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Generating accurate 3D gaze vectors using synchronized eye
tracking and motion capture
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Abstract Assessing gaze behaviour during real-world tasks is difficult; dynamic
bodies moving through dynamic worlds make gaze analysis difficult. Current ap-
proaches involve laborious coding of pupil positions. In settings where motion cap-
ture and mobile eye tracking are used concurrently in naturalistic tasks, it is critical
that data collection be simple, efficient, and systematic. One solution is to combine
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eye tracking with motion capture to generate 3D gaze vectors. When combined with
tracked or known object locations, 3D gaze vector generation can be automated. Here
we use combined eye and motion capture and explore how linear regression models
generate accurate 3D gaze vectors. We compare spatial accuracy of models derived
from four short calibration routines across three pupil data inputs: the efficacy of
calibration routines were assessed, a validation task requiring short fixations on task-
relevant locations, and a naturalistic object interaction task to bridge the gap between
laboratory and “in the wild” studies. Further, we generated and compared models
using spherical and cartesian coordinate systems and monocular (Left or Right) or
binocular data. All calibration routines performed similarly, with the best perfor-
mance (i.e., sub-centimetre errors) coming from the naturalistic task trials when the
participant is looking at an object in front of them. We found that spherical coordi-
nate systems generate the most accurate gaze vectors with no differences in accuracy
when using monocular or binocular data. Overall, we recommend one-minute calibra-
tion routines using binocular pupil data combined with a spherical world coordinate
system to produce the highest quality gaze vectors.

Keywords eye tracking · motion capture · gaze vector · calibration · linear regression

1 Introduction

The majority of laboratory examinations of eye gaze are highly constrained and re-
liant on the assumption that gaze behaviors are task-invariant [11]. That is, many lab-
oratory tasks do not reflect naturalistic behaviours. Common sense says that where
someone is looking is dependent upon both eye and head movements [14, 28], mean-
ing head position must be accounted for when calculating and analyzing gaze. Most
studies investigating hand-eye coordination circumvent this problem by restricting
head movements through the use of a chin rest [16]. In the real world, we are free to
gaze at objects throughout our full field of view, or even anywhere in our 3D space,
provided we can turn and move. But, in the lab, the areas the participant can interact
with are typically severely limited, such as restricting gaze to a computer monitor or
tabletop [27, 19]. Controlling for such environmental variables lets researchers ask
specific questions about the motor and neural mechanisms that govern hand-eye co-
ordination but fail to ask how gaze performs in natural settings. When collecting data
outside of the laboratory, it is simply not feasible nor ecologically valid to restrict
movement of the head or restrict gaze to the interaction with a limited amount of
space. Additionally, real-world data tends to be much more difficult to process and
analyze because of the permissive setting in which it is collected; free movement of
the body is encouraged, as it more closely reflects natural behaviour.

Collecting data outside of the laboratory—or “in the wild”—is challenging [16];
determining fixations from dynamic bodies moving through dynamic worlds is a non-
trivial problem to solve. A few studies have collected data while performing simple
every-day activities [15, 13, 6, 29, 17]. For example, Land and Hayhoe [15] found
that eye behaviours were similar across different use cases, such as during making
a cup of tea or preparing a sandwich. They found eye movements could be broken
down into four systematic categories: locating (the target), directing (the hands to the
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target), guiding (the hands during movement), and checking (if the condition has been
satisfied). These general rules of interaction help inform us of potential systematic
analyses that can be performed on the data. Data recorded “in the wild” also tend to be
harder to parse into fractional chunks for analysis; Lappi [16] describes some of these
common issues when collecting real-world natural gaze behaviours. In his review,
Lappi suggests that complex eye movement behaviours are built from combinations
of primitive eye behaviours such as fixations, saccades, and pursuits. These primitive
building blocks can be used as indices to break complex tasks into digestible blocks
that can be analyzed more similarly to controlled lab-based experiments.

Over the last decade eye tracking technology has become cheaper and easier to
use. Traditional eye tracking headsets tended to be bulkier and required the head
position to be fixed, whereas newer eye trackers such as the Pupil Labs Core [10]
are more portable and do not require a fixed head. One common consideration of
designing an eye tracking study is the time-consuming manual labour required for
cleaning and analysis [17, 29, 32, 21]. Much of this manual labour is centred around
two primarily video based categorization steps: 1) the cleaning of the pupil data, most
of which is difficult to automate because of the nature of data quality from individual
participants and 2) the assignment of fixations to objects in the world on the “world
camera”, an outward facing camera attached to a head mounted eye tracker. This
portion of analysis is so time consuming that many researchers will only analyze a
subset of data rather than the whole [33, 30, 21]. For example, Parr et al. [21] were
only able to analyze every third trial of their prosthetic hand-eye coordination task. A
major concern is that a subset of data does not always represent the population-level
statistics of the entire dataset—effects could be driven by outliers. Secondly, this
leaves open the possibility of incorrect coding, leading to lower quality data that may
contain additional errors, influencing statistical tests. Optimizing the volume of data
analysis possible would have great benefits for statistical power and data reliability.

Motion capture (mo-cap) is a technique used to record human movement in 3D
space [12] and, when combined and synchronized with eye tracking, offers a so-
lution for automating real-world gaze analysis. Human movement science greatly
benefits from this technology, as it allows for the quantification of movements during
reach-to-grasp [3, 34] or reach-to-point [24, 23, 31] behaviours. Additionally, mo-cap
technology comes in many forms, including infrared-based or the burgeoning field of
markerless-motion-capture [18], both of which are typically capable of integrating
with eye tracking headsets. Tracking gaze during movement grants insight into the
strategies that different populations may use when completing the same task. For ex-
ample, research into gaze strategies during reach-to-grasp behaviours has uncovered
key strategic differences in normative [21] versus prosthetic arm users [32, 17, 8],
where prosthesis users tend to move much slower, fixate longer, and do not “look
ahead” to the intended target location after grasping.

While the synchronized collection of eye tracking and mo-cap data is not trivial,
tools such as Lab Streaming Layer (LSL; SCCN [25]) have made this process much
easier. However, once you have two synchronized data streams, it is not easy to de-
termine where someone is looking based on raw data. Here we explore a technique
requiring the experimenter to collect a separate eye-calibration data file, specifically
for the purposes of building a model that will map head and pupil positions to a three
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dimensional (3D) gaze vector in a common world coordinate system. A 3D gaze
vector is a line that extends from the head out into 3D space to predict where the
participant is looking in world-space [26, 2, 20]. During these eye-calibration trials,
participants are asked to focus on a tracked mo-cap marker (in our task on the tip of a
calibration “wand”) as it moves through space, typically for about a minute. In the 2D
eye tracking space, there does exist some guidelines and recommendations to gener-
ate gaze points. However, to our knowledge, despite the increasing number of studies
that use 3D gaze vectors to assess behaviour, no standardized and very few recom-
mended calibration routines exists. That is, how should you best move the tracked
“wand”-marker through space? In addition, what data should be used to build pre-
dictive models, including which coordinate frame(s) or binocular / monocular data,
depending on how pupil data were recorded.

With the goal of providing researchers interested in naturalistic tasks recommen-
dations and guidelines for expected accuracy, we generated and assessed 3D gaze
vector models from all possible combinations of: four different calibration routines,
two coordinate frames, and three sets of pupil data inputs. Our results describe an
approach that is capable of generating accurate (sub-centimetre and below one visual
degree in the best case) 3D gaze vectors (GVs) using the position of the pupils and the
3D location of the participant’s head in space. To create the GVs, we use a linear re-
gression algorithm to train models based on input pupil positions time-synchronized
to the 3D location of a calibration wand. Then, we assess their spatial accuracy across
a variety of data sets.

2 Methods

2.1 Equipment

Eye tracking data were collected using a Pupil Labs Core (200Hz; [10]) USB eye
tracking headset. Lab Streaming Layer (LSL; [25]) was used to synchronize eye
tracking and mo-cap data. The official Pupil Labs LSL plugin was used in conjunc-
tion with the Pupil Capture software to directly send data into the LSL datastream.
Mo-cap data were collected using an OptiTrack mo-cap system (two systems were
used throughout the study as the lab was upgraded: initially a 12-camera Flex 13
system, 120Hz; then a 14-camera Prime 13-W system, 200Hz). The OptiTrack sys-
tems were calibrated using the included Motive program to have a spatial accuracy
of 0.1mm or less. A custom program was written in C# to pass frame data from the
OptiTrack Motive application to the LSL datastream for synchronization. Rigid clus-
ters of reflective markers were fixed to the participant and objects in the environment
to track the position and orientation of the Head, Right Hand (centred approximately
dorsally), Task Cart, Side Cart, Pasta Box (in Task data), and a Calibration Wand (in
calibration data). Marker clusters were also fixed to the participant’s pelvis, trunk,
upper arms, forearms, and left hand in as described by Boser et al. [1], but these data
were not used in the current study. It is worth noting that theoretically any combi-
nation of eye tracker and mo-cap system could be used, provided they collect time
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series data as synchronized 2D pupil positions (in eye camera coordinates) and 3D
marker position (in mo-cap).

2.2 Participants

Twenty-one undergraduate and graduate students from the Department of Psychology
research pool at the University of Alberta participated in this study. All participants
were right-handed, had normal or corrected-to-normal vision, and were naive to the
tasks. Eight participants were collected using the OptiTrack Flex 13 system at 120
Hz, and 13 were collected on the OptiTrack Prime 13-W system at 200 Hz. One
participant was removed due to recording errors (poor tracking quality), for a total
of twenty participants. This study was approved by the University of Alberta Health
Research Ethics Board under protocol Pro00087329 and ethical protocols were in
adherence to the 1964 Declaration of Helsinki.

2.3 Procedure

Each test of data quality consisted of 3 sets of Calibration/Validation trials and 2 sets
of 10 Task trials, proceeding in the following order:

1. Calibration/Validation set
2. Task set
3. Calibration/Validation set
4. Task set
5. Calibration/Validation set

Each Calibration/Validation set included four Calibration trials (one of each type de-
scribed below) and one Validation trial presented in a pseudo-random order. Each
Task set included 10 repetitions of the previously published Pasta Box task (see [29]
for a full description of the task parameters). In short, the Pasta Box task requires
the participant to move a rectangular box of pasta between three key locations: the
Side Cart, the Green shelf, and the Blue shelf. In between each of the reaches, the
participant must touch the Home position (see Fig. 3 and section 2.3.3 for a visual
representation of the task and relevant spaces). Each trial takes approximately 15 sec-
onds to complete. In total, participants performed 12 Calibration trials (3 repetitions
of each of 4 types), 3 Validation trials and 20 Task trials. Not all participants had us-
able data for every trials; we discuss dealing with missing data and removal in section
2.4.1.

2.3.1 Calibration Trials

Participants were asked to track the position of a single spherical mo-cap marker (14
mm diameter) with their eyes for about one minute per trial. The participant could
move their head freely while tracking the marker. The marker was placed at the tip
of a 40 cm wand which moved through the task space in one of four Calibration
routines:
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A) Experimenter Sweep B) Self Sweep

C) Experimenter Paint D) Stationary Target

Fig. 1 The Calibration routines used in the present study, with traces in grey showing example wand
movements over time. Each routine takes approximately one minute to complete. The black inverted ‘t’
shaped object is the calibration wand used in all routines. In all quadrants, the blue sphere represents the
participant’s head position, with the Orange target to the participant’s right and the wand being directly
in front of the participant. A) The Experimenter Sweep (ES) routine. The experimenter stands to the
participant’s left and waves the wand in s-shaped patterns through space, covering all three dimensions
roughly equally (only up/down movements shown in figure). B) The Self Sweep (SS) routine. Identical
in procedure to the ES routine, but the participant themselves carry out the wand movements. C) The
Experimenter Paint (EP) routine. The experimenter stands to the right of the participant and moves the
wand for approximately 15 seconds in small volumes at four locations relevant to the later Task trials: the
Side Cart, the Home position, the Green Shelf and the Blue Shelf. D) The Stationary Target (ST) routine.
The participant locks their gaze on the wand, which is fixed to the table. The participant moves their head
up, then down, then centers, then left, then right (i.e., in the form of a cross), then rotates their head in
swirl-like motions while maintaining fixation on the tip of the wand.

1. Experimenter Sweep (ES): The experimenter moved the wand in slow S-shaped
curves along each of the room-coordinate axes (parallel to floor, left/right, parallel
to floor in/out, parallel to wall up/down).

2. Self Sweep (SS): Replicating ES but with the participant holding the wand and
replicating the movements.

3. Experimenter Paint (EP): The experimenter moved the wand to each of the rel-
evant locations in the Pasta Box task (minus Neutral, see below) and explored
small (10-20 cm in each dimension) volumes at these locations.

4. Stationary Target (ST): The wand was fixed to the table directly in front of the
participant (˜60 cm away), who was asked to maintain fixation on the wand-tip
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B) Self Sweep

C) Experimenter Paint D) Stationary Target

A) Experimenter Sweep

Fig. 2 Example corresponding gaze patterns associated with each of the calibration routines. Pupil posi-
tion from one eye is shown over the course of the entire calibration. A) The Experimenter Sweep (ES)
routine: the gaze seems to be slightly jittery because the participant has to constantly adjust to the experi-
menter’s wand position. B) The Self Sweep (SS) routine: the gaze pattern is much more smooth, because
the participant is moving the wand while simultaneously fixating on the tip. C) The Experimenter Paint
(EP) routine: gaze locks to four different locations, which slightly overlap because the participant was free
to move their head and likely tends toward central fixation on each location. D) The Stationary Target
(ST) routine: the head is moved in a cross-like movement (up, down, centre, left, right) then in swirl-like
movements for approximately one minute.

while nodding their head up and down, returning to centre, then turning it left and
right, then rotating it in a clockwise then counterclockwise spiral.

The intention for each of these trials was to create calibration routines with a di-
versity of different coverages in terms of both task and pupil-position space (see Fig.
1 for the wand movements, and Fig. 2 for example corresponding pupil positions).

2.3.2 Validation Trials

Participants were asked to fixate on 5 stationary targets (see Fig. 3 for locations)
presented at Task-relevant locations for ˜5 s, in a specific sequence, and at least 2
times each. An auditory beep signalled the start of the first fixation and beeped every
5 seconds thereafter to signal a switch to the next Task-relevant location in this order:

Neutral → Side Cart → Blue Shelf → Home → Blue Shelf → Green Shelf →
Home → Green Shelf → Side Cart → Home → Neutral.
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Head

Neutral

Blue Shelf 
Gaze Vectors

Green Shelf

Home

Right Hand

Pasta Box
Side Cart

Fig. 3 The locations, objects, and markers critical for all three tasks. The five locations are shown: Neutral,
Side Cart, Home, Green Shelf, and Blue Shelf. For the Pasta Box task, the participant moved the box from
location to location (see 2.3.3). The Head rigid body was used to determine the origin of the resulting
gaze vectors. The Right Hand’s velocity profile was used to determine when the participant picked up or
dropped off the pasta box (see 2.4.3). All 72 gaze vectors generated are shown in pink, with most being
close to the target object (pasta box), and some performing rather poorly.

This order of 11 fixations mirrors the order these locations are visited during the
actual Task trials.

2.3.3 Task Trials

The set-up for the Pasta Box task is shown in Fig. 31. Participants began each Task
trial with their hand on the Home position and their eyes fixating on the Neutral target,
marked by a mo-cap marker. A beep then cued them to initiate an object interaction
sequence consisting of three movements:

1. Reach and grasp the Pasta Box at the Side Cart, move it to Green Shelf then return
hand to Home;

2. Reach and grasp the Pasta Box at Green Shelf, move it to Blue Shelf then return
the hand to Home;

3. Reach and grasp the Pasta Box at Blue Shelf, move it to the Side Cart then return
the hand to Home. At the end of the task the participant also returns their gaze to
the neutral marker.

1 Due to bioRxiv’s policy regarding human subjects, we cannot show an actual picture of the setup. See
section 5 for supplemental videos of the task.
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The task was demonstrated to each participant visually. The participant was given
as many practice trials as they felt necessary to be comfortable with the sequence of
movements.

2.4 Data Processing

2.4.1 Pre-processing

Mo-cap data were exported from Motive and run through custom MATLAB scripts
to check for marker name consistency and remove residual sections of noisy data
(marker displacements of more than 5 mm between frames, and islands of data less
than 100 ms in duration). Mo-cap and eye tracking data were then synchronized to
the mo-cap frame rate using the common timestamps in the LSL datastream files.
The combined data were imported into our custom software platform for integrated
analysis of eye and mo-cap data; the Gaze and Movement Assessment Tool (GaMA;
[32]). Within GaMA, raw pupil position data was cleaned by: 1) Removing any data
points outside of pupil camera bounds (<0 or >1); 2) Removing any data points
more than 4 standard deviations away from the mean position; 3) Removing any
data points with velocities greater than 6 (meaning the pupil was travelling across
the entire camera 6 or more times per second). After this removal, any gaps < 50
ms were filled using the inpaint nans [5] function in MATLAB then, any remaining
islands of data < 50 ms were deleted. Finally, the pupil data were filtered in MATLAB
using a 4th order zero-lag low-pass Butterworth filter with a cutoff frequency of 10
Hz. A 10 Hz cutoff was chosen because the demands of the tasks do not depend on
eye dynamics with movements more than 10 times / second. Also within GaMA,
the mo-cap data were filtered using a 4th order zero-lag low-pass Butterworth filter
with a cutoff frequency of 6 Hz. Rigid bodies, represented as both a position and
rotation, were defined using the clusters of markers attached to the participant’s head
and hand, as well as objects in the environment. For the Task trial data, virtual objects
were also created to represent the position, orientation and extent of the objects in the
environment (Task Cart, Side Cart, Pasta Box).

2.4.2 Gaze Vector Modelling

The cleaned eye and motion data were then used to generate predictions of the di-
rection the participant was looking in 3D space, or “gaze-in-world” vectors, herein
referred to as GVs. The process of generating a single GV consists of two steps:

1. Generate eye gaze models using data from a specific Calibration trial
2. Use the eye gaze models to predict the GV direction at each frame in a given trial

In step 1, Calibration data are used to fit three eye gaze models. Each model takes
pupil position data as input and predicts a single coordinate of the 3D gaze fixation
point relative to the Head rigid body coordinate system in the 3D mo-cap space. For
example: one model might use pupil position data to predict only the x-coordinate
of the fixation point relative to the head, a second, separate model would be used
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to predict only the y-coordinate, etc. Each eye gaze model was generated using the
built-in MATLAB function fitlm with the ‘quadratic’ model specification and robust
fitting using the ‘bisquare’ weight function. i.e.:

1 eyeGazeModel = fitlm(modelInput , modelResponseVar , ‘quadratic ’, ‘

RobustOpts ’, ‘on ’)

In this study we explored three options for model input (pupil input data from
right eye only [xr,yr], left eye only [xl,yl], or binocular data [xl,yl,xr,yr]), as well as
two options for expressing the fixation point relative to the Head coordinate system
(Cartesian [x,y,z] coordinates, or Spherical [r, θ , φ ] coordinates). We anticipated that
using the Spherical coordinate system would increase accuracy of the GV direction
because it isolates depth of fixation to the ‘r’ model, whereas in Cartesian, all three
models are influenced by depth of fixation.

In step 2, once the eye gaze models were generated for a given Calibration trial
and set of parameters (left/right/both eyes × cartesian / spherical coordinate system),
they were used to predict the coordinates of the fixation point relative to the head at
each frame in a given Calibration, Validation, or Task trial. The known transforma-
tion between the Head rigid body coordinate system and global mo-cap coordinate
system is then used to calculate the position of the fixation point relative to the global
coordinate system. The GV is represented by the line originating at the head rigid
body origin (mid forehead), passing through the fixation point, extending infinitely
forward and away from the head in the direction of the fixation point (see Fig 4). It is
important to note that only the direction of the GV was used in subsequent analysis,
the distance from the head to the predicted fixation point was not considered.

2.4.3 Dependent Measures

We conducted separate analyses to assess GV accuracy in each of the three types
of data collected (Calibration, Validation and Task). For each analysis, we collapsed
across the 3 repetitions of a given Calibration type by finding which of the repetitions
performed the “best” on that data. This involved eliminating abnormally poor GVs
(those whose average distance from the target of analysis were 30 cm or more away),
then taking the remaining GV with the lowest average distance to targets (see below).
One participant was removed from the Calibration dataset, three from the Validation
dataset, and two from the Task dataset because of average errors above 30cm. An
advantage of this approach was this it allowed participants to be included for analysis
that may have had errors in recording one repetition of Calibration data. As linear dis-
tance error does not account for the perspective of the participant, we also calculated
the visual angle error simultaneously for each trial. The visual angle error accounts
for the distance between the subject’s eyes and the target object.

Calibration Trials The dependent measure for Calibration trials was the mean 3D
distance between a given GV and the Wand Tip over the entire trial. To reiterate from
above, distances were always calculated as the minimum distance between the GV
line and the Wand Tip point, meaning the depth of fixation along the GV was not a
determinant of accuracy.
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XHCS

YHCS

ZHCS

Head CS

Global CS Global CSGlobal CS

ΦHCS

rHCS

Fixation Point
(rHCS, θHCS, ΦHCS)

θHCSA) Cartesian B) Spherical

Fixation Point
(XHCS, YHCS, ZHCS)

Fig. 4 A visual demonstration of the differences between the Cartesian and Spherical coordinate systems
used. The tip of the black wand is the gaze fixation point in both coordinate systems. A) The Cartesian
coordinate system: coordinates are represented by coordinate triplets of [x,y,z]. Here, the wand tip is only
represented by its offset from the origin. A consequence is that the depth of the wand is embedded in all of
the dimensions. B) The Spherical coordinate system: coordinates are encoded as triplets of [r,θ , φ ]. Here,
the wand tip is described in terms of the angular and euclidean distance from the head. As a consequence,
euclidean distance (i.e., depth) can be sequestered to a single coordinate. As our goals did not require depth
estimates, we were able to train our models without the depth information.

For each of the 12 Calibration trials we generated all 72 possible GVs (12 Cal-
ibration files × 2 Coordinate systems × 3 pupil data inputs). For each coordinate
system and input data combination, we compared the three repetitions of GVs of the
same type (e.g., across the 3 ES GVs that were Cartesian and with Both eyes) across
all 12 Calibration trials to find the one that performed the best. Note that trials were
not tested on the data used to train the model. First, we eliminated GV outliers (those
with GV to Wand Tip distances > 30 cm), then we took the median performance
for each of the 3 repetitions across the remaining Calibration trials. The repetition
with the lowest median performance was then selected as the Best and used for the
remaining analyses.

Validation Trials The dependent measure for Validation trials was the mean 3D dis-
tance between a GV and each of the Task Relevant target locations. To extract these
Task Relevant target looks, we isolated 1 second epochs of stable-gaze data in the
5 s between the cueing-beeps. For example, between the first and second beep, par-
ticipants were instructed to look at the Neutral target. Within this 5 s window, we
use a modified moving mean algorithm to find the 1 s of data where 1) there was
at least 50% of detected pupil and 2) the L or R pupil data has the lowest velocity.
This process generates 11 stable-gaze epochs, three for the Home location and two
each for the remaining four Task-relevant locations. For each of the five Task-relevant
locations, the reported distance is the mean over these stable-gaze epochs.
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Similar to the Calibration trials, but across the 3 Validation trials, we selected
the best GV within a set of repetitions by comparing their performance across the 5
locations. First, we eliminated outliers (over 30 cm mean distance from any location),
then took the one with the minimum median distance across all Validation trials and
the five locations as the best GV.

Task Trials The dependent measure for the Task trials was the mean 3D distance
between a given GV and the nearest bounding box face of the Neutral (4 cm cube)
or Pasta Box (9 x 4 x 18 cm; see Fig. 3) object at specific locations and times during
the interaction task. Eye gaze behaviour is well understood for this task, as described
in Lavoie et al. [17] and Williams et al. [32]. Following the same procedure as in this
earlier work, each task trial was segmented into specific movements and movement-
phases (Reach, Grasp, Transport and Release) using detailed procedures described
elsewhere [17]. For this analysis, we isolated looks toward the Neutral marker at the
start of the trial and looks toward the Pasta Box each time it was being grasped (just
prior to object pickup) and released (just after object dropoff). Previous work using
this identical task shows that there are fixations to these objects around these times
on almost every trial [17]. These were single frame events that occurred once (for the
look to Neutral) or twice (for the looks toward the Pasta Box at the Side Cart, Green
Shelf and Blue Shelf locations) per location. Distances to locations with two looks
were averaged.

Similar to the Calibration and Validation trials, across the 20 possible Task trials
we selected the best GV within a set of repetitions by comparing their performance
across the 4 locations (note no interactions occurred at the Home location so it was
not included in the Task trial analysis). First, we eliminated outliers (over 30 cm mean
distance from any object), then took as the best GV the one with the minimum median
distance across all Task trials and the four locations.

3 Results

Statistical analysis was performed in JASP 0.16.1 [9]. Repeated-measures ANOVAs
(rmANOVAs) were used to analyze the three trial types, which used the same partici-
pant pool but were statistically independent from one another. We conducted statisti-
cal analysis on two independent sets of data: a linear distance error (centimetres) and
a visual angle error (degrees) to account for distance. All results below are reported
with the linear distance error (LD) first and visual angle error (VA) second. We opted
to use a conservative statistical approach, correcting α for the number of tests run
in each family as described by Cramer et al. [4]. Each of the trial types were con-
sidered a family for this analysis. All p values were Greenhouse-Geisser corrected if
sphericity was violated and more than two levels existed in the factor.

3.1 Factors for rmANOVA

For clarity, here we lay out all of the factors and their levels input into each rmANOVA.
The Coordinate factor describes the type of coordinate frame used. The Eye factor de-

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 25, 2022. ; https://doi.org/10.1101/2021.10.22.465332doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465332
http://creativecommons.org/licenses/by-nc/4.0/


bioRχiv — Accurate 3D gaze vectors during real-world tasks 13

scribes whether monocular (left or right) or binocular data were used. The Calibration
factor describes the routine when testing on Calibration data. The PredictedCalibra-
tion factor describes what data were input into the model to calculate the errors. The
Location factor describes the specific location that the participant was to interact with.

Levels All Coordinates had two levels: Cartesian and Spherical. Eye had three levels:
Right, Left, and Both. Calibration had four levels: ExperimenterSweep, Paint, Self,
and Stationary (see 2.3.1). PredictedCalibration had four levels: ExperimenterSweep,
Paint, Self, and Stationary. Location had five levels in the Validation trials: Neutral,
SideCart, Home, GreenShelf, and BlueShelf but only four levels in the Task trials:
Neutral, SideCart, GreenShelf, and BlueShelf (see Fig. 3).

3.2 Calibration Trials

Here, we ran an rmANOVA on a 2 (Coordinate) × 3 (Eye) × 4 (Calibration) × 4
(PredictedCalibration) design.

A significant main effect of Coordinate was detected (LD: F(1,1) = 72.984, p <
0.001, η2 = 0.024; VA: F(1,1 = 100.586, p < 0.001, η2 = 0.020), where a model
generated using Spherical data had lower error than with Cartesian data (see Fig. 5).
A significant main effect of Calibration was detected (LD: F(1,1.971) = 11.894, p <
0.001, η2 = 0.050; VA: F(1,2.058) = 12.393, p < 0.001, η2 = 0.047), with Station-
ary data on average performing best. A significant main effect of PredictedData was
detected (LD: F(1,1.870) = 8.660, p < 0.001, η2 = 0.128; VA: F(1,2.294) = 6.995,
p < 0.001, η2 = 0.119), with Stationary data being predicted more accurately in a
Spherical coordinate system. A significant Coordinate × PredictedData interaction
was detected (LD: F(1,1.259) = 18.377, p < 0.001, η2 = 0.015; VA: F(1,1.215) =
24.979, p < 0.001, η2 = 0.016), where Stationary data were the hardest to predict
when predicted by non-Stationary models, but performed well when predicted by a
Stationary Calibration model. A significant Coordinate × Calibration interaction was
detected (LD: F(1,2.589) = 20.498, p < 0.001, η2 = 0.012; VA: F(1,2.114) = 26.167,
p < 0.001, η2 = 0.010), with Stationary data again being hard to predict, unless it is
predicted by a Stationary model. A significant Coordinate × Calibration × Predicted-
Data interaction was detected (LD: F(1,4.338) = 4.942, p < 0.001, η2 = 0.006; VA:
F(1,3.834) = 7.644, p < 0.001, η2 = 0.006), driven by the performance of Stationary
data on non-Stationary Calibration models (see Fig. 5B and D).

All other tests were either not significant or were rejected because they did not
meet Cramer’s adjusted α criterion [4].

3.3 Validation Trials

We used an rmANOVA on a 2 (Coordinate) × 3 (Eye) × 4 (Calibration) × 5 (Loca-
tion) design.

A significant main effect of Coordinate was detected (LD: F(1,1) = 25.928, p <
0.001, η2 = 0.008; VA: F(1,1) = 33.716, p < 0.001, η2 = 0.003), where a model
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Fig. 5 Plots showing the average performance of the models in linear distance (LD) and visual angle
(VA) errors for the Calibration trials. The legend in the top right denotes which Calibration data was used
during assessment. The top row are plots of LD errors (in mm) and the bottom row shows VA error (in
degrees). The left plots are Spherical coordinate data, and the right plots are Cartesian coordinate data.
95% confidence intervals are used around each mean, with the observed scores that make up that mean
plotted as translucent points. In all plots, the X axis denotes the Calibration routine used to train the model.
A) Mean error of the Spherical LD models tested. Error is shown in mm at each location. B) Mean error
of the Cartesian LD models tested. Error is shown in mm at each location. C) Mean error of the Spherical
VA models tested. Error is shown in degrees at each location. D) Mean error of the Cartesian VA models
tested. Error is shown in degrees at each location.

generated using Spherical data had lower error than with Cartesian data. A signifi-
cant Coordinate × Calibration interaction was detected (LD: F(1,2.501) = 7.838, p <
0.001, η2 = 0.006; VA: F(1,3) = 7.274, p < 0.001, η2 = 0.002), where the Spherical
models tended to outperform Cartesian models, except when testing on Stationary
data (see 6B).

All other tests were either not significant or were rejected because they did not
meet Cramer’s adjusted α criterion.

3.4 Task Trials

For the Task data, we were concerned with the performance of the GVs on real-world
data. Here, we ran an rmANOVA on a 2 (Coordinate) × 3 (Eye) × 4 (Calibration) ×
4 (Location) design.

A significant main effect of Coordinate system was detected (LD: F(1,17) =
21.475, p < 0.001, η2 = 0.008; VA: (F(1,17) = 18.748, p < 0.001, η2 = 0.006),
where Spherical models had lower errors than Cartesian models (see Fig. 7). A sig-
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Fig. 6 Plots showing the average performance of the models in linear distance (LD) and visual angle (VA)
errors for the Validation trials. The plots on the left side are the average LD and VA errors (A, C) for each
location in the Validation task (X axis). The legend here indicates what type of pupil input data was used.
The plots on the right side the average LD and VA errors (B, D) for each of the Calibration types used as
inputs to the models (X axis). The legend in the top right indicates whether a Spherical or Cartesian model
was used. 95% confidence intervals are used around each mean, with the observed scores that make up
that mean plotted as translucent points. A) Mean error generated at each of the locations (along the X axis)
is shown for each type of Eye data used. Error is shown in millimetres at each location. B) Mean error
generated each of the Calibration routines used is shown for Spherical and Cartesian models. Error shown
in millimetres for each Calibration routine. C) Mean error generated at each of the locations (along the X
axis) is shown for each type of Eye data used. Error is shown in degrees at each location. D) Mean error
generated each of the Calibration routines used is shown for Spherical and Cartesian models. Error shown
in degrees for each Calibration routine.

nificant main effect of Location was detected (LD: F(1,3) = 37.102, p < 0.001, η2

= 0.202; VA: F(1,3) = 20.550, p < 0.001, η2 = 0.083), where the SideCart location
was the most difficult to predict, resulting in the highest errors overall (see Fig. 7A).
A significant Coordinate × Calibration interaction was detected (LD: F(1,3) = 7.396,
p = 0.001, η2 = 0.006; VA: F(1,3) = 11.177, p = 0.001, η2 = 0.004), with Spherical
data outperforming Cartesian data in all cases except for Stationary data.

All other tests were either not significant or were rejected because they did not
meet Cramer’s adjusted α criterion.
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Fig. 7 Plots showing the average performance at each location, split by the pupil input data in linear
distance (LD) and visual angle (VA) errors for the Task trials. 95% confidence intervals are used around
the mean points. The X axis denotes the Location during the Pasta Box task for all plots. A) Mean LD
error for a Spherical coordinate system at each Location. Note that errors are below a centimetre when the
participant is fixating on the Neutral marker (i.e., directly in front) or at the pasta box on the Blue Shelf.
B) Mean LD error for a Cartesian coordinate system at each Location. C) Mean VA error for the Spherical
coordinate system at each Location. Note that errors are below one degree of visual angle when fixating
on either the Neutral marker or at the pasta box on the Blue Shelf. D) Mean VA error for a Cartesian
coordinate system at each Location.

4 Discussion

Here we describe a method for generating 3D GVs using combined eye tracking
and mo-cap data. We achieve this by collecting Calibration data where the eyes are
continuously fixated on a tracked mo-cap marker, and using it to train a set of linear
models to predict the 3D coordinates of the gaze fixation point. Within this method
we explored four different Calibration routines (ES, SS, EP, ST), three options for
eye input into the model (binocular, left, right), and two options for model coordinate
system (spherical and cartesian).

We describe a set of four one-minute calibration procedures and their perfor-
mance relative to one another in three different, but related analyses. All Calibration
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procedures were similar in that the goal of each was for the participant to fixate on
a specific mo-cap marker for the duration of the procedure. We propose a simple
model-based assessment (MATLAB’s fitlm function) that allows us to give a recom-
mendation for the best Calibration procedure based on the average GV error from
a known location. First, we assessed a model trained on a Calibration routine’s eye
and mo-cap data calculating its error when testing on all other Calibration proce-
dures’ input data. Second, the participant completed several Validation trials. During
these trials, the participant fixated on different areas of interest for long (˜5 s) pe-
riods of time to effectively emulate eye gaze behaviour during our Pasta Box task
[17, 1, 32, 29], allowing us to assess error at each area of interest used during the
task. Finally, participants performed a real-world task where they were instructed to
perform the described Pasta Box task. Here, we demonstrate that our analysis tech-
niques extend to data that were not recorded for the express purpose of being put
through this analysis pipeline. That is, we can assess real-world task data and calcu-
late performance metrics to best determine which Calibration procedure to use.

With respect to the type of coordinate system used to predict the gaze fixation
point relative to the head, the results demonstrate that using a Spherical coordinate
system generally results in a GV with a more accurate direction than using a Carte-
sian coordinate system as well as lower error overall. This result is aligned with our
prediction, as we expected that the depth of fixation would be difficult to model based
on pupil position data alone. It is worth noting that the reduction in error appeared to
be systematic across all Calibration routines used—Spherical outperforms Cartesian.
Although we did not assess gaze depth in the current study, when a Cartesian coor-
dinate system is used, both the depth of fixation and direction of gaze are partially
represented in all three eye gaze models (the x, y, and z coordinates). Whereas, using
spherical coordinates confines the depth to one model (the ‘r’ coordinate) which does
not impact the direction of the GV. In future work we intend to further explore the
accuracy of the depth of the fixation point. However, the present work indicates that
when only the direction of gaze is of interest, a spherical coordinate system should be
used to generate GVs. When comparing each Calibration procedure on their ability
to predict Calibration data, all models perform relatively well, with Stationary per-
forming the best. However this is driven by the fact that all Calibration procedures
(excluding Stationary) appear to have a difficult time predicting Stationary data. The
Stationary routine was intended to allow the eyes to explore the maximal range of
trackable pupil-space (see Fig 2D) while the actual target remained constant in space,
potentially leading to a more robust model. The Stationary Calibration takes advan-
tage of the compensatory vestibular-ocular response (VOR; [35]), in that the eyes and
head move, but the gaze target remains static. The approach for the Stationary Cali-
bration is one of quantity over quality; during the Stationary routine, data is collected
from almost all accessible areas of the pupil, but not a lot of time is spent at each
location nor are many of these locations generally useful during the Pasta Box task.

While it may be tempting to conclude that Stationary performs best overall, the
data actually collected during Validation and Task trials do not reflect this same level
of pupil space exploration. It is also important to consider that data collected dur-
ing actual trials do not typically result in the pupil being located in positions on the
eye consistent with the Stationary routine. Therefore, despite the advantage that the
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Stationary routine appears to show for Calibration data, the fact that it did not per-
form better during the more ecologically valid Validation and Task trials leads us
to recommend using a Calibration routine that reflects the dynamics of eye explo-
ration necessary during task completion. Anecdotally, explaining the Paint Calibra-
tion procedure was the simplest to perform and is extensible to any task, while the
Experimental Sweep procedure was the easiest to keep consistent between sessions.
Therefore, one of these two would be our recommendation for ease and consistency
without sacrificing performance for ecologically valid data.

The Validation task was designed to mimic the behaviours that occur during a
typical Pasta Box trial while still giving control over where the participant is looking
and when. During a real trial, it is much more difficult to intrinsically know where
the participant should be looking. These results are in line with the Calibration re-
sults, suggesting that Spherical coordinates result in more accurate GVs. One of the
challenges the model faces is when the participant turns to fixate on the Side Cart,
which results in higher error. Side Cart error appears to be worse when using data
from Both pupils, and performs best when using monocular data, notably from the
Left eye. One possible explanation for this is that the Left eye is always in view
of the cameras when fixating on the target at the Side Cart, whereas the Right eye
is potentially lost for a short duration. It is possible that using a ‘hybrid’ approach
with monocular pupil data input, constantly switching to the ’better’ eye, could re-
sult in superior performance. However, this is to be investigated and cannot currently
be stated for certain. Regardless, it does suggest that collecting data from both eyes
gives the most flexibility and opportunity to maximize data quality across sessions
and even within a task. The Validation dataset functions as a ‘sanity check’ to ensure
that the performance of the model is at least in line with our expectations: instead of
tracking a moving marker (e.g., the wand during Calibration trials), the participant
is fixating on a single static marker at a Task-relevant location. Performance appears
to be similar to the Calibration trials analysis, suggesting the Validation dataset has
done its job.

The Task results demonstrate that performance of the model has been effective
on real-world data using a well-documented task [29, 17, 1, 32]. Previous work has
shown that normative participants tend to fixate on the object they are about to interact
with (or about to stop interacting with) for several hundred milliseconds [6, 7, 22].
Assessing performance on a real-world task is challenging because the behaviours
of the participant are not controlled beyond simple verbal instructions (e.g., pick up
the pasta box and move it to a new location) or visual demonstrations. However,
we can use the principals described by Lappi [16] and Hayhoe [6] to find points
in time when we expect the participant to initiate a reaching behaviour, such as a
fixation on the object to be interacted with. With the identified fixation, we assessed
error at this time point as the minimum distance between the 3D GV and the Pasta
Box. Overall, performance of the model looked good; errors were remarkably low
(see Fig. 7A & C). The average error for a Spherical coordinate system was below a
centimetre and under a degree of visual angle for Task trials. We were surprised to
find that error was lowest in the Task trials as they were the least-controlled in terms
of participant instruction. However, when the participant turned their head, the error
was significantly higher than at other areas.
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Currently, there do not seem to be any standardized calibration procedures that
also allow for the assessment of performance during real-world task use. Here we
show a methodology that allows anyone with access to an eye tracker that outputs
pupil locations in 2D space and a motion tracker in 3D space to generate GVs that
can have as low as sub-centimetre error. While we did not find that any particular
Calibration routine’s data significantly outperformed any other, we found that us-
ing a Spherical coordinate system generated significantly less error on average when
compared to a Cartesian coordinate system. Further, we suggest using a calibration
routine that reflects the actual behaviours of the participant during task completion.
For example, if the task involves looking at and reaching towards specific areas, a
calibration routine that includes eye and hand movements towards those locations
should generate higher quality models, or at minimum match the task demands and
therefore be easier to employ.

5 Conclusion

We found that, when recording synchronized eye and mo-cap data for the purpose of
producing accurate 3D gaze vectors, there are a few useful rules of thumb:

1. For fixations to real objects positioned in front of participants, gaze vectors gener-
ated using this approach will result in an average error of about 1-2 cm. If within
peripersonal space (around 60 cm distance), this corresponds to about 1 visual
degree.

2. A spherical coordinate system will on average produce more accurate gaze vec-
tors (when depth is not considered).

3. Locations that require a head turn typically result in an accuracy falloff, adding
about 2-3 cm of error in our data.

4. The best way to minimize error is to ensure quality data by making sure the eye
tracker is properly fitted and the cameras are getting sufficient coverage of the
eyes.

5. Binocular data, while not always the most accurate, gives the option to use either
or both of the eyes when generating gaze vector models.

6. The calibration routine used should reflect the locations in space that the partici-
pant will be interacting with. More data is not always better.
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