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Abstract 15 
 16 
Understanding how organisms adapt to changing environments is a core focus of research in 17 
evolutionary biology. One common mechanism is adaptive introgression, which has received 18 
increasing attention as a potential route to rapid adaptation in populations struggling in the face 19 
of ecological change, particularly global climate change. However, hybridization can also result 20 
in deleterious genetic interactions that may limit the benefits of adaptive introgression. Here, we 21 
used a combination of genome-wide quantitative trait locus mapping and differential gene 22 
expression analyses between the swordtail fish species Xiphophorus malinche and X. birchmanni 23 
to study the consequences of hybridization on thermotolerance. While these two species are 24 
adapted to different thermal environments, we document a complicated architecture of 25 
thermotolerance in hybrids. We identify a region of the genome that contributes to reduced 26 
thermotolerance in individuals heterozygous for X. malinche and X. birchmanni ancestry, as well 27 
as widespread misexpression in hybrids of genes that respond to thermal stress in the parental 28 
species, particularly in the circadian clock pathway. We also show that a previously mapped 29 
hybrid incompatibility between X. malinche and X. birchmanni contributes to reduced 30 
thermotolerance in hybrids. Together, our results highlight the challenges of understanding the 31 
impact of hybridization on complex ecological traits and its potential impact on adaptive 32 
introgression.  33 
 34 
Keywords: thermotolerance, hybridization, swordtail fishes, misexpression, molecular ecology  35 
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Introduction 36 
 37 
Hybridization, or interbreeding between species, is much more common than previously thought 38 
and can have diverse genetic and evolutionary consequences [1]. For example, a large body of 39 
work has shown that hybridization can facilitate the movement of adaptive alleles between 40 
species, promoting ecological adaptation to novel or changing environments [2–16]. In 41 
hybridizing species, gene flow may serve as a mechanism of rapid adaptation [7,8,16,17], since 42 
adaptive introgression can occur on a shorter timescale than that required for new adaptive 43 
mutations to arise within a species [18,19]. 44 
 45 
While hybridization has played a role in adaptation on evolutionary timescales [19–21], 46 
hybridization is thought to occur more frequently under environmental disturbance and stress 47 
[12,13,22–24]. As environmental conditions shift due to climate change, understanding the 48 
genetic mechanisms that can facilitate rapid adaptation will be critical in predicting whether 49 
vulnerable populations will adapt or collapse [18,25]. This in turn requires characterizing the 50 
genetic architecture of ecologically relevant traits that distinguish hybridizing species [26–29].  51 
 52 
Although there are many examples of adaptive introgression between species [7–9,18], 53 
deleterious effects of hybridization are also well-documented and have been studied for decades 54 
[30,31]. Hybridization frequently uncovers negative interactions between mutations that have 55 
arisen independently in the genomes of the two parental species. These interactions can result in 56 
reduced hybrid viability or fertility [32–34], and their costs may outweigh the potential benefits 57 
of hybridization as a source of adaptive alleles [1]. Such interactions are commonly known as 58 
Bateson-Dobzhansky-Muller incompatibilities (BDMIs; [35]). While BDMIs were originally 59 
envisioned to result from incompatible interactions between proteins encoded by two or more 60 
genes, recent work has highlighted the diversity of mechanisms through which BDMIs may arise 61 
[36–42]. Recently attention has been paid to regulatory BDMIs, which arise from the 62 
coevolution of cis and trans regulatory elements within species that become mismatched and 63 
cause misexpression of target genes in hybrids [1,36,43,44] (here, misexpression is defined as 64 
expression of genes in hybrids that is much higher or lower than that observed in either parent 65 
species).  66 
 67 
BDMIs can impact a range of traits, including those relevant for an individual’s survival in their 68 
environment [45,46]. In fact, both theory and empirical results suggest that BDMIs may 69 
frequently arise from divergent adaptation to the environment [47–49]. In addition to the 70 
expectation that hybrids may have reduced ecological fitness due to phenotypic intermediacy or 71 
dominance of particular parental traits [45,46,50–54], BDMIs can arise at loci underlying 72 
ecological traits. Despite their predicted importance, few ecological BDMIs have been identified 73 
to date [46] (see [55] and [46] for examples from Arabidopsis and sticklebacks), making it 74 
difficult to study the tradeoffs between adaptive introgression of ecological traits and selection 75 
on ecological BDMIs in hybrids.   76 
 77 
An ecological trait that can be used to address this gap and that is of particular interest for 78 
predicting how populations may adapt to global climate change is thermal tolerance [56–58]. 79 
Though thermal tolerance can be defined in many ways, as global temperatures warm, a relevant 80 
thermal tolerance trait is an organism’s upper thermal limit (hereafter referred to as 81 
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“thermotolerance”) [59,60]. Little work to date has explored whether loci that control variation 82 
in thermotolerance introgress between hybridizing animal populations or how effective such 83 
introgression is as a mechanism of thermal adaptation (though suggestive results have been 84 
reported in some species; box turtles [61]; wasps [12]; copepods [62,63]). The deficit in 85 
empirical work in this area is likely due to the paired difficulties of mapping the genetic basis of 86 
complex traits like thermotolerance and studying them in natural hybrid populations.  87 
 88 
Here, we take advantage of a system where natural hybridization is ongoing between species that 89 
vary in thermotolerance. Two sister species of swordtail fishes, Xiphophorus birchmanni and X. 90 
malinche, are endemic to rivers in eastern México [64], and their distributions are determined in 91 
part by their thermal habitats [65]. X. malinche lives in cooler (7-25°C) streams at high 92 
elevations, while the more heat tolerant X. birchmanni lives downstream in the warmer lowlands 93 
(15-35°C; [64]). These species are sympatric in regions where their temperature ranges overlap. 94 
Recently, pollution has interfered with species-specific olfactory communication, causing 95 
breakdown of mating barriers [66,67]. As a result, natural hybrid zones have formed, with clinal 96 
ancestry patterns that mirror thermal gradients, where there is low X. birchmanni ancestry and 97 
low thermotolerance in the highlands and high X. birchmanni ancestry and high thermotolerance 98 
in the lowlands [64,65]. Though phenotypic plasticity contributes to this differential tolerance (as 99 
shown in [65]), we show here that variation in innate thermotolerance between species is in part 100 
genetic. Leveraging this finding, we combine thermotolerance assays with classic quantitative 101 
trait locus (QTL) mapping, gene expression analysis, and analysis of ancestry in natural hybrid 102 
populations to explore the evolution of thermotolerance in this system. Unexpectedly, we find 103 
that individuals that are heterozygous for ancestry in one genomic region have reduced critical 104 
thermal maxima, and F1 hybrids have widespread misexpression of core regulatory genes of the 105 
circadian clock, which appear to be associated with proper thermal regulation. Additionally, we 106 
uncover a relationship between reduced thermotolerance and a previously mapped hybrid 107 
incompatibility. 108 
 109 
  110 
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Methods 111 
 112 
Comparison of CTmax between X. malinche, X. birchmanni, F1s, and F2s and measurement of 113 
CTmax for QTL mapping 114 
 115 

