-
forming best. A significant main effect of PredictedData was detected (F(1,1.870) =
8.660, p < 0.001, η2 = 0.128), with Stationary data being predicted more accurately
in a Spherical coordinate system. A significant Coordinate × PredictedData interac-
tion was detected (F(1,1.259) = 18.377, p < 0.001, η2 = 0.015), where Stationary data
were the hardest to predict when predicted by non-Stationary models, but performed
well when predicted by a Stationary calibration model. A significant Coordinate ×
Calibration interaction was detected (F(1,2.589) = 20.498, p < 0.001, η2 = 0.012),
with Stationary data again being hard to predict, unless it is predicted by a Station-
ary model. A significant Coordinate × Calibration × PredictedData interaction was
detected (F(1,4.338) = 4.942, p < 0.001, η2 = 0.006), driven by the performance of
Stationary data on non-Stationary calibration models (see Fig. 5B).
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Fig. 5 Average errors (in mm) for the Calibration trials. 95% confidence intervals are used around each
point. The X axis denotes the Calibration routine used to train the model. A) Mean error of the Spherical
models tested. Error is shown in millimeters (mm) at each location. B) Mean error of the Cartesian models
tested. Error is shown in millimeters (mm) at each location.

All other tests were either not significant or were rejected because they did not
meet Cramer’s adjusted α criterion [4].

3.3 Validation Trials

We used an rmANOVA on a 2 (Coordinate) × 3 (Eye) × 4 (Calibration) × 5 (Loca-
tion) design.

A significant main effect of Coordinate was detected (F(1,1) = 25.928, p < 0.001,
η2 = 0.008), where a model generated using Spherical data had lower error than
with Cartesian data. A significant Coordinate × Calibration interaction was detected
(F(1,2.501) = 7.838, p < 0.001, η2 = 0.006), where the Spherical models tended to
outperform Cartesian models, except when testing on Stationary data (see 6B).

All other tests were either not significant or were rejected because they did not
meet Cramer’s adjusted α criterion.

3.4 Task Trials

For the Task data, we were concerned with the performance of the GVs on real-world
data. Here, we ran an rmANOVA on a 2 (Coordinate) × 3 (Eye) × 4 (Calibration) ×
4 (Location) design.

A significant main effect of Coordinate system was detected (F(1,17) = 21.475, p
< 0.001), where Spherical models had lower errors than Cartesian models (see Fig.
7). A significant main effect of Location was detected (F(1,3) = 37.102, p < 0.001,
η2 = 0.202), where the SideCart location was the most difficult to predict, resulting
in the highest errors overall (see Fig. 7A). A significant Coordinate × Calibration
interaction was detected (F(1,3) = 7.396, p = 0.001, η2 = 0.006), with Spherical data
outperforming Cartesian data in all cases except for Stationary data.

All other tests were either not significant or were rejected because they did not
meet Cramer’s adjusted α criterion.
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Fig. 6 Average errors (in mm) for the Validation trials. 95% confidence intervals are used around each
point. A) Mean error generated at each of the locations (along the X axis) is shown for each type of
Eye data used. Error is shown in millimeters (mm) at each location. B) Mean error generated each of the
Calibration routines used is shown for Spherical and Cartesian models. Error shown in millimeters (mm)
for each Calibration routine.
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Fig. 7 Average errors (in mm) from the Task trials. 95% confidence intervals are used around each point.
The X axis denotes the Location during the Pasta Box Task. A) Mean error for a Spherical coordinate
system at each Location. Note that errors are below a centimeter when the participant is fixating on the
Neutral marker (i.e., directly in front). B) Mean error for a Cartesian coordinate system at each Location.

4 Discussion

Here we describe a method for generating 3D GVs using combined eye tracking
and mo-cap data. We achieve this by collecting calibration data where the eyes are
continuously fixated on a tracked mo-cap marker, and using it to train a set of linear
models to predict the 3D coordinates of the gaze fixation point. Within this method
we explored four different calibration routines (ES, SS, EP, ST), three options for
eye input into the model (binocular, left, right), and two options for model coordinate
system (spherical and cartesian).

We describe a set of four one-minute calibration procedures and their perfor-
mance relative to one another in three different, but related analyses. All calibration
procedures were similar in that the goal of each was for the participant to fixate on
a specific mo-cap marker for the duration of the procedure. We propose a simple
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model-based assessment (MATLAB’s fitlm function) that allows us to give a rec-
ommendation for the best calibration procedure based on the average GV error from
a known location. First, we assessed a model trained on a calibration routine’s eye
and mo-cap data calculating its error when testing on all other calibration proce-
dures’ input data. Second, the participant completed several validation trials. During
these trials, the participant fixated on different areas of interest for long (˜5 s) pe-
riods of time to effectively emulate eye gaze behaviour during our Pasta Box task
[17, 1, 32, 29], allowing us to assess error at each area of interest used during the
task. Finally, participants performed a real-world task where they were instructed to
perform the described Pasta Box Task. Here, we demonstrate that our analysis tech-
niques extend to data that were not recorded for the express purpose of being put
through this analysis pipeline. That is, we can assess real-world task data and calcu-
late performance metrics to best determine which calibration procedure to use.

With respect to the type of coordinate system used to predict the gaze fixation
point relative to the head, the results demonstrate that using a Spherical coordinate
system generally results in a GV with a more accurate direction than using a Carte-
sian coordinate system as well as lower error overall. This result is aligned with our
prediction, as we expected that the depth of fixation would be difficult to model based
on pupil position data alone. It is worth noting that the reduction in error appeared to
be systematic across all Calibration routines used—Spherical outperforms Cartesian.
Although we did not assess gaze depth in the current study, when a Cartesian coor-
dinate system is used, both the depth of fixation and direction of gaze are partially
represented in all three eye gaze models (the x, y, and z coordinates). Whereas, using
spherical coordinates confines the depth to one model (the ‘r’ coordinate) which does
not impact the direction of the GV. In future work we intend to further explore the
accuracy of the depth of the fixation point. However, the present work indicates that
when only the direction of gaze is of interest, a spherical coordinate system should
be used to generate GVs.

When comparing each Calibration procedure on their ability to predict Calibra-
tion data, all models perform relatively well, with Stationary performing the best.
However this is driven by the fact that all Calibration procedures (excluding Station-
ary) appear to have a difficult time predicting Stationary data. The Stationary routine
was intended to allow the eyes to explore the maximal range of trackable pupil-space
(see Fig 2D) while the actual target remained constant in space, potentially leading
to a more robust model. The Stationary calibration takes advantage of the compen-
satory vestibular-ocular response (VOR; [35]), in that the eyes and head move, but
the gaze target remains static. The approach for the Stationary calibration is one of
quantity over quality; during the Stationary routine, data is collected from almost all
accessible areas of the pupil, but not a lot of time is spent at each location nor are
many of these locations generally useful during the Pasta Box Task. While it may
be tempting to conclude that Stationary performs best overall, the data actually col-
lected during Validation and Task trials do not reflect this same level of pupil space
exploration. It is also important to consider that data collected during actual trials do
not typically result in the pupil being located in positions on the eye consistent with
the Stationary routine. Therefore, despite the advantage that the Stationary routine
appears to show for Calibration data, the fact that it did not perform better during
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the more ecologically valid Validation and Task trials leads us to recommend using a
calibration routine that reflects the dynamics of eye exploration necessary during task
completion. Anecdotally, explaining the Paint Calibration procedure was the simplest
to perform and is extensible to any task, while the Experimental Sweep procedure was
the easiest to keep consistent between sessions. Therefore, one of these two would
be our recommendation for ease and consistency without sacrificing performance for
ecologically valid data.

The Validation task was designed to mimic the behaviours that occur during a
typical Pasta Box trial while still giving control over where the participant is looking
and when. During a real trial, it is much more difficult to intrinsically know where
the participant should be looking. These results are in line with the Calibration re-
sults, suggesting that Spherical coordinates result in more accurate GVs. One of the
challenges the model faces is when the participant turns to fixate on the Side Cart,
which results in higher error. Side Cart error appears to be worse when using data
from Both pupils, and performs best when using monocular data, notably from the
Left eye. One possible explanation for this is that the Left eye is always in view of
the cameras when fixating on the target at the Side Cart, whereas the Right eye is
potentially lost for a short duration. It is possible that using a ‘hybrid’ approach with
monocular eye data, constantly switching to the ’better’ eye, could result in superior
performance. However, this is to be investigated and cannot currently be stated for
certain. Regardless, it does suggest that collecting data from both eyes gives the most
flexibility and opportunity to maximize data quality across sessions and even within
a task. The validation dataset functions as a ‘sanity check’ to ensure that the per-
formance of the model is at least in line with our expectations: instead of tracking a
moving marker (e.g., the wand during Calibration trials), the participant is fixating on
a single static marker at a task relevant location. Performance appears to be similar
to the Calibration trials analysis, suggesting the Validation dataset has done its job.

The Task results demonstrate that performance of the model has been effective
on real-world data using a well-documented task [29, 17, 1, 32]. Previous work has
shown that normative participants tend to fixate on the object they are about to interact
with (or about to stop interacting with) for several hundred milliseconds [6, 7, 22].
Assessing performance on a real-world task is challenging because the behaviours
of the participant are not controlled beyond simple verbal instructions (e.g., pick up
the pasta box and move it to a new location) or visual demonstrations. However, we
can use the principals described by Lappi [16] and Hayhoe [6] to find points in time
when we expect the participant to initiate a reaching behaviour, such as a fixation on
the object to be interacted with. With the identified fixation, we assessed error at this
time point as the minimum distance between the 3D GV and the Pasta Box. Overall,
performance of the model looked good; errors were remarkably low (see Fig. 7A).
The average error for a Spherical coordinate system was below a centimeter for Task
trials, which, given interactions occurred at arms length corresponds to under one
visual degree. We were surprised to find that error was lowest in the Task trials as
they were the least-controlled in terms of participant instruction. However, when the
participant turned their head, the error was significantly higher than at other areas.

Currently, there does not seem to be any standardized calibration procedures that
also allow for the assessment of performance during real-world task use. Here we
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show a methodology that allows anyone with access to an eye tracker that outputs
pupil locations in 2D space and a motion tracker in 3D space to generate GVs that
can have as low as sub-centimeter error. While we did not find that any particular
Calibration routine’s data significantly outperformed any other, we found that us-
ing a Spherical coordinate system generated significantly less error on average when
compared to a Cartesian coordinate system. Further, we suggest using a calibration
routine that reflects the actual behaviours of the participant during task completion.
For example, if the task involves looking at and reaching towards specific areas, a
calibration routine that includes eye and hand movements towards those locations
should generate higher quality models, or at minimum match the task demands and
therefore be easier to employ.

5 Conclusion

We found that, when recording synchronized eye and motion tracking data for the
purpose of producing accurate 3D gaze vectors, there are a few useful rules of thumb:

1. For fixations to real objects positioned in front of participants, gaze vectors gener-
ated using this approach will result in an average error of about 1-2 cm. If within
peripersonal space (around 60 cm distance), this corresponds to about 1 visual
degree.

2. A spherical coordinate system will on average produce more accurate gaze vec-
tors (when depth is not considered).

3. Locations that require a head turn typically result in an accuracy falloff, adding
about 2-3 cm of error in our data.

4. The best way to minimize error is to ensure quality data by making sure the eye
tracker is properly fitted and the cameras are getting sufficient coverage of the
eyes.

5. Binocular data, while not always the most accurate, gives the option to use either
or both of the eyes when generating models to produce gaze vectors.

6. The calibration routine used should reflect the locations in space that the partici-
pant will be interacting with. More data is not always better.
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