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Summary 32 

The human brain is organised into networks of interconnected regions that have 33 

highly correlated volumes. In this study, we aim to triangulate insights into brain organisation 34 

and its relationship with cognitive ability and ageing, by analysing genetic data. We 35 

estimated general genetic dimensions of human brain morphometry within the whole brain, 36 

and nine predefined canonical brain networks of interest. We did so based on principal 37 

components analysis (PCA) of genetic correlations among grey-matter volumes for 83 38 

cortical and subcortical regions (Nparticipants = 36,778). We found that the corresponding 39 

general dimension of brain morphometry accounts for 40% of the genetic variance in the 40 

individual brain regions across the whole brain, and 47-65% within each network of interest. 41 

This genetic correlation structure of regional brain morphometry closely resembled the 42 

phenotypic correlation structure of the same regions. Applying a novel multivariate 43 

methodology for calculating SNP effects for each of the general dimensions identified, we 44 

find that general genetic dimensions of morphometry within networks are negatively 45 

associated with brain age (rg = -0.34) and profiles characteristic of age-related 46 

neurodegeneration, as indexed by cross-sectional age-volume correlations (r = -0.27). The 47 

same genetic dimensions were positively associated with a genetic general factor of cognitive 48 

ability (rg = 0.17-0.21 for different networks). We have provided a statistical framework to 49 

index general dimensions of shared genetic morphometry that vary between brain networks, 50 

and report evidence for a shared biological basis underlying brain morphometry, cognitive 51 

ability, and brain ageing, that are underpinned by general genetic factors. 52 

 53 
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Introduction  55 

Cheverud’s Conjecture holds that phenotypic correlations correspond closely to 56 

genetic correlations, meaning that they can serve as proxies for one another. Cheverud 57 

originally speculated that “If genetically and environmentally based phenotypic variations are 58 

produced by similar disruptions of developmental pathways, genetic and environmental 59 

correlations should be similar.” [1]. This relationship is assumed to apply across traits and 60 

species, including humans. For example, a 2018 study of a wide range of morphometric 61 

human traits (for example, height and body mass index) in the UK Biobank cohort reported a 62 

strong correspondence between phenotypic and genetic correlations, with slightly larger 63 

average genetic than phenotypic correlations [2]. Here we test whether a similar level of close 64 

correspondence between genetic and phenotypic correlations applies to magnetic resonance 65 

imaging (MRI)-derived indices of human brain morphometry. 66 

The human brain is organised into complex networks of interconnected regions 67 

containing a variety of well-studied macroscopic subnetworks [3-5]. The specific 68 

subnetworks considered in this study have been characterised on the basis of synchronised 69 

(i.e., correlated) regional activity in functional MRI data [6], in addition to converging 70 

evidence from other modalities (i.e., structural MRI and lesion-based mapping [7-9]). These 71 

characterisations allow for a whole-brain approach including cortical and subcortical brain 72 

volumes (Figure 1). Regions within networks have been found to share functional 73 

specialisation [4] and to be internally connected through white matter tracts [10-12]. Among 74 

the most reported, ‘canonical’, networks are the central executive, default mode, salience, and 75 

multiple demand networks.  76 
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 77 

Figure 1. Nine canonical brain subnetworks. The networks were visualized with the BrainNet Viewer 78 

(http://www.nitrc.org/projects/bnv/) [13]. Regions of interest were visualised using scripts by Dr. Colin 79 

Buchanan (University of Edinburgh). Included brain regions and their abbreviations are listed in STable 2. 80 

 81 

Brain networks are theorised to integrate information across the brain and, 82 

collectively, to give rise to cognitive functions. The central executive network is thought to 83 

underpin higher-level cognitive functions, including attention and working memory processes 84 

[9, 14]; whereas the default mode network is associated with internally directed and abstract 85 

thought [15]. The salience network is thought to detect salient sensory cues [16], helping to 86 

integrate executive and default functions [14, 17]. Mental processes that organise multiple 87 

cognitive requirements into a series of successive cognitive tasks are thought to be associated 88 

with the multiple demand network [18].  89 

Because brain volumes and networks are highly heritable [19-21], under Cheverud’s 90 

Conjecture we predict a close correspondence between phenotypic network organisation and 91 
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its genetic equivalent. Here, we aim to compare phenotypic and genetic brain organisation, by 92 

focusing on structural characteristics measured using MRI. Structural neuroimaging is 93 

independent of mental processes during MRI scanning, and substantially outperforms 94 

functional imaging in terms of test-retest reliability [22]. Structural neuroimaging is reliably 95 

correlated with cognitive performance [23], and it reflects atrophy; an important indicator of 96 

health outcomes [24]. We focus on specific network characterisations prominent in the 97 

literature, using common, but not indisputable, definitions of the exact regions comprising 98 

them [5].  99 

Overall, this study aims to triangulate previous studies describing brain organisation 100 

and its relationships with ageing and cognitive ability, by analysing genetic data. According 101 

to Cheverud’s Conjecture [1], morphometric correlations across phenotypic brain networks 102 

should mirror the structure of genetic correlations within the same networks. A dissimilar 103 

organisation of phenotypic and genetic brain architecture would contradict the 104 

neurobiological validity of canonical brain networks (a similar organisation would be 105 

consistent with a measurable genetic foundation of brain networks). In this pre-registered 106 

study (https://osf.io/7n4qj), we used genome-wide association data to identify broad genetic 107 

dimensions underlying morphometric measures across human brain regions. We do so within 108 

canonical brain networks that have been implicated in cognitive functioning and cognitive 109 

ageing [6]. We compared these genetic dimensions to phenotypic dimensions within the same 110 

networks identified in a large recent study (N = 8,185) which examined phenotypic 111 

correlations between structural brain networks and cognitive abilities [6]. Here, we estimate 112 

genetic associations between these general dimensions of human brain morphometry and 113 

both cognitive abilities and ‘brain age’ [25].  114 

More specifically, our study modelled shared genetic variance between grey-matter 115 

volumes across the whole brain, as well as nine canonical subnetworks [e.g., 3, 4]. We 116 
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calculated genome-wide association study (GWAS) summary statistics (N = 36,778) for 83 117 

regional volumes, and built genetic correlation matrices, indicating genetic overlap between 118 

brain volumes, through multivariate linkage disequilibrium score regression (LDSC) [26]. 119 

Using principal components analysis (PCA), we modelled the first whole-brain and network-120 

specific principal components (PCs) from genetic and phenotypic correlations between 121 

volumes matrices, to index general dimensions of shared morphometry between brain 122 

volumes. We described those general dimensions extracted on a genetic level of analysis, and 123 

contrasted them with the same general dimensions extracted on a phenotypic level of 124 

analysis. By testing whether the relative magnitudes of brain regions’ loadings on genetic 125 

dimensions of shared morphometry correspond to their sensitivity to advancing age, we can 126 

evaluate whether the pathways giving rise to genetic variation in brain morphometry 127 

correspond with those on which ageing-related neurodegeneration occurs. We present a novel 128 

statistical procedure to extract genetic PCs in univariate per-SNP (single nucleotide 129 

polymorphism) summary statistics, to represent genetic network structure. They can be used 130 

in a genomic structural equation framework [27] to understand whether there is genetic 131 

covariation between dimensions of shared morphometry within networks and cognitive 132 

abilities, brain age, and cross-sectional patterning of age-related neurodegeneration [6].  133 

 134 
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Results  136 

Results presented in the following sections are structured as displayed in Figure 2. (1) 137 

We calculated 83 GWAS summary statistics that served as input data, and (2) calculated 138 

genetic correlation matrices indicating genetic overlap between brain volumes using genomic 139 

structural equation modelling (GenomicSEM) [27] . (3) We performed PCA to extract 140 

general dimensions of shared genetic morphometry between regions and described their 141 

characteristics. We compared genetic correlation structures with phenotypic correlation 142 

structures between the 83 regional volumes and tested whether the relative ordering of 143 

phenotypic and genetic PC loadings correlated with indices of age sensitivity. Finally, (4) we 144 

summarised shared genetic morphometric variance within brain networks in sets of univariate 145 

summary statistics (i.e., genetic PCs underlying multiple brain volumes; see Methods). These 146 

univariate summary statistics can be viewed as a summary-based method of computing 147 

GWAS summary statistics that would be obtained from a GWAS on individuals’ scores on 148 

the underlying genetic PCs (see Methods; Figure 2). We used this method to create summary 149 

statistics of general dimensions of shared morphometry across the whole brain and nine 150 

canonical networks, and then calculated genetic correlations between brain networks and both 151 

cognitive ability and brain age. 152 

 153 
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 154 

Figure 2. Four-step procedure to obtain statistical representation of genetic brain network structure from GWAS 155 

summary statistics. (1) GWAS summary statistics for 83 grey-matter volumes in UK Biobank from European 156 

ancestry were used as input data (N = 36,778). They were calculated as described in Methods and are publicly 157 

available. (2) LDSC was used to infer genetic correlations between 83 brain volumes. (3) Genetic correlations 158 

are analysed using PCA to derive PC loadings on the first PC, representing an underlying dimension of shared 159 

morphometry. (4) We developed a method to derive univariate summary statistics for a genetic PC of multiple 160 

GWAS phenotypes (derived from samples of unknown degrees of overlap). We have validated this novel 161 

approach in an independent set of GWAS summary statistics [28]. All software we used is available on 162 

https://github.com/. 1 The software by  Baselmans et al. [29], containing the GWAMA function is available at 163 

https://github.com/baselmans/multivariate_GWAMA/. 2 Our modified version of the GWAMA function is at 164 

https://github.com/AnnaFurtjes/Genetic_networks_project/blob/main/my_GWAMA_26032020.R and 3 a step-165 

by-step demonstration of genomic PCA is at https://annafurtjes.github.io/genomicPCA/. 166 

 167 

Genetic correlations between brain-wide volumes recapitulated phenotypic correlations 168 

On a phenotypic level of analysis, correlations between the 83 brain volumes were 169 

obtained using Pearson’s correlations from volumetric phenotypes that were residualised for 170 

age (mean = 63.3, range = 40.0-81.8 years) and sex (54% females). Phenotypic correlations 171 
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were exclusively positive (Figure 3C). On a genetic level of analysis, we calculated genome-172 

wide association study (GWAS) summary statistics to get per-SNP associations between 173 

participants’ imputed genotype data (N = 36,778) and 83 cortical and subcortical grey-matter 174 

volumes (Figure 2.1). SNP-heritability estimates ranged between 7% (SE = 0.07) for the 175 

frontal poles and 42% (SE = 0.04) for the brain stem (mean = 0.23, SD = 0.07; Figure 3A).  176 

These 83 GWAS summary statistics were used to infer genetic correlations between 177 

83 volumes through LDSC [26] (
83(83−1)

2
 = 3403 between-region correlations; Figure 2.2). 178 

All bilateral regions were almost perfectly correlated with the corresponding contralateral 179 

region. Genetic correlations between regions ranged from rg = -0.08 (SE = 0.09) between 180 

right frontal pole and left pallidum to rg = 0.87 (SE = 0.08) between left middle temporal and 181 

left inferior temporal (distribution of genetic correlations in Figure 3B, SFigure 1). Standard 182 

errors of the genetic correlations ranged between 0.01 and 0.03 (mean = 0.014; SD = 0.002). 183 

Genetic correlations between regional volumes, corresponding to the canonical networks that 184 

are displayed in Figure 1, are provided in SFigures 2-10.  185 

A linear regression was performed to assess the relationship between the 3403 186 

phenotypic and the 3403 genetic correlations (Figure 3&5A). The association was positive, 187 

and large (r = .84; b = 0.60; SE = 0.007, p < 2 x10-16, R2 = 70%), indicating that the same 188 

regions, that had strongly correlated phenotypic volumes, were also genetically correlated. 189 

Phenotypic correlations were exclusively positive, as were 3,392 of 3,403 genetic 190 

correlations; the 11 (0.32%) negative genetic correlations were close to zero (smallest rg -191 

0.083).  192 

 193 

 194 

 195 
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 196 

Figure 3. (A) Distribution of SNP-heritability estimates for 83 regional grey-matter volumes inferred through 197 

univariate LDSC. (B) Distribution of genetic correlations among 83 regional grey-matter volumes inferred 198 

through between-region LDSC. This figure only depicts between-region correlations but not the very high 199 

genetic inter-region correlations between regions and their homologous counterpart in the opposite hemisphere 200 

(excluding brain stem). (C) Distribution of phenotypic correlations among 83 regional grey-matter volumes 201 

inferred through Pearson’s correlations. The raincloud plots were created based on code adapted from Allen et 202 

al. [30]. 203 

 204 

PCs of shared genetic variance across the whole-brain and canonical networks  205 

Distributions of phenotypic PC loadings in Figure 4A (descriptive statistics for 206 

phenotypic shared morphometry in STable 3). On a genetic level of analysis, we extracted 207 

PCs from genetic correlation matrices. The first genetic whole-brain PC explained 40% of the 208 

genetic variance across 83 regional volumes - slightly larger than the 31% explained by the 209 

first phenotypic whole-brain PC. The second genetic whole-brain PC accounted for 6.7% of 210 
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the total genetic variance; that is, 17% of the variance explained by the 1st genetic PC 211 

(SFigure 20). We obtained loadings on this first genetic PC for each regional volume, 212 

quantifying how well an individual volume mapped onto the underlying dimension of shared 213 

morphometry across the whole brain. The distribution of the whole-brain PC loadings ranged 214 

between 0.30 and 0.81 (mean = 0.62, SD = 0.13, median = 0.65; Figure 4, STable 3a).  215 

We used the same approach – extracting the first genetic PC and its genetic PC 216 

loadings – to examine nine predefined genetic brain subnetworks (Figure 1). The brain 217 

volumes included in those networks are listed in STable 2. The percentage of genetic 218 

variance accounted for by the first network-specific PCs ranged between 65% for the central 219 

executive network and 47% for the temporo-amygdala-orbitofrontal network. While the 220 

central executive and the hippocampal-diencephalic networks had a narrow, unimodal 221 

distribution of PC loadings, the temporo-amygdala-orbitofrontal and cingulo-opercular 222 

networks had a wider, and bimodal distribution. That is, volumes included in the central 223 

executive network, for example, were more homogeneous and indexed more similar genetic 224 

variation, compared with the temporo-amygdala-orbitofrontal network (Figure 4). Overall, 225 

percentages of explained variances were larger for networks including fewer volumes, 226 

potentially because larger networks tend to be more heterogeneous. 227 

To test whether data-derived PCs explained more genetic variance than could be 228 

expected by chance, we present a version of parallel analysis which simulates PCs for 229 

uncorrelated elements with matched genetic sampling variance (see Methods). Parallel 230 

analysis confirmed that genetic PCs of the whole brain and the nine canonical subnetworks 231 

explained significantly and substantially more variance than expected by chance (Scree Plots 232 

SFigures 11-20). Furthermore, we demonstrated that PCs extracted from 800 networks with 233 

randomly included brain volumes explained substantially less averaged variance than 234 

empirical canonical networks. Mean explained variances by the first PCs (randomly including 235 
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volumes) and a 95% confidence interval around the mean are presented in STable 5. In 236 

summary, these results illustrate that genetic dimensions of shared morphometry are well 237 

represented by the first underlying PC (i.e., accounts for the majority of genetic variance); the 238 

dimensions differ between networks, and that they explain similar magnitudes of variance as 239 

their corresponding phenotypes.   240 

  241 
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 242 

 243 

Figure 4. (A) Density distributions of principal component (PC) loadings on the first PC underlying 244 

phenotypic and (B) genetic networks. Vertical lines indicate quantiles. (C) Variance explained by 245 

phenotypic and genetic first PC in each network. 246 

 247 

General dimensions of phenotypic and genetic shared morphometry across brain 248 

volumes were similarly organised  249 

To quantify how closely patterns of shared variance between phenotypic and genetic 250 

brain volumes resemble each other, we calculated a linear regression between sets of 83 251 

phenotypic and 83 genetic PC loadings. PC loadings indicate relative magnitudes of brain 252 

regions’ loadings on either phenotypic or genetic dimensions of shared morphometry, and 253 

serve as an index of how well a volume represents trends across the brain (or the network). 254 

The association between phenotypic PC loadings and genetic PC loadings was large and 255 

statistically significant (b = 0.65, SE = 0.06, p = 5.07 x10-17, R2 = 58%), indicating that an 256 

increase in one unit in the genetic PC loadings is associated with an increase of .65 units in 257 
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the phenotypic PC loadings (intercept = 0.15). This approach considers ordering relative to 258 

the mean. The mean genetic loading was 0.62 (SD = 0.13), and the mean phenotypic loading 259 

was 0.55 (SD = 0.11). 260 

The Tucker congruence coefficient was used to index the degree of similarity of 261 

genetic and phenotypic PC loadings, taking into account both their relative ordering and their 262 

absolute magnitudes [31]. The Tucker coefficient revealed very high congruence in the 263 

deviation from zero between phenotypic and genetic PC loadings for the 83 volumes (Tucker 264 

coefficient = 0.99). These results illustrate a close correspondence and an equivalent 265 

organisation of phenotypic and genetic dimensions of shared morphometry; a finding that 266 

aligns with Cheverud’s Conjecture.  267 

  268 
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 269 

Figure 5. (A) Association between phenotypic and genetic between-region correlations of 83 regional grey-270 

matter volumes. The dashed red line is the line of identity, with a slope of 1 and an intercept of 0. The dashed 271 

grey line indicates rg = 0. (B) Correlation between phenotypic and genetic PC loadings on the first PC 272 

underlying 83 regional volumes. The dashed red line is the line of identity. (C) Correlation between phenotypic 273 

PC loadings and age sensitivity as indexed by phenotypic cross-sectional age-volume correlations. (D) 274 

Correlation between genetic PC loadings and age sensitivity as indexed by phenotypic cross-sectional age-275 

volume correlations. 276 

 277 

Genetic dimensions of shared morphometry were associated with age sensitivity  278 

 Previous work demonstrated an association between phenotypic dimensions of shared 279 

morphometry across the whole brain, represented by phenotypic PC loadings, and indices of 280 

age sensitivity [6]. Age sensitivity is approximated by a correlation of a regional brain 281 

volume with age across the sample, which is typically negative in adult populations. Here, we 282 

replicated this association between phenotypic shared morphometry (i.e., phenotypic PC 283 
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loadings) and age sensitivity (r = -0.43, p = 4.4 x10-5; Figure 5c), and we found a significant, 284 

but smaller association for genetic PC loadings (r = -0.27, p = 0.012; Figure 5d). That is, we 285 

demonstrated that the more the genetic variation of a brain volume resembles general 286 

morpjometric trends across the brain (larger genetic PC loading), the more negatively 287 

correlated this volume is with age. These are notable results because the PC loadings were 288 

extracted from brain volume variables residualised for age, and nevertheless, demonstrated a 289 

significant association with age sensitivity. In summary, these results show that phenotypic 290 

PC loadings and genetic PC loadings both display associations with patterns characteristic of 291 

ageing-related neurodegeneration, as indexed by cross-sectional age-volume correlations. 292 

 293 

 294 

 General dimensions of shared morphometry were genetically correlated with general 295 

cognitive ability 296 

To quantify genetic correlations between general dimensions of network 297 

morphometry and general cognitive ability, we indexed shared genetic variance  across brain 298 

networks, by summarising genome-wide per-SNP effects across multiple grey-matter volume 299 

GWAS summary statistics, weighted by volume- and network-specific PC loadings (novel 300 

method presented in Figure 2.4). Using the GenomicSEM software [27], we calculated 301 

genetic correlations between the brain networks and seven cognitive traits [27] (SFigure 21). 302 

The cognitive traits mostly had high loadings on a genetic general cognitive ability factor 303 

(median = 0.81, range = 0.30-0.95); the Reaction Time task had the lowest loading on the 304 

factor (SFigure 22). High genetic correlations between the brain networks indicated that they 305 

indexed very similar polygenic signal (rg ranging from 0.63 between multiple demand and 306 

hippocampal-diencephalic to 0.97 between P-FIT and whole brain). All networks were 307 

significantly genetically associated with the general cognitive ability factor; correlation 308 
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magnitudes across all networks ranged between rg = 0.17 and 0.21 (Table 1). According to 309 

commonly-used rules of thumb from Hu and Bentler [32](CFI > 0.95, RMSEA < 0.08), all 310 

models showed good model fit (STable 4).  311 

 312 

 313 

Table 1. Genetic correlations between general cognitive ability and nine canonical brain 314 

networks 315 

Network Included 

volumes 

rg 95% CI p-value FDR q-value 

Whole brain 83 0.21 0.13-0.29 1.00 x10-7 3.00 x10-7 

Central executive 8 0.20 0.12-0.27 1.00 x10-7 3.00 x10-7 

Cingulo-opercular 10 0.20 0.13-0.27 1.00 x10-7 3.00 x10-7 

Default Mode 16 0.19 0.12-0.26 2.00 x10-7 3.00 x10-7 

Hippocampal-

Diencephalic 

12 0.17 0.09-0.24 2.66 x10-5 2.66 x10-5 

Multiple Demand 12 0.19 0.12-0.27 7.00 x10-7 9.00 x10-7 

P-FIT 36 0.20 0.12-0.27 2.00 x10-7 3.00 x10-7 

Salience 10 0.19 0.12-0.26 3.00 x10-7 4.00 x10-7 

Sensorimotor 12 0.19 0.11-0.27 1.20 x10-7 1.30 x10-6 

Temporo-amygdala-

orbitofrontal 

30 0.20 0.12-0.27 2.00 x10-7 4.00 x10-7 

rg = genetic correlation between brain network and a factor of general cognitive ability modelled from seven 316 

cognitive traits, SE = standard error, 95% CI = 95% confidence interval, p-value = original p-value as indicated 317 

by the GenomicSEM model, false discovery rate (FDR) q-value = p-value corrected using 5% false discovery 318 

rate.  319 

 320 

Based on phenotypic findings that have highlighted the importance of the central 321 

executive network to general cognitive function [6], we hypothesised that we would find a 322 

stronger genetic association between general cognitive ability and the central executive 323 

network relative to other subnetworks (see pre-registered plan; https://osf.io/7n4qj). There 324 

was no evidence for significant differences in total correlation magnitudes between the 325 

central executive network and general cognitive ability compared with other brain networks, 326 

even after accounting for network sizes. We accounted for network sizes by comparing 327 
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relative genetic associations between networks and general cognitive ability that had been 328 

divided by the number of regions included in a network (see Methods; STable 6). This was 329 

examined using GenimicSEMs [27] in which total and relative genetic correlation 330 

magnitudes were either estimated freely or constrained to be equal (SFigure 23). The two 331 

nested models did not significantly differ in model fit (∆ χ2 p-values ranged between .072 and 332 

1.00; STable 5).   333 

We also investigated whether genetic associations were driven by specific cognitive 334 

traits. We obtained non-significant Qtrait heterogeneity indices [33] for all brain networks, 335 

demonstrating that the general cognitive ability factor accounted well for the patterns of 336 

association between specific cognitive abilities and the brain networks (SFigure 24). Genetic 337 

correlations were mostly significant between brain networks and three representative specific 338 

cognitive abilities with high test-retest reliabilities [34]: (1) Matrix Pattern Completion task, 339 

(2) Memory – Pairs Matching Test, and (3) Symbol Digit Substitution Task. Of 30 genetic 340 

correlations, 23 survived correction for multiple testing (5% FDR; STable 7). The fact that 341 

the general cognitive ability factor accounted well for specific abilities, and that the specific 342 

abilities were mostly significantly associated with the networks, confirms that the genetic 343 

associations between specific cognitive abilities and brain networks are likely general and act 344 

through a factor of general cognitive ability. 345 

General dimensions of shared morphometry were genetically correlated with brain age  346 

Finally, we calculated a genetic correlation between shared morphometry across the 347 

whole brain and brain age. Brain age is based on individual-level predictions of how much 348 

older (or younger) an individual’s brain appears from structural MRI measures, relative to 349 

their chronological age [35] (see Methods). We found a moderate negative genetic 350 

association (rg = -0.34; SE = 0.06) between general dimensions of shared morphometry 351 
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across the whole-brain and brain age, suggesting that consistently larger volumes across the 352 

whole brain indicate younger brain age. 353 

 354 

  355 
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Discussion  356 

This study provides a new line of evidence on brain organisation and its relations with 357 

ageing and cognitive ability, by analysing genetic data. We demonstrated using a novel 358 

statistical approach that both phenotypic and genetic data can be used reliably to extract 359 

general dimensions of shared morphometry across canonical brain networks. We modelled 360 

the genetic architecture of brain networks by extracting general dimensions of human brain 361 

morphometry, based on PCA of genetic overlap (i.e., shared polygenic signal) between brain 362 

volumes. These general dimensions accounted for substantial amounts of the total genetic 363 

variance in brain regional morphometry and displayed distinct descriptive characteristics. 364 

As predicted by Cheverud’s Conjecture, phenotypic and genetic dimensions of shared 365 

morphometry were similarly organised and may therefore share developmental pathways, 366 

which is consistent with a genetic foundation of canonical brain networks. We found that 367 

general dimensions of brain morphometry genetically correlated with general cognitive 368 

ability, brain age, and cross-sectional profiles characteristic of ageing-related 369 

neurodegeneration. These findings indicate that pathways giving rise to genetic variation in 370 

brain morphometry covary between individuals alongside pathways underlying cognitive 371 

ability and vulnerability towards ageing.  372 

Characteristics of genetic brain network organisation 373 

We demonstrated that genetic dimensions of shared morphometry underlying brain 374 

networks are quantifiable through the first genetic PC, which accounted for most of the 375 

systematic variance shared between brain volumes (e.g., 40% of the variance across the 376 

whole brain explained by 1st genetic PC; only 7% explained by the 2nd PC). Such major 377 

genetic dimensions even explained more variance than their phenotypic analogue (e.g., 40% 378 

of the variance across the whole brain explained by first genetic PC, 31% explained by first 379 

phenotypic PC). All genetic networks explained substantially more variance than was 380 
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expected by chance, which was supported by parallel analysis modelled using empirical 381 

sampling variances, as well as simulations of networks with randomly included brain 382 

volumes. These findings provide a new line of evidence characterising and underpinning the 383 

existence of a genetic foundation for canonical brain networks that have featured prominently 384 

in neuroscientific studies [e.g., 7]. 385 

Analogous organisation of phenotypic and genetic dimensions of shared morphometry 386 

We discovered a high degree of similarity between phenotypic and genetic features of 387 

brain network organisation. This was supported by highly similar correlation structures 388 

within the whole brain and the subnetworks (rgenetic vs. phenotypic correlations = 0.84, p-value = 2.2 389 

x10-16). Phenotypic and genetic PC loadings on their respective major dimensions of shared 390 

morphometry were comparable both in their absolute magnitudes and their relative ordering 391 

to the mean (Tucker congruence = 0.99; rphenotypic vs. genetic PC loadings = 0.76, p-value = 2.2 x10-392 

16). According to Cheverud’s Conjecture [1], this indicates that brain organisation, indexed 393 

through both phenotypic and genetic variance in brain-wide volumes, seems to be 394 

underpinned by similar, overlapping developmental pathways. 395 

Dimensions of regionally shared morphometry as an index of cross-sectional profiles 396 

characteristic of neurodegeneration  397 

A previous study demonstrated that phenotypic PC loadings onto an underlying 398 

dimension of shared morphometry across the whole brain demonstrated patterning similar to 399 

volumetric vulnerability towards ageing (i.e., cross-sectional age-volume correlations). That 400 

is, the more representative a brain volume’s variance was for general morphometric trends 401 

across the whole brain, the more strongly its volume was negatively correlated with age. 402 

Here, we replicated this negative association between phenotypic PC loadings and age-403 

volume correlations, and showed that this association also exists, albeit to a lesser degree, 404 

with genetic instead of phenotypic PC loadings. This suggests that dimensions along which 405 
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brain regions share morphometric variance (i.e., generally larger volumes across an 406 

individuals’ brain) are structured similarly to patterns by which brain regions display 407 

increased vulnerability to ageing. Future longitudinal studies and cross-sectional studies 408 

modelling within-person atrophy by incorporating information on prior brain size (e.g., 409 

intracranial volume) are needed to triangulate this finding.    410 

One potential explanation for this association is that brain regions that: are genetically 411 

predisposed to be large volumes, share higher levels of morphometric variance with the rest 412 

of the brain, and are more central to heavily-demanding cognitive processes, might come 413 

under more strenuous developmental and environmental pressure, perhaps through increased 414 

metabolic burden, compared with other, less central regions. Thus, the embedding of a brain 415 

volume within the whole brain’s organisation, and the genetic foundation of its positioning in 416 

the brain, could govern the functional stresses and other influences to which certain areas are 417 

exposed. This might alter disproportionately the speed at which some regions atrophy with 418 

advancing age.  419 

That dimensions of shared morphometry resemble patterns of age sensitivity is of 420 

particular interest, because it emerged from shared variance among brain volumetric 421 

phenotypes that had been residualised for age. Consequently, we suggest that patterns of 422 

brain structural ageing, a construct labelled brain age [24], might not capture how quickly an 423 

individual’s regional volumes decline compared to their peers, but rather, general healthy 424 

morphometry across the brain. Previous research showed that a younger-appearing brain, 425 

relative to the individual’s chronological age, predicted better physical fitness, better fluid 426 

intelligence and longevity [24]. Healthy brain morphometry could vary between people for 427 

many non-age-related reasons, including genetic predisposition. Individuals that are 428 

genetically predisposed towards consistently larger brain volumes across the whole brain 429 
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might have generally healthier, better-integrated brains, which could be more resilient 430 

towards harmful environmental factors.  431 

To test this theory, we calculated the genetic correlation between general dimensions 432 

of shared morphometry across the whole-brain and brain age. We found that younger brain 433 

age was genetically associated with greater overall brain volume as indexed by the general 434 

dimension of shared morphometry (rg = -0.34; SE = 0.06). Thus, consistently larger volumes 435 

across the brain indicate a younger structural brain organisation, and this is the first study to 436 

quantify the degree to which brain age and a major dimension of shared morphometry 437 

between brain volumes are overlapping concepts. It motivates further investigation into the 438 

possibility that they are partly underpinned by general shared biological pathways.  439 

Dimensions of shared morphometry as an index of cognitive performance 440 

This study demonstrated that general cognitive ability is associated with shared 441 

genetic morphometric variance across the whole brain, and across smaller canonical 442 

networks. This was investigated using seven cognitive ability GWAS summary statistics , 443 

which were used to model a genetic factor of general cognitive ability using GenomicSEM 444 

[27]. We then calculated the genetic correlation between this factor of general cognitive 445 

ability and general dimensions of shared morphometry across the whole brain, and nine 446 

canonical subnetworks. The genetic networks were represented by univariate summary 447 

statistics of a genetic PC underlying multiple brain volume GWAS phenotypes. The whole 448 

brain and all nine networks were significantly genetically correlated with general cognitive 449 

ability at magnitudes between 0.17 and 0.21. This was the same level of genetic association 450 

with general cognitive ability that was previously found for broad measures of total brain 451 

volume [36]. There was no evidence to suggest that those magnitudes statistically differed 452 

between the networks; probably due to the fact that the polygenic signal indexed by the 453 
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network-morphometry summary statistics was highly similar between brain networks (mean 454 

rg between networks 0.83, SD = 0.09).  455 

This indicates that the genetic association between brain morphometry and cognitive 456 

ability was not driven by specific network configurations. Instead, dimensions of shared 457 

genetic morphometry in general indexed genetic variance relevant to larger brain volumes 458 

and a brain organisation that is advantageous for better cognitive performance. This was 459 

regardless of how many brain regions and from which regions the measure of shared genetic 460 

morphometry was extracted. This lack of differentiation between networks, in how strongly 461 

they correlate with cognitive ability, is in line with the suggestion that the total number of 462 

neurons in the mammalian cortex, which should at least partly correspond to its volume, is a 463 

major predictor of higher cognitive ability [37]. These findings suggest that highly shared 464 

brain morphometry between regions, and its genetic analogue, indicate a generally bigger, 465 

and cognitively better-functioning brain. 466 

Unexpectedly, genetic correlations between networks and cognitive ability did not 467 

suggest any prominent role of the central executive network (a previous phenotypic study [6] 468 

demonstrated that the central executive network was disproportionately predictive of 469 

cognitive abilities relative to its few included volumes). On a genetic level of analysis, we 470 

expected a stronger correlation with cognitive ability for the central executive network 471 

compared with the other networks, which would have indicated that genetic variation relevant 472 

to larger volumes, specifically within the central executive network, are associated with 473 

higher general cognitive ability. The fact that we found that larger volumes across the whole 474 

brain, and all other networks were just as closely correlated with cognitive ability as the 475 

central executive network, taken together with previous phenotypic evidence for such a 476 

disproportionately large association between the two, suggests nongenetic mechanisms to 477 
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play important roles, perhaps developmental and environmental influences, through which 478 

the central executive network matures, and specialises for cognitive performance.  479 

Limitations 480 

Analyses in this study come with limitations. Genetic correlations were estimated 481 

based on polygenic biology, assuming that they are representative for genetic associations 482 

across the entire genome. As genetic correlations were calculated using LDSC, the limitations 483 

that apply to LDSC methodology are relevant to our study (discussion in Supplementary 484 

Note). We conclude based on heritability estimates, indexing signal-to-noise ratios in GWAS, 485 

that there was sufficient polygenic signal to warrant LDSC analysis (heritability ranged 7-486 

42%). LDSC intercepts were perfectly associated with phenotypic correlations, indicating 487 

that the analyses successfully separated confounding signal (including environmental factors) 488 

from the estimates of genetic correlations. 489 

This study was conducted in the UK Biobank sample, which is not fully 490 

representative of the general population: its participants are more wealthy, healthy and 491 

educated than average [38]. Cohort effects may affect the degree to which differential cortical 492 

regional susceptibility to ageing can be inferred from cross-sectional data. It remains to be 493 

tested whether our results can be extrapolated to socio-economically poorer subpopulations, 494 

or outside European ancestry. Results were also dependent on the choice of brain parcellation 495 

to divide the cortex into separate regions. 496 

Conclusion 497 

This pre-registered study modelled genetic brain organisation of grey-matter volumes 498 

in the human whole brain and nine canonical subnetworks, using the largest available, high-499 

quality brain volume GWAS summary statistics. We presented a novel methodology to 500 

summarise genetic patterns of shared morphometry across brain volumes. We demonstrated 501 
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that general dimensions of shared genetic morphometric variance differ between canonical 502 

brain networks and are very similarly organised at both phenotypic and genetic levels of 503 

analysis. 504 

This study provides a new methodological framework which we used to interrogate 505 

the overlapping molecular genetic factors underlying brain morphometry, cognitive ability, 506 

and brain ageing. We found that genetic dimensions of shared morphometry across the whole 507 

brain, and nine smaller canonical brain networks, were negatively associated with cross-508 

sectional profiles characteristic of ageing-related neurodegeneration and brain age. We also 509 

found that such dimensions of shared genetic morphometry were positively associated with 510 

cognitive ability. These findings provide evidence that biological pathways giving rise to 511 

genetic variation in brain morphometry correspond to pathways underlying vulnerability 512 

towards rapid adult ageing and cognitive ability. The methodology and resulting insights 513 

provide a basis for future investigations that aim to disentangle genetic and environmental 514 

causes of ageing and cognitive decline.  515 

  516 
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STAR methods 517 

UK Biobank data  518 

Magnetic resonance imaging (MRI) data was collected by the UK Biobank study with 519 

identical hardware and software in Manchester, Newcastle, and Reading. Brain volumetric 520 

phenotypes were pre-processed by an imaging-pipeline developed and executed on behalf of 521 

UK Biobank [39]. More information on T1 processing can be found in the UK Biobank 522 

online documentation [40]. Briefly, cortical surfaces were modelled using FreeSurfer, and 523 

volumes were extracted based on Desikan-Killiany surface templates [41]; subcortical areas 524 

were derived using FreeSurfer aeseg tools [42]. Volumetric measures (mm3) have been 525 

generated in each participant’s native space. We used 83 available imaging-derived 526 

phenotypes (IDPs) of cortical and subcortical grey-matter volumes in regions of interest 527 

spanning the whole brain (UK Biobank category 192 & 190; STable 1). We assume the IDPs 528 

to be normally-distributed. 529 

Phenotypic quality control 530 

Excluding participants who withdrew consent, we considered 41,776 participants with 531 

non-missing T1-weighted IDPs that had been processed in conjunction with T2-weighted 532 

FLAIR (UK Biobank field ID 26500) where available. Using both T1 and T2 measures 533 

ensures more precise cortical segmentation [43]. Extreme outliers outside of 4 standard 534 

deviations from the mean were excluded, which resulted in between 41,686 to 41,769 535 

available participants depending on the IDP. 381 participants were excluded as they self-536 

reported non-European ethnicity. Across the 83 brain volumes variables and the covariates, 537 

this phenotypic quality control resulted in 39,947 complete cases, for whom the following 538 

genetic quality control steps were performed.  539 

 540 
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Genetic quality control 541 

Out of the 39,947 UK Biobank participants, genetic data were available for 38,957 542 

participants. Genetic data was quality controlled on by UK Biobank and were downloaded 543 

from the full release [44]. We applied additional quality control as previously described in 544 

Coleman et al. [45] using PLINK2 [46]. 38,038 participants were of European ancestry 545 

according to 4-means clustering on the first two genetic principal components available 546 

through UK Biobank [47]. Of those participants, we removed 72 due to quality assurance 547 

provided by UK Biobank and 204 participants due to high rates of missingness (2% 548 

missingness). To obtain a sample of unrelated individuals, 956 participants were removed 549 

using the greedyRelated algorithm (KING r < 0.044 [48]). The algorithm is “greedy” because 550 

it maximises sample size; for example, it removes the child in a parent-child-trio. Finally, 28 551 

participants were removed because genetic sex did not align with self-reported sex, resulting 552 

in a total of 36,778 participants (STable 10). Genetic sex was identified based on measures of 553 

X-chromosome homozygosity (FX ; removal of participants with FX < 0.9 for phenotypic 554 

males, FX > 0.5 for phenotypic females). The final sample (N = 36,778) included 19,888 555 

females (54 %) and had an average age of 63.3 years at the neuroimaging visit (range from 556 

40.0 to 81.8 years). 557 

Out of 805,426 available directly genotyped variants, 104,771 were removed for high 558 

rates of missing genotype data (> 98%). 103,137 variants were removed due to a minimum 559 

allele frequency of 0.01, and 9,935 variants were removed as they failed the Hardy-Weinberg 560 

exact test (p-value = 10-8). After excluding 16,326 variants on the sex chromosomes and 561 

those with chromosome labels larger than 22, we obtained a final sample of 571,257 directly 562 

genotyped SNPs. Imputed genotype data was obtained by UK Biobank with reference to the 563 

Haplotype Reference Consortium [49], and we filtered them for a minor allele frequency of 564 

above 0.01 and an IMPUTE INFO metric of above 0.4. 565 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.22.465437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/


GENETIC BRAIN NETWORKS   30 

 

Cognitive performance. UK Biobank collected cognitive performance data using 566 

assessment on a touchscreen computer. The following seven tests were implemented: Matrix 567 

Pattern Completion task for nonverbal reasoning, Memory – Pairs Matching Test for 568 

memory, Reaction Time for perceptual motor speed, Symbol Digit Substitution Task for 569 

information processing speed, Trail Making Test – B and Tower Rearranging Task for 570 

executive functioning, and Verbal Numerical Reasoning Test for verbal and numeric problem 571 

solving, or fluid intelligence. Despite the non-standard and unsupervised delivery of 572 

assessment, these cognitive tests demonstrate strong concurrent validity compared with 573 

standard reference tests (r = .83) and good test-retest reliability (Pearson r range for different 574 

cognitive tests = 0.4–0.78) [34]. 575 

In this study, we considered GWAS summary statistics of performance in these seven 576 

cognitive tests provided by de la Fuente et al. [50] that had been calculated with varying 577 

numbers of participants for each test, ranging from 11,263 to 331,679 participants. Here, we 578 

consider the HapMap 3 reference SNPs with the MHC regions removed.  579 

 580 

Statistical analysis 581 

Genome-wide association study (GWAS) summary statistics calculation. GWAS 582 

summary statistics for the 83 regional brain volumes (continuous variables) were calculated 583 

using the REGENIE software [51], which fits polygenic effects in a computationally efficient 584 

linear mixed model using Ridge regression. The REGENIE pipeline is split into two steps: In 585 

the first step, blocks of directly genotyped SNPs are used to fit a cross-validated whole-586 

genome regression model using Ridge regression, to determine the amount of phenotypic 587 

variance explained by genetic effects. In a second step, the association between the 588 

phenotype and imputed genetic variants is calculated conditional upon Ridge regression 589 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.22.465437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/


GENETIC BRAIN NETWORKS   31 

 

predictions from the first step. Proximal contamination is circumvented by using a leave-one-590 

chromosome-out scheme.  591 

Covariates included in the GWAS analyses were age at neuroimaging visit, sex, 592 

genotyping batch, and 40 genetic principal components as provided by UK Biobank. We also 593 

derived the variables time of year, head position, and acquisition site, but excluded them 594 

from our set of GWAS covariates because they were not associated with the brain volumes at 595 

the pre-registered arbitrary cut-off of r ≤ .10 (STable 9), and therefore explained less than 1% 596 

of the phenotype variance. Note that, in contrast to other existing brain-volume GWAS in UK 597 

Biobank [e.g., 52], our analyses were conducted without controlling for brain size (or any 598 

other global brain measure such as total grey-matter volume or intracranial volume). Genetic 599 

correlations calculated relative to such global measures are known to attenuate genetic 600 

correlations among volumes, as well as with other traits such as cognitive abilities [21]. In the 601 

context of this study, attenuated genetic correlations would not allow us to model genetic 602 

brain networks, because most of the variance shared between volumes overlaps with variance 603 

indexed by brain size and would therefore not tag general dimensions of shared genetic 604 

variance between brain volumes.  605 

Genetic and phenotypic correlation matrices between brain volumes. To derive 606 

dimensions of shared morphometry across brain volumes, we calculated both a phenotypic 607 

and a genetic correlation matrix from 83 grey-matter volume variables. Phenotypic regional 608 

brain volumes were residualised for age at neuroimaging visit and sex, and then used to 609 

estimate a phenotypic correlation matrix through Pearson’s correlations with complete 610 

pairwise observations. The genetic correlation matrix was inferred through LDSC, a 611 

technique quantifying shared polygenic effects between traits using GWAS summary 612 

statistics. Cross-trait LDSC regresses the product of effect sizes in two GWAS onto linkage 613 

disequilibrium scores, indicating how correlated a genetic variant is with its neighbouring 614 
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variants [26]. The slope indexes the genetic correlation, while the intercept captures signal 615 

uncorrelated with LD, such as population stratification, environmental confounding, and 616 

sample overlap.  617 

To quantify the relationship between phenotypic and genetic correlations, we 618 

estimated the correlation between 3403 phenotypic and genetic between-region correlations 619 

(
83(83−1)

2
 = 3403 correlations between 83 volumes). Additionally, we calculated genetic 620 

correlation matrices for smaller canonical networks including fewer brain volumes than the 621 

whole brain. For example, the central executive network included eight regional volumes 622 

(STable 2 lists volumes included in the nine canonical networks). We reported SNP-623 

heritability estimates for each brain volume inferred through LDSC. 624 

Principal component analysis of genetic and phenotypic correlation matrices. 625 

Principial component analysis (PCA) was applied to the phenotypic and genetic correlation 626 

matrices indicating genetic overlap between brain volumes described above to obtain their 627 

respective first principal component (PC). The first PC represents an underlying dimension of 628 

common structural sharing across regional volumes, which we refer to as general dimensions 629 

of shared morphometry throughout this manuscript. PC loadings were calculated for all 630 

volumes in the whole brain, as well as volumes in smaller canonical networks to quantify 631 

contributions of regional volumes to this either brain-wide, or network-specific dimension of 632 

shared morphometry.  633 

Parallel analysis. We tested whether genetic PCs explained more variance than 634 

expected by chance, that is, whether they explained more than 95% of their corresponding 635 

PCs generated under a simulated null correlation matrix. We developed a version of parallel 636 

analysis to generate null distributions of eigenvalues by simulating null correlation matrices 637 

sampled from a diagonal population correlation matrix, where the multivariate sampling 638 
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distribution is specified to take the form of the sampling distribution of the standardised 639 

empirical genetic correlation matrix (the VSTD matrix, as estimated using GenomicSEM [27]). 640 

This sampling correlation matrix serves as an index of the precision of the elements in the 641 

empirical genetic covariance matrix (i.e., heritabilities and co-heritabilities across traits) and 642 

the sampling dependencies among these when generating the random null models. We 643 

specified 1,000 replications to simulate the null correlation matrices and use a 95% threshold 644 

for distinguishing true eigenvalues from noise. 645 

Simulation of networks with randomly included brain volumes. We performed an 646 

additional sensitivity analysis simulating networks with randomly included brain volumes, to 647 

determine whether shared structural variance relied on network membership, or arose through 648 

phenotypic properties common to all regional brain volumes. To compare explained 649 

variances between canonical networks and random networks, we quantified the expected 650 

explained variance in random networks by randomly sampling regions 800 times each, for 651 

different numbers of included volumes (because networks including fewer volumes generally 652 

tend to explain a larger percentage of variance, as larger networks are more heterogeneous). 653 

That is, simulations were run for 8, 10, 12, 16, 30, and 36 included regions, to obtain a 654 

distribution for each networks size to compare the corresponding network’s explained 655 

variance to. We reported the mean explained variance by PCs for networks with randomly 656 

included volumes and a 95% confidence interval. Comparisons between explained variances 657 

for random and canonical networks were done for the same number of included volumes.  658 

Correlation between phenotypic and genetic PC loadings. To compare whether 659 

genetic correlations structures of regional brain morphometry resembled the phenotypic 660 

correlation structure of the same regions, we calculated an un-standardised linear regression 661 

with a vector of 83 phenotypic whole-brain PC loadings as the dependent variable, and a 662 

vector containing 83 genetic whole-brain PC loadings as the independent variable. We 663 
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calculated the Tucker congruence coefficient to quantify the relative similarity between the 664 

two sets of PC loadings independent of their absolute magnitude. The coefficient is 665 

insensitive to scalar multiplication [53].  666 

Correlation between genetic PC loadings with age sensitivity. Pearson’s 667 

correlations between 83 phenotypic grey-matter volumes and age at neuroimaging visit were 668 

calculated to quantify cross-sectional age-volume-correlations for each of the 83 brain 669 

volumes. These age-volume correlations are referred to as age sensitivity throughout the rest 670 

of the manuscript. We estimated the correlation between a vector containing indices of age 671 

sensitivity and (1) a vector of genetic whole-brain PC loadings, and for comparison (2) a 672 

vector of phenotypic whole-brain PC loadings.  673 

Genome-wide shared genetic variance of morphometry across the whole brain 674 

and canonical networks. To statistically represent genome-wide shared morphometric 675 

variance across brain volumes (i.e., genetic PCs), we developed a novel method summarising 676 

genome-wide by-variant effects contained in the grey-matter volume GWAS summary 677 

statistics, which were weighted by their respective (region-specific) PC loadings obtained 678 

through PCA. We derived GWAS summary statistics for a genetic principal component of 679 

multiple GWAS phenotypes derived from samples of unknown degrees of overlap by 680 

adapting existing software for genome-wide multivariate meta-analysis by Baselmans, Jansen 681 

[29] and using GenomicSEM [27]. Figure 2 illustrates this approach in a four-step procedure. 682 

The input data for our approach are GWAS summary statistics for 83 cortical and subcortical 683 

brain volumes (step 1). We have made them publicly available online. Using the 684 

GenomicSEM software [27], we obtained a genetic correlation matrix indicating genetic 685 

overlap between these 83 brain volumes (step 2). We extracted PC loadings on the underlying 686 

general dimension of shared genetic variance for each of the 83 regions (step 3). Finally, we 687 

modified the existing genome-wide multivariate meta-analysis software package [29], in 688 
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order to create summary statistics for an underlying genetic PC. Genome-wide SNP effects 689 

were calculated as an average of all SNP effects contributed by the 83 GWAS phenotypes, 690 

weighted by their respective PC loading and sample size. SNP effects are also adjusted for 691 

confounding factors such as sample overlap and population stratification using LDSC 692 

intercepts (step 4). We used this approach to calculate univariate summary statistics to 693 

represent general dimensions of shared morphometry between regional volumes across the 694 

whole brain (83 GWAS phenotypes), as well as nine smaller canonical networks.  695 

We had tested and validated this novel approach in an independent set of GWAS 696 

summary statistics of four risky behaviours [28]. In addition to the risky behaviour GWAS, 697 

another set of summary statistics is available for a phenotypic PC underlying these risky 698 

behaviour phenotypes that the authors had calculated phenotypically before running GWAS 699 

analyses. We compared these phenotypic PC GWAS summary statistics by Linnér, Biroli 700 

[28] with summary statistics for a genetic PC underlying the four risky behaviours GWAS 701 

that we calculated using our novel method outlined above (Figure 2). We found that they 702 

correlated at a magnitude of rg = 0.99 (SE = 0.037) confirming that our method captures the 703 

same signal as can be obtained from phenotypic PCs, by simply relying on publicly available 704 

GWAS data. For details of the analysis and code refer to: 705 

https://annafurtjes.github.io/genomicPCA/ . 706 

Genetic correlation between general dimensions of shared morphometry across 707 

the whole-brain and brain age. Using LDSC [26], we calculated a genetic correlation 708 

between genetic morphometric sharing across the whole brain and brain age. The summary 709 

statistics indexing dimensions of shared morphometry across brain volumes were created 710 

using the novel method presented above (Figure 2). We downloaded the brain age GWAS 711 

summary statistics online [35]. Brain age is a phenotype based on individual-level predictions 712 

of how much older (or younger) an individual’s brain appears, relative to their chronological 713 
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age. It is estimated using parameters characterising the relationship between age and 714 

structural neuroimaging measures (volume, thickness, and surface area) that were tuned using 715 

machine learning in an independent sample. The final brain age phenotype indexed in the 716 

GWAS was calculated as the difference between participants chronological age and their age 717 

as predicted based on structural brain characteristics. 718 

Genetic correlations between brain networks and a factor of general cognitive 719 

ability. We assessed genetic correlations between brain networks and general cognitive 720 

ability using GenomicSEM [27]. Using univariate network-specific summary statistics (as 721 

describe above; Figure 2) and a genetic general cognitive ability factor modelled from seven 722 

cognitive ability GWAS summary statistics , the GenomicSEM software [27] was used to 723 

model general cognitive ability and perform multivariate LDSC using diagonally weighted 724 

least squares. To quantify model fit, we reported default fit indices calculated by the 725 

GenomicSEM package: χ2 values, the Akaike Information Criterion (AIC), the Comparative 726 

Fit Index (CFI) and the Standardised Root Mean Square Residuals (SRMR). The multiple 727 

testing burden was addressed by correcting p-values from the genetic correlations for 728 

multiple testing with a false-positive discovery rate of 5% [54].  729 

We preregistered that we would test for significant differences in correlation 730 

magnitudes between the networks that yielded a significant association with general cognitive 731 

abilities. Because we hypothesised a particularly strong association for the central executive 732 

network, we planned to perform this comparison between the central executive and all other 733 

networks, to reduce the multiple testing burden. We fitted two GenomicSEM models in 734 

which correlation magnitudes between general cognitive ability and both the central 735 

executive and another network were either freely estimated, or they were forced to be the 736 

same. A significant decrease in model fit between the freely estimated model and the 737 

constrained model (df = 1) would indicate that there likely are differences in correlation 738 
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magnitudes between the networks in how strongly they correlate with general cognitive 739 

ability (SFigure 23).  740 

Additionally, we assessed whether the central executive network was 741 

disproportionately genetically correlated with general cognitive ability considering its small 742 

size (i.e., few included volumes). Similar to the approach described above, we fitted two 743 

models: One, in which we freely estimate the correlation between the central executive and 744 

general cognitive ability, and the correlation between another network and general cognitive 745 

ability. We then divided the correlation magnitude by the number of regions included in the 746 

network (i.e., magnitude was divided by 8 for the central executive network, it was divided 747 

by 16 for the default mode, by 36 for the P-FIT etc.). The second model had the same set up, 748 

but we forced the adjusted correlations for the two networks to be equal (e.g., rcentral executive / 8 749 

== rdefault / 16). We assessed whether there was a significant difference in χ2 model fit 750 

between these two models. As above, a significant decrease in model fit between the freely 751 

estimated model and the constrained model (df  = 1) would indicate that there likely are 752 

differences in relative correlation magnitudes (i.e., magnitudes adjusted for network sizes). 753 

Based on previous findings, we expected the relative magnitude for the central executive 754 

network to be significantly larger than the relative magnitude for any other network.   755 

To probe whether any specific cognitive ability might have driven the genetic 756 

associations between brain networks and general cognitive ability, we reported genetic 757 

correlations between the significant networks and three specific cognitive abilities: (1) Matrix 758 

Pattern Completion task to represent nonverbal reasoning, (2) Memory – Pairs Matching Test 759 

to represent memory, and (3) Symbol Digit Substitution Task to represent information 760 

processing speed. Reducing the analyses to only three consistent and representative cognitive 761 

measures reduced the burden of multiple testing.  762 
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We calculated Qtrait heterogeneity indices [33] to evaluate whether the general 763 

cognitive ability factor that we fit in the models above accounts well for the specific 764 

cognitive abilities. To this end, we compared the fit of two models for each network as 765 

displayed in SFigure 24. One model allows for independent associations between the seven 766 

cognitive traits, and both general cognitive ability and the brain network. The second model 767 

forces the association between the seven cognitive traits and the brain network to go through 768 

the general cognitive ability factor. We obtained χ2 fit statistics for both models and tested 769 

their difference for statistical significance (∆ χ2 ≠ 0; df = 6). Non-significant results (p > 770 

0.05/10) would suggest that genetic associations between cognitive abilities and brain 771 

networks are likely general and act through a factor of general cognitive ability. 772 

Data and code availability. Access to phenotypic and genetic UK Biobank data was 773 

granted through the approved application 18177. We have made the 83 GWAS summary 774 

statistics of regional volumes available at the GWAS catalogue 775 

(https://www.ebi.ac.uk/gwas/deposition). GWAS summary statistics for the seven cognitive 776 

traits by de la Fuente, Davies [50] were downloaded at 777 

https://datashare.ed.ac.uk/handle/10283/3756. The pre-registration for this analysis can be 778 

found online (https://osf.io/7n4qj). Full analysis code including results for this study are 779 

available at https://annafurtjes.github.io/Genetic_networks_project/index.html. 780 

  781 
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Figures 833 

Figure 1. Nine canonical brain networks 834 

Figure 2. Four-step procedure to obtain statistical representation of genetic brain network 835 
structure from GWAS summary statistics. (1) GWAS summary statistics for 83 grey-836 

matter volumes in UK Biobank from European ancestry were used as input data (N = 837 
36,778). They were calculated using linear mixed models as described in Methods and 838 
are publicly available. (2) LDSC was used to infer genetic correlations between the 83 839 
brain volumes. (3) This genetic correlation matrix is analysed using principal 840 
component analysis to derive PC loadings on the first PC, representing an underlying 841 

dimension of shared morphometry. (4) We have developed a method to derive GWAS 842 
summary statistics for a genetic principal component of multiple GWAS phenotypes 843 
derived from samples of unknown degrees of overlap using univariate summary 844 
statistics for the individual phenotypes. We have tested and validated this novel 845 

approach in an independent set of GWAS summary statistics [28]. Details of the 846 
analysis and code can be found at https://annafurtjes.github.io/genomicPCA/. 847 

Figure 3. (A) Distribution of SNP-heritability estimates for 83 regional grey-matter volumes 848 
inferred through univariate LDSC. (B) Distribution of genetic correlations among 83 849 
regional grey-matter volumes inferred through between-region LDSC. This figure 850 
only depicts between-region correlations but not the very high genetic inter-region 851 

correlations between regions and their homologous counterpart in the opposite 852 
hemisphere (excluding brain stem). (C) Distribution of phenotypic correlations among 853 

83 regional grey-matter volumes inferred through Pearson’s correlations. The 854 
raincloud plots were created based on code adapted from Allen, Poggiali [30]. 855 

Figure 4. Density distributions of principal component (PC) loadings on the first PC 856 

underlying (A) phenotypic and (B) genetic networks. 857 

Figure 5. (A) Association between phenotypic and genetic between-region correlations of 83 858 

regional grey-matter volumes. The dashed red line is the line of identity, with a slope 859 
of 1 and an intercept of 0. (B) Correlation between phenotypic and genetic PC 860 
loadings on the first PC underlying 83 regional grey-matter volumes. The dashed red 861 

line is the line of identity. (C) Correlation between phenotypic PC loadings and age 862 
sensitivity as indexed by phenotypic cross-sectional age-volume correlations. (D) 863 

Correlation between genetic PC loadings and age sensitivity as indexed by phenotypic 864 
cross-sectional age-volume correlations. 865 

 866 

Tables 867 

Table 1. Genetic correlations between general cognitive ability and nine canonical brain 868 

networks 869 

 870 
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Supplemental Information titles and legends 872 

Supplementary Table 1. 83 cortical and subcortical grey-matter regions of interest 873 

Supplementary Table 2. Network characterisation 874 

Supplementary Table 3. Explained variance and descriptive statistics of PC loadings within 875 

phenotypic canonical networks 876 

Supplementary Table 4. Model fit for genetic correlations between genetic general cognitive 877 

ability and each canonical network 878 

Supplementary Table 5. Fit indices for the comparison between freely-varying or constrained 879 

correlations with general cognitive ability between central executive and other 880 

networks 881 

Supplementary Table 6. Fit indices for the adjusted comparison between freely-varying or 882 

constrained correlations with general cognitive ability between central executive and 883 

other networks 884 

Supplementary Table 7. Genetic correlations between three cognitive abilities and brain 885 

networks 886 

Supplementary Table 8. Canonical networks explain more variance than networks with 887 

randomly included volumes 888 

Supplementary Table 9. Associations between brain volumes and potential covariates 889 

Supplementary Table 10. Genetic quality control exclusion criteria resulting in a total GWAS 890 

sample of 36,778 out of 39,947 participants 891 

Supplementary Figure 1. Genetic correlation matrix inferred through LDSC across the whole 892 

brain (83 volumes). 893 
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Supplementary Figure 2. Genetic correlations inferred through LDSC among the central 894 

executive network (8 volumes). 895 

Supplementary Figure 3. Genetic correlations inferred through LDSC among the cingulo-896 

opercular network (10 volumes). 897 

Supplementary Figure 4. Genetic correlations inferred through LDSC among the default 898 

mode network (16 volumes). 899 

Supplementary Figure 5. Genetic correlations inferred through LDSC among the 900 

hippocampal-diencephalic network (12 volumes). 901 

Supplementary Figure 6. Genetic correlations inferred through LDSC among the multiple 902 

demand network (12 volumes). 903 

Supplementary Figure 7. Genetic correlations inferred through LDSC among the P-FIT 904 

network (36 volumes). 905 

Supplementary Figure 8. Genetic correlations inferred through LDSC among the salience 906 

network (10 volumes). 907 

Supplementary Figure 9. Genetic correlations inferred through LDSC among the 908 

sensorimotor network (12 volumes). 909 

Supplementary Figure 10. Genetic correlations inferred through LDSC among the temporo-910 

amygdala-orbitofrontal network (30 volumes). 911 

Supplementary Figure 11. Parallel analysis in the central executive network 912 

Supplementary Figure 12. Parallel analysis in the cingulo-operular network 913 

Supplementary Figure 13. Parallel analysis in the default mode network 914 

Supplementary Figure 14. Parallel analysis in the hippocampal-diencephalic network 915 
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Supplementary Figure 15. Parallel analysis in the multiple demand network 916 

Supplementary Figure 16. Parallel analysis in the P-FIT network 917 

Supplementary Figure 17. Parallel analysis in the salience network 918 

Supplementary Figure 18. Parallel analysis in the sensorimotor network 919 

Supplementary Figure 19. Parallel analysis in the temporo-amygdala-orbitofrontal network 920 

Supplementary Figure 20. Parallel analysis in the whole brain with 83 nodes 921 

Supplementary Figure 21. Genetic correlations between seven cognitive traits and brain 922 

networks. Descriptively, performance in the Tower Rearranging Task has the largest 923 

association with brain networks in comparison with other cognitive tasks. 924 

Abbreviations: Matrix = Matrix Pattern Completion task; Memory = Memory – Pairs 925 

Matching Test; RT = Reaction Time; Symbol Digit = Symbol Digit Substitution Task; 926 

Trails-B = Trail Making Test – B; Tower = Tower Rearranging Task; VNR = Verbal 927 

Numerical Reasoning Test; central exec = central executive; cingulo = cingulo-928 

opercular; hippocampal = hippocampal-diencephalic; multiple = multiple demand; p fit 929 

= parieto-frontal integration theory; sensori = sensorimotor; temporo = temporo-930 

amygdala-orbitofrontal 931 

Supplementary Figure 22. Genetic correlation between the central executive network and factor g 932 

modelled for correlation structure of seven cognitive traits. The seven cognitive traits and the 933 

network are inferred through LDSC, and the factor through factor analysis. Matrix = Matrix 934 

Pattern Completion task; Memory = Memory – Pairs Matching Test; RT = Reaction Time; 935 

Symbol Digit = Symbol Digit Substitution Task; Trails-B = Trail Making Test – B; Tower = 936 

Tower Rearranging Task; VNR = Verbal Numerical Reasoning Test. Model fit: χ2 = 124.04, 937 

df = 20, p-value = 2.1 x10-20, AIC = 174.04, CFI = 0.97, SRMR = 0.079 938 
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Supplementary Figure 23. Illustration of the genomic structural equation models used to test 939 

whether correlation magnitudes with genetic general cognitive ability differ between 940 

the central executive network and other significantly associated networks. The model 941 

on the right freely estimates correlation parameters between two networks and genetic 942 

g while allowing for correlations between the networks. In the left model, we force 943 

the correlation magnitudes to be the same, and assess whether model fit deteriorates 944 

significantly, to conclude whether correlation magnitudes between networks are likely 945 

different from each other.  946 

Supplementary Figure 24. Structural equation models to calculate Qtrait heterogeneity indices 947 

 948 

 949 
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