One ecologically-relevant measure of upper thermotolerance in ectotherms is the critical 116 
thermal maximum, or CTmax [59]. Specifically, the CTmax of a fish is the highest temperature it 117 
can withstand before it experiences loss of equilibrium and is unable to maintain its balance 118 
[59,60]. We tested CTmax for Xiphophorus malinche, X. birchmanni, and F1 and F2 hybrids 119 
between the two species reared in a common garden environment.  120 

We simultaneously reared X. malinche fry born to wild-caught mothers from the 121 
Chicayotla locality on the Río Xontla (1003 meters elevation; 20°55'27.24"N 98°34'34.50W), X. 122 
birchmanni fry from wild-caught mothers from the Coacuilco locality on the Río Coacuilco (320 123 
meters elevation; 21°5'50.85 N, 98°35'19.46 W), and F1 and F2 fry generated from these parent 124 
populations (Fig. 1A). Specifically, F1 fry were generated by crossing X. malinche (Chicayotla) 125 
females to X. birchmanni (Coacuilco) males, and F2 fry were generated by intercrossing 126 
previously produced F1s (Fig. 1B). We note that due to the crossing design, all artificial hybrids 127 
in this study harbor X. malinche mitochondria; crosses in the reverse direction are largely 128 
unsuccessful. All fish were crossed and raised in 2,000 L semi-natural mesocosms at the 129 
CICHAZ field station in Calnali, Hidalgo, México. Individuals for all four groups were born 130 
between 16 May and 24 May 2016, at which time offspring from each group were randomly 131 
assigned to one of three replicate 2,000 L semi-natural mesocosms for a total of 12 tanks (three 132 
per class, n = 34 per tank).  133 

To measure variation in CTmax between X. malinche, X. birchmanni, F1s, and F2s, CTmax 134 
trials were performed in February 2018 using methods similar to Culumber et al [65]. Trials 135 
followed procedures approved in Texas A&M IACUC protocol #117419. Briefly, the test fish 136 
(eight per trial, mix of males and females from one group), an air bubbler, a standard glass 137 
thermometer, and a HOBO temperature logger (Onset) were placed in an enamel container 138 
holding 4 L of water at ambient temperature (16.1 ± 0.2°C). The enamel container was nested in 139 
a larger container of water which was suspended above a hot plate. Water was heated at a 140 
standardized ramp-up rate of 0.3 °C/min until the fish lost equilibrium (following Becker & 141 
Genoway [60]). The time and temperature of initial loss of equilibrium (i.e. the first time balance 142 
is lost) for each fish was recorded, and the fish was immediately placed in an ambient 143 
temperature recovery tank. Because the data departed from the assumption of normality, we used 144 
a Mann-Whitney Wilcoxon test to evaluate the effect of genotype on CTmax (Table S1). 145 

We repeated these procedures for a larger mapping population of 152 X. malinche-X. 146 
birchmanni artificial hybrids. Due to the difficulty of raising sufficient numbers of individuals in 147 
common garden conditions, our mapping population included individuals ranging from F2-F4 148 
generations, initially generated from F1 intercrosses. For each individual, we collected a fin clip 149 
from each fish at the end of the CTmax trial to perform QTL mapping. In addition to CTmax time 150 
and temperature, we recorded metadata for each fish to account for potential covariates in 151 
mapping. We found that one of the strongest covariates with CTmax was rearing tank number 152 
(which also corresponded to trial number). Therefore, we combined these covariates into a single 153 
variable that we refer to as tank throughout the manuscript (listed as ‘site.tank’ in data files). 154 
 155 
 156 
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DNA extraction and library preparation 157 
 158 

Fin clips were added to 96 well plates and DNA was extracted using the Agencourt 159 
DNAdvance bead-based kit. The protocol followed that specified by the manufacturer except that we 160 
used half-reactions. We quantified extracted DNA using a TECAN microplate reader. After diluting 161 
DNA to 2.5 ng/ul, we prepared tagmentation-based libraries for low-coverage whole genome 162 
sequencing. DNA was enzymatically sheared using the Illumina Tagment DNA TDE1 Enzyme and 163 
Buffer Kits by incubating DNA, buffer and enzyme at 55°C for 5 minutes. Fragmented DNA was 164 
amplified in a dual-indexed PCR reaction for 12 cycles and PCR-products were pooled and bead 165 
purified with 18% SPRI magnetic beads. Purified libraries were quantified using a Qubit fluorometer 166 
and library size distribution was evaluated using an Agilent 4200 Tapestation. 167 
 168 
Artificial hybrid QTL mapping sample sequencing and genotyping 169 
 170 

Low-coverage whole genome sequence data was collected from these libraries on an 171 
Illumina 4000 machine using 150 bp paired-end reads (~0.1-0.3X per basepair coverage). Using 172 
the program ancestryinfer [68], reads were mapped to both the X. birchmanni and X. malinche 173 
genomes with BWA-MEM [69], and those that showed evidence of mapping bias or that did not 174 
map uniquely were discarded. Reads matching each parental allele at ancestry-informative sites 175 
were counted from samtools mpileup files [70], and informative sites were thinned to one per 176 
read to minimize errors due to mismapping. This data was input into AncestryHMM [71], a 177 
hidden Markov model (HMM) based local ancestry inference program that relies on read counts 178 
at ancestry informative sites and transition probabilities to infer posterior probabilities for 179 
ancestry states (in our case: homozygous X. birchmanni, heterozygous, or homozygous X. 180 
malinche). Past work has shown that this low-coverage whole genome sequencing approach has 181 
excellent accuracy for early generation X. malinche x X. birchmanni hybrids [68,72]. This 182 
analysis yielded posterior probabilities for each ancestry state at ~700,000 ancestry-informative 183 
sites across the genome (approximately one per kb).  184 

Because it was convenient for downstream analyses, we converted posterior probabilities 185 
at each ancestry informative site to hard genotype calls. For each sample, markers with greater 186 
than 0.9 posterior probability for any ancestry state were assigned to that state; markers with less 187 
than 0.9 posterior probability for any ancestry state were converted to NAs. Homozygous X. 188 
birchmanni, heterozygous, and homozygous X. malinche ancestry calls were assigned genotypes 189 
of 0, 1, and 2 respectively. 190 
 191 
CTmax QTL mapping analysis 192 
 193 

To identify regions of the genome that are associated with variation in thermotolerance, 194 
we used a QTL mapping approach. We performed QTL mapping with R/qtl [73] to scan for an 195 
association between genotypes at ancestry-informative markers across the genome and the CTmax 196 
phenotype. For computational efficiency, markers were thinned to retain at most one marker per 197 
20 kb. Ancestry linkage disequilibrium decays over several megabases in early generation 198 
hybrids [74]; thus, we do not expect to sacrifice any power to map QTL by performing this 199 
thinning. The thinning step resulted in 30,244 ancestry informative markers retained throughout 200 
the genome, or ~45 per Mb.  201 

Data were converted to the R/qtl input format using custom scripts 202 
(https://github.com/Schumerlab/thermotolerance). Input files for analysis with R/qtl included 203 
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CTmax, covariate data (e.g. tank), and genotype data for all 152 individuals. Markers with fewer 204 
than 80% of individuals genotyped (i.e. less than 120 out of 152) were filtered. Several 205 
individuals had high levels of missing data (>25% of markers with an NA ancestry state) and 206 
these individuals were removed. After filtering, 144 individuals and 29,652 markers were 207 
retained, with ~95% of individuals genotyped at any given marker. Next markers were evaluated 208 
for segregation distortion at a Bonferroni corrected p-value < 0.05 using R/qtl’s internal 209 
commands, and 610 markers on chromosome 13 were dropped, resulting in 29,042 markers for 210 
the QTL scan. Recombination frequency and genotype probabilities were calculated using the 211 
est.rf and calc.genoprob functions, respectively.  212 

To select an appropriate model for mapping in R/qtl, we used the R step function to 213 
calculate AIC for models incorporating a suite of possible covariates, including the tank variable 214 
(tank), hybrid index (the proportion of the genome derived from the X. malinche parent), 215 
genome-wide ancestry heterozygosity, and sex (e.g. CTmax ~ hybrid_index + heterozygosity + 216 
tank + sex). We retained all tank variables with a significant effect on CTmax (17 total) and used a 217 
method called ‘one-hot encoding’ to recode the tank variable so that the tank variable would be 218 
treated categorically by R/qtl; other covariates were not retained in the step function analysis. 219 
Even though hybrid index was not retained, we included it in our final mapping model since past 220 
work has suggested that failing to include ancestry as a covariate can result in artifacts in QTL 221 
analysis [72].   222 

A genome-wide scan with a single-QTL model was performed with the scanone 223 
function, using the Haley-Knott regression method [75] and the tank and hybrid index covariates, 224 
as described above. The 5% and 10% false discovery rate thresholds were estimated with 1,000 225 
permutations (LOD thresholds of 4.72 and 4.33 respectively), where CTmax phenotypes were 226 
shuffled onto genotypes and a QTL scan conducted 1,000 times to create a null distribution of 227 
associations expected by chance. To search for potential interacting QTL, we performed a 228 
second scan using the same method, but added genotypes at the chromosome 22 QTL peak as an 229 
interaction term in the model (significant thresholds at the 5% and 10% FDR level for the 230 
interaction analysis were 9.63 and 8.96, respectively).  231 
 232 
Estimating the effect size of detected QTL 233 
 234 

We identified one QTL on chromosome 22 and one putative interacting QTL on 235 
chromosome 15 that were significantly associated with variation in CTmax after controlling for 236 
other covariates at the 10% false discovery threshold (see Results). We used two methods to 237 
obtain estimates for the effect sizes of these QTL (i.e. the percentage of the variation in CTmax 238 
explained by each QTL and their interaction). First, we used the drop-one-term analysis from 239 
fitting a multiple QTL model with the R/qtl function fitqtl, to estimate the effect sizes of the 240 
chromosome 22 and 15 QTL on CTmax, as well as to estimate the effect size of their interaction. 241 
Because effect size estimates are often inflated in QTL studies with low statistical power [76], 242 
we also performed simulations to explore the range of possible effect sizes consistent with our 243 
empirical results for the main effect QTL on chromosome 22. Methods and results for those 244 
simulations are reported in Supporting Information 1. 245 
 246 
 247 
 248 
 249 
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Multiple tissue thermal stress RNAseq experiment, library preparation, and sequencing 250 
 251 

To compare expression of genes across the genome that respond to high temperature in 252 
the two parental species and their hybrids, we used an RNAseq-based experimental approach. X. 253 
birchmanni and X. malinche individuals born to wild mothers (collected at the Coacuilco and 254 
Chicayotla populations respectively [64]) were raised at 22.5°C (14h light:10h dark cycle). A 255 
separate group of X. malinche females were crossed with X. birchmanni males to generate F1 256 
hybrids. All individuals were raised in the same lab environment to adulthood before 257 
experiments began. Though we cannot discount the potential impact of maternal effects on 258 
expression response, all mothers were reared under the same environmental conditions.  259 

For thermal stress experiments, three male individuals from each group were kept at a 260 
control temperature of 22.5°C for the duration of the experiment, and three male individuals 261 
from each group were subjected to a thermal stress treatment. Males in the treatment trials 262 
experienced a temperature ramp-up of 0.3°C/min from 22.5°C to 33.5°C (~30 min duration). 263 
Control and treatment trials were run simultaneously between 11:00 AM and 1:00 PM. An air 264 
bubbler was used to maintain dissolved oxygen saturation in tank water for the duration of the 265 
experiment. Fish from both control and treatment tanks were anaesthetized with Tricaine 266 
mesylate diluted in tank water immediately after treatment tanks reached 33.5°C, and brain and 267 
liver tissues were dissected and placed in RNAlater. These samples were stored at 4°C for 24 268 
hours and subsequently at -20°C. mRNA was extracted for a total of 36 brain and liver samples 269 
with a Qiagen RNeasy MiniPrep Kit. One X. birchmanni brain from the 22.5°C treatment and 270 
one X. malinche brain from the 33.5°C treatment yielded insufficient mRNA for RNAseq library 271 
preparation; therefore, these samples were not sequenced. RNAseq libraries were prepared using 272 
a KAPA mRNA HyperPrep Kit, pooled, and sequenced on three Illumina HiSeq4000 lanes. To 273 
control for batch effects, extraction, library prep, and sequencing batches were designed to 274 
include one individual from each biological group. We sequenced three biological replicates per 275 
experimental group and collected >30 million 150 bp paired-end reads per sample (Table S2).  276 
 277 
Differential gene expression analysis 278 
 279 

Genes that are differentially expressed in response to thermal treatment, especially those 280 
that respond differently in X. birchmanni and X. malinche, are candidate genes that may 281 
contribute to variation in thermotolerance between species. For differential gene expression 282 
comparisons, we aligned RNAseq reads to reference transcriptomes inferred from high-quality X. 283 
malinche and X. birchmanni genome assemblies. For GO and KEGG enrichment analyses, we 284 
aligned reads to developed “pseudoreference” transcriptomes for these two species (from 285 
Schumer et al [77]) that were based on the genome assembly of the southern platyfish X. 286 
maculatus [78]. We used these references because X. maculatus is widely used as a model in 287 
melanoma research, and as a result has a well-annotated genome [78,79] with GO and KEGG 288 
pathways associated with each Ensembl gene ID. To reduce mapping bias in differential 289 
expression analysis we used a version of these references with within-species polymorphisms 290 
masked [77]. 291 

Before aligning reads, the program cutadapt and the FastQC wrapper tool Trim Galore! 292 
were used to trim Illumina adapter sequences and low-quality bases (Phred score < 30) from 293 
reads. All trimmed reads are available under NCBI BioProject PRJNA746324. One F1 liver 294 
sample from the 22.5°C ambient temperature treatment group was removed from downstream 295 
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analyses due to unusually low read count (<1500 reads). Reads were then pseudoaligned to the 296 
X. birchmanni reference transcriptome with kallisto [80] and raw transcript counts were imported 297 
into the R package DESeq2 [81] for differential gene expression analysis. Genes with zero 298 
counts for all samples, extreme outliers (using a Cook’s distance cutoff of 0.99), or low mean 299 
normalized counts (i.e. genes with counts below an optimized threshold through an internal 300 
filtering step in DESeq2) were removed from analysis. This resulted in an analysis of 24,174 301 
genes for both the brain and liver datasets.  302 

To analyze differential expression of these genes, we used a design formula that included 303 
sequencing batch, genotype (X. birchmanni, X. malinche, or F1), and temperature treatment. 304 
Using DESeq2, we normalized gene counts by library size, estimated within-experimental group 305 
dispersion, fit a negative binomial generalized linear model, and tested significance with a Wald 306 
test. Following these steps, shrunken log-fold changes were calculated using an adaptive 307 
shrinkage estimator with a fitted mixture of normal distributions as a prior, derived from the 308 
‘ashr’ package [82]. Genes were considered to be significantly differentially expressed between 309 
groups and treatments at an FDR-adjusted p-value < 0.1. To check for potential bias as a function 310 
of the reference sequence used in the pseudoalignment step, we repeated the above steps using 311 
the X. malinche reference transcriptome. Reassuringly, qualitatively similar results were obtained 312 
from this analysis (Supporting Information 2, Fig. S2).  313 
 314 
Co-expression network analysis with WGCNA 315 
 316 

To identify clusters of interacting genes that respond to temperature treatment, we used 317 
the R package WGCNA to evaluate patterns of co-expression in the RNAseq data [83]. 318 
Weighted co-expression network analysis clusters genes with highly correlated expression 319 
patterns across samples into groups called modules. The expression patterns of modules are 320 
summarized by their ‘module eigengenes,’ defined as PC1 of the expression profiles of genes in 321 
the module, which can then be used to test for correlations between gene modules and traits or 322 
treatments of interest. This unsupervised approach is particularly powerful for identifying 323 
biological pathways whose expression strongly correlates with a specific treatment. In this case, 324 
we were most interested in modules that correlated with temperature treatment and with 325 
genotype. 326 

WGCNA analysis was performed separately for sets of samples of each tissue type, using 327 
raw gene counts obtained from pseudoalignment to the X. birchmanni pseudoreference 328 
transcriptome (as described in the Differential gene expression analysis methods). We used the 329 
DESeq2 varianceStabilizingTransformation function to normalize raw gene counts 330 
by library size and size factors (the median ratio of the geometric mean of a gene over all 331 
samples) so that samples had comparable variances. Genes were filtered as described in the 332 
previous section, and additionally all genes with zero counts for one or more samples were 333 
dropped (out of 19,176 genes, 262 genes from the brain and 905 from the liver were dropped in 334 
this step).  335 

As recommended by the WGCNA documentation, we selected a soft-thresholding power 336 
to transform the network into a more scale-free topology, which has been shown to better 337 
approximate biologically-relevant gene networks [84]. This step is intended to minimize the 338 
effect of noise in subsequent clustering steps and avoid using arbitrary thresholds for cluster 339 
construction. For each tissue dataset, the soft-thresholding power parameter was chosen by 340 
calculating the scale-free topology fit index for a range of powers (1 to 30) and selecting the 341 
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asymptote of soft-thresholding power for downstream analysis (here, using the recommended 342 
thresholds for scale-free topology fitting index R2 > 0.8 and mean connectivity < 100). This 343 
resulted in the selection of soft-thresholding powers of 7 for the brain and 12 for the liver tissue 344 
datasets. Using these soft-thresholding values, we constructed single-block unsigned networks 345 
using WGCNA’s blockwiseModules function (see Appendix 1). We used a minimum 346 
module size of 20 and an unsigned topological overlap matrix to create a network that clusters 347 
genes by strength of co-expression, regardless of whether the correlation in expression is positive 348 
or negative. 349 

After co-expression modules were identified using this approach, we sought to determine 350 
whether variation in any of these modules correlated with variation in traits of interest. As such, 351 
we looked for correlations between the module eigengene and genotype (X. malinche, X. 352 
birchmanni, X. malinche-X. birchmanni F1), temperature treatment (22.5°C and 33.5°C), or both. 353 
Correlations between traits and modules were calculated using the WGCNA 354 
corPvalueStudent function, and modules that correlated with genotype, temperature 355 
treatment, or both at Student asymptotic p-value < 0.05 were selected for further analysis (31 out 356 
of 54 for brain, 16 out of 50 for liver).  357 
 358 
GO and KEGG pathway enrichment of differentially expressed genes between temperature 359 
treatments 360 
 361 

To explore which biological pathways are most affected by temperature treatment, we 362 
performed KEGG pathway and Gene Ontology (GO) term enrichment analysis of differentially 363 
expressed genes identified using results from the analyses of the brain and liver RNAseq data 364 
described above. We asked if there were enriched KEGG pathways in the set of genes that were 365 
significantly differentially expressed between X. birchmanni, X. malinche, and F1s at each 366 
temperature treatment (FDR adjusted p-value < 0.1). To do so, Gene IDs were mapped to Entrez 367 
IDs using the X. maculatus Ensembl database (version 99), and enriched KEGG pathways for 368 
each dataset were generated with the kegg.gsets function from the R package GAGE [85].  369 

For GO enrichment, the R packages biomaRt [86] and GOstats [87] were used to extract 370 
X. maculatus Ensembl IDs and generate a GO gene universe of all genes analyzed with DESeq2, 371 
as described above (19,143 genes for brain, 19,176 for liver). We used a hypergeometric test 372 
implemented in the R package GSEABase [88] to identify overrepresented GO terms in the set 373 
of significantly differentially expressed genes between temperature treatments. We also 374 
performed GO analysis of genes in gene modules that correlated with temperature treatment in 375 
WGCNA analyses (12 modules for brain, 2 for liver). For both sets of GO analyses, we focused 376 
on significantly enriched categories (hypergeometric test p-value < 0.05) where greater than one 377 
gene was observed in our focal dataset.  378 
 379 
Ancestry of QTL and circadian clock genes in natural populations 380 

 381 
We analyzed data from naturally occurring X. malinche-X. birchmanni hybrid 382 

populations to evaluate evidence for shifts in ancestry at genes under the chromosome 22 QTL, 383 
and clock genes that show misexpression in hybrids (see Results). These data from natural 384 
hybrid populations have been published in previous studies [72,77], so we only describe it briefly 385 
here. We analyzed data collected from the Tlatemaco (n=85) and Acuapa (n=97) hybrid 386 
populations in 2017 and 2018, respectively [72,77] (Fig. 1A). We previously collected ~1X 387 
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whole genome sequence data from individual hybrids collected from these populations and 388 
followed the local ancestry inference approach described above except that we used population-389 
specific priors for admixture proportion and time since initial admixture. This approach resulted 390 
in estimates of the posterior probability for ancestry state at ~613-629 million ancestry 391 
informative sites throughout the genome in the two populations. Using ancestry informative sites 392 
that fell within annotated coding regions, we generated estimates of the average ancestry per 393 
gene in both natural hybrid populations. We compared ancestry at genes of interest to the 394 
genomic background of each population. 395 
 396 
Correlation of caudal spot phenotype and CTmax in natural hybrids 397 
 398 

Hybrids between X. malinche and X. birchmanni harbor a number of extreme traits not 399 
seen in either of the parental species. One of these is a hybrid incompatibility that causes 400 
melanoma in some individuals, originating from a melanocyte spotting pattern on the caudal fin 401 
[89]. To evaluate any relationship between this spotted caudal phenotype and CTmax, we 402 
measured CTmax using the methods described above (see Comparison of CTmax between X. 403 
malinche, X. birchmanni, F1s, and F2s and measurement of CTmax for QTL mapping) for 123 lab-404 
raised natural hybrids born from wild-caught mothers from the Chahuaco Falls population. These 405 
123 natural hybrids were reared to adulthood under common conditions in the lab. Individuals 406 
were classified as having one of the following caudal spot phenotypes: no spot, normal spotted 407 
caudal, expanded spotted caudal, and 3D melanoma. Past histological work has indicated that 408 
individuals with the expanded spotted caudal phenotype have early-stage melanoma [89]. 409 
Individuals were assigned a 3D melanoma phenotype if they had melanoma that had completely 410 
overtaken the caudal fin (i.e. completely melanized and/or degrading) and/or that was growing 411 
laterally off the fin. We used a linear model to test for a correlation between CTmax and caudal 412 
spot phenotype. 413 
 414 
  415 
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Results 416 
 417 
Evidence for a genetic basis for variation in thermotolerance  418 
 419 
 Given that X. malinche and X. birchmanni live in different thermal environments (Fig. 420 
1C), we predicted that these species may have adapted to their respective thermal ranges. To 421 
determine whether there was a genetic basis for variation in CTmax between X. malinche and X. 422 
birchmanni, we reared X. malinche, X. birchmanni, F1, and F2 hybrid fish in a common garden, 423 
and measured their CTmax (see Methods). We found that X. birchmanni have significantly higher 424 
CTmax than X. malinche (p-value < 10-6; see Table S1), and that F1 and F2 hybrids exhibit 425 
intermediate CTmax (Fig. 2A). Though we know that CTmax is partially environmentally mediated 426 
in this system [65], this result shows that variation in CTmax between these species is also partly 427 
attributable to genetic differences.  428 
 429 
QTL mapping of loci involved in thermotolerance 430 
 431 

Given these results, we proceeded to perform QTL mapping to evaluate associations 432 
between CTmax and ancestry in X. malinche-X. birchmanni artificial hybrids raised under 433 
common conditions (see Methods). We detected a single QTL associated with CTmax at a 10% 434 
false discovery rate threshold (Fig. 2B). The 1.5 LOD interval of this QTL spans ~2.5 Mbs and 435 
contains 45 genes. 436 
 Surprisingly, further examination revealed that the QTL we detected was not associated 437 
with species-level differences in CTmax. Instead, heterozygous ancestry in this region was 438 
associated with an average reduction in CTmax of 0.3°C (Fig. 2C). We estimate this QTL to have 439 
a moderate effect on the overall variation in CTmax in artificial hybrids, explaining approximately 440 
6.9% of the variation (see Methods, Supporting Information 1, and Fig. S1 for simulations 441 
evaluating effect size inflation).  442 

The relationship between genotype and phenotype observed at the chromosome 22 QTL 443 
is consistent with underdominance. Individuals with either homozygous genotype exhibit 444 
approximately the same average CTmax whereas individuals heterozygous for ancestry have a 445 
significantly reduced CTmax on average (Table S5; Fig. 2C). Though distinguishing whether this 446 
signal is caused by true underdominance or pseudo-underdominance (i.e. two or more linked loci 447 
with dominance and opposing effects in homozygotes; Fig. S3) is not feasible with our data, we 448 
discuss this possibility in more detail in Supporting Information 4.  449 
 450 
Exploring candidates in the QTL region 451 
 452 

There are several possible explanations for the observed signal of underdominance at the 453 
chromosome 22 CTmax QTL. Because chromosomal inversions are a common genetic cause of 454 
underdominance [90–93], we confirmed that there are no inversions under this QTL by aligning 455 
X. malinche and X. birchmanni PacBio assemblies (Fig. S4; Supporting Information 4).  456 

Next, we investigated genes that fell within the QTL region. The 1.5-LOD interval 457 
associated with the QTL spans from ~8.6 Mb to 10.1 Mb, overlapping with 45 genes. We 458 
investigated functional annotations and patterns of expression of genes in this region, as well as 459 
amino acid differences between species (see Supporting Information 3). Because 460 
thermotolerance is a complex trait that is impacted by many biological pathways, narrowing 461 
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down causal loci under the QTL based on their annotations is not straightforward. We highlight a 462 
handful of candidate genes in Table S3 but focus primarily on candidates with notable expression 463 
patterns in this section. 464 

Given the CTmax phenotypes observed in individuals heterozygous for ancestry at this 465 
QTL, we were particularly interested in comparing gene expression patterns in F1 hybrids to the 466 
parental species. Because heterozygotes have reduced CTmax on average, we might expect genes 467 
controlled by a causal locus in cis to be misexpressed in F1 hybrids (which are heterozygous for 468 
ancestry across the whole genome). We evaluated expression patterns in the brain and liver and 469 
identified genes that were misexpressed in F1 hybrids compared to X. birchmanni and X. 470 
malinche, defined here as significantly higher or lower than either of the typical parental 471 
expression ranges, in either temperature condition. Of the genes in the QTL interval that were 472 
significantly differentially expressed between X. malinche and X. birchmanni for at least one of 473 
the temperature treatments (17 in the brain, 7 in the liver), most mirrored expression levels of 474 
one of the parental species or had intermediate expression in F1s (Table S3). However, four 475 
genes in this interval (p4ha1, ndnf, tnfaip3, and infgr1l) were misexpressed in F1s in at least one 476 
tissue and temperature condition (Fig. 2D, S8). We also identified genes that responded 477 
differently to thermal stress in F1s compared to parentals (see brain and liver expression results 478 
in Tables S6 and S7, respectively). For example, the zinc-finger protein zfp62 exhibited an 479 
exaggerated response to high temperature compared to parental expression responses and the 480 
spliceosome subunit sf3b5 was significantly downregulated at high temperatures in F1s whereas 481 
parental expression remained constant across temperatures (Fig. S8).  482 
 483 
Detection of a possible interacting QTL on chromosome 15 484 
 485 

Another potential cause of a signal of underdominance at the chromosome 22 QTL could 486 
be interactions with other regions of the genome. In particular, in the literature on the evolution 487 
of gene regulation, a breakdown in interactions between paired cis- and trans-acting regulatory 488 
elements can explain aberrant expression patterns in F1 hybrids [36,43,94]. Thus, we performed a 489 
second QTL scan, including genotypes at the chromosome 22 QTL peak as an interaction term. 490 
Based on this analysis, we recovered a second QTL at the permuted 10% false discovery 491 
threshold, spanning ~2.1 Mb on chromosome 15 (Fig. 2E).  492 

While we are cautious of overinterpreting this result given low power in our study, we 493 
discuss it briefly here. Intriguingly, we find that artificial hybrids heterozygous at both the 494 
chromosome 22 and 15 QTL have reduced CTmax on average (-0.4°C), but that hybrids 495 
heterozygous at the chromosome 22 QTL and homozygous X. birchmanni at the chromosome 15 496 
QTL have elevated CTmax on average (+0.5°C over hybrids homozygous for the X. malinche 497 
allele; Table S5; Fig. 2F, S5). We estimate that the combined additive and interaction effects of 498 
the chromosome 22 and 15 QTL could explain ~14.8% of the total variation in CTmax in the 499 
artificial hybrids, although this number is likely an overestimate of their true effect size (see [76] 500 
and Supporting Information 1). 501 

We explored evidence for known genetic interactions between genes under the 502 
chromosome 22 and chromosome 15 QTLs. The zinc finger protein gene zbtb18 and the adjacent 503 
serine/threonine-protein kinase akt3, and the heterogenous nuclear RNA binding protein hnrnpu, 504 
which fall directly under the chromosome 22 and 15 peaks respectively, are known to interact 505 
during neurodevelopment [95]. We discuss what is known about their interactions and other 506 
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interacting genes in these regions in more detail in Supporting Information 5 and summarize all 507 
genes under the chromosome 15 QTL in Table S4.  508 
 509 
Gene expression profiles differ between species and thermal treatment 510 
 511 

To broadly survey changes in gene expression between parental species and their F1 512 
hybrids in response to high temperature, we generated RNAseq data for brain and liver tissue 513 
from fish exposed to ambient and high temperature conditions (see Methods). We sampled the 514 
brain and liver to survey two tissues that play different roles in organismal homeostasis – energy 515 
consumption and detection of and response to environmental changes by the brain, and energy 516 
metabolism by the liver.  517 

In addition to using these data to evaluate expression patterns of genes under the QTL 518 
region, we analyzed it in a genome-wide context. As expected, we found broad differences in 519 
expression between tissues and species (Fig. S6), as well as strong responses to high temperature 520 
(Fig. 3A, S7). The vast majority of the variation in expression in our dataset is explained by 521 
tissue type (83.5%; Fig. S6); therefore, the tissue datasets were analyzed separately. Of the 522 
remaining variation, genotype explained ~23% of the variation in expression between samples 523 
and temperature treatment explained ~11% (Fig. 3A). A large number of genes were 524 
significantly differentially expressed between X. birchmanni and X. malinche (FDR adjusted p-525 
value < 0.1) across temperatures in both tissues (brain: 3,357 and 3,121 genes; liver: 2,318 and 526 
1,508 genes at 22.5°C and 33.5°C, respectively). Interestingly, while the number of genes for 527 
which expression changed in response to high temperature in X. birchmanni and X. malinche was 528 
similar (brain: 882 and 979 genes; liver: 113 and 38 genes, respectively), ~2.5-3.5x more genes 529 
were responsive to high temperature in F1 brain (2,318) and liver (408) tissues compared to those 530 
of parentals. We found that ~3% and ~0.5% of all genes across the genome were misexpressed 531 
under at least one of the two tested thermal contexts in F1 hybrid brains and livers, respectively. 532 
Moreover, ~9% and ~3% of the genes that responded to temperature in X. birchmanni and/or X. 533 
malinche were misexpressed under at least one of the thermal contexts in F1 brains and livers, 534 
respectively.  Overall, we found that more genes were misexpressed (low or high) in F1 hybrids 535 
at 22.5°C than at 33.5°C in the brain (521 versus 187, respectively), whereas the liver exhibited 536 
the opposite pattern (10 versus 96, respectively); however, we are cautious of potential technical 537 
factors that could influence these patterns, such as differences in variance between groups at high 538 
temperature. Only a handful of genes were misexpressed under both thermal contexts. See 539 
Tables S6-7 for complete results for each group, and Table S8 for a summary of F1 expression 540 
patterns. 541 

We report functional categories with enriched expression responses (p-value < 0.05) to 542 
thermal stress, including general thermal stimulus and immune response pathways, in Table S9. 543 
In the brain, 84 GO terms are enriched in response to temperature in both X. malinche and X. 544 
birchmanni. Notably, response to temperature stimulus and circadian rhythm categories were 545 
commonly enriched for both species. Additionally, 77 terms are enriched only in X. birchmanni, 546 
and 70 terms are enriched just for X. malinche. Among those terms that were enriched only in X. 547 
birchmanni under thermal stress were autophagy and disassembly of mitochondria, negative 548 
regulation of biosynthesis and gene expression, and endogenous stimulus response pathways. 549 

KEGG analysis recovered only one biological pathway commonly enriched in the set of 550 
genes that were significantly differentially expressed between temperature treatments in X. 551 
malinche and X. birchmanni brains: protein processing in the endoplasmic reticulum (xma04141; 552 
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FDR adjusted p-value < 0.1; Table S10). This result may be attributable to the fact that the 553 
endoplasmic reticulum plays a key role in the unfolded protein response, which is activated by 554 
thermal stress and is key for maintaining homeostasis during stress [96]. Intriguingly, one 555 
transcriptional activator of the unfolded protein response, xbp1, is significantly upregulated in 556 
both X. malinche and X. birchmanni, but not in F1 hybrid brains (Fig. S8).  557 

Strikingly, 20 KEGG pathways were significantly enriched in F1 brains in response to 558 
high temperature. Among these enriched pathways were protein processing in the endoplasmic 559 
reticulum and signaling pathways (see Table S10 for full list) that induce the transcriptional 560 
regulator of the innate immune response, nfkb1 [97–100]. Interestingly, one of the potential sets 561 
of interactors under the chromosome 22 and chromosome 15 QTL are inhibitors of nfkb1 562 
expression (see Supporting Information 5 for more information). No significantly enriched 563 
KEGG pathways were recovered from the set of genes differentially expressed in response to 564 
temperature in the liver across groups. 565 
 566 
Co-expression network analysis reveals misexpression in F1 clock genes  567 
 568 

We used the co-expression network analysis software WGCNA [83] to identify clusters 569 
of co-expressed genes in our RNAseq datasets (Fig. S10, S11). We performed this analysis 570 
separately for the two tissue types. In total, 54 and 50 gene co-expression modules were 571 
recovered from the brain and liver RNAseq data, 12 and 2 of which were significantly correlated 572 
with temperature treatment respectively (p-value < 0.05; Table S11; Fig. 3B, S9). Additionally, 573 
four of the 12 brain temperature-correlated modules were significantly correlated with at least 574 
one genotype (see Supporting Information 8). 575 

Notably, one temperature-correlated module was shared between tissue types, suggesting 576 
that it may represent a cluster of genes globally involved in the thermal stress response. This 577 
module is enriched in genes involved in the circadian rhythm and circadian regulation. This 578 
finding is notable since circadian clock pathways are impacted by temperature and play a role in 579 
thermoregulation and thermal stress response across taxonomic groups [101–104]. 580 

Strikingly, several of the circadian clock genes in this shared temperature-associated 581 
module are misexpressed in F1 hybrids, particularly in data collected from the brain in the high 582 
temperature treatment (Supporting Information 6-7). The number of misexpressed genes in this 583 
module greatly exceeds the number expected by chance (based on permutations, Table S12, Fig. 584 
3D, Supporting Information 7). This suggests that genes in these circadian clock pathways may 585 
be commonly misregulated under thermal stress in X. malinche-X. birchmanni hybrids. 586 
Specifically, we find that most of the clock genes in this module are strongly up- or down-587 
regulated in X. malinche and X. birchmanni brains and livers in response to high temperature. In 588 
contrast, at ambient temperature, F1 clock gene expression tends to be similar to parental 589 
expression, but at high temperatures these genes are misexpressed in F1 brains compared to 590 
parental brains (Table S13; Fig. 3C-D). These results hint at a failure to regulate expression of 591 
these genes in hybrids. Specifically, much of the misexpression observed in these genes is 592 
attributable to the fact that while their expression in parental brains is strongly responsive to the 593 
thermal treatment, F1 expression does not change substantially between temperature treatments. 594 
Additionally, some of these genes, such as the transcription factors dbpb and bhlhe41 shown in 595 
Fig. 3C and nr1d2a and cipcb shown in Fig. S8, show patterns of F1 misregulation under both 596 
thermal contexts. We discuss these patterns in more detail in Supporting Information 9. 597 
 598 
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 599 
Ancestry patterns in natural hybrid populations at regions implicated in thermotolerance 600 
  601 
 Hybrid populations between X. birchmanni and X. malinche occur across a range of 602 
elevations in different river systems [64] and experience different average temperatures [65]. To 603 
determine whether there is evidence of selection against a particular ancestry state in natural 604 
hybrid populations at the chromosome 22 and 15 CTmax QTL and at the clock genes discussed 605 
above, we focused on two hybrid populations that occur at elevations closer to those typical of X. 606 
birchmanni populations (Fig. 1A) and thus experience higher temperatures on average. These 607 
populations are the Acuapa and Tlatemaco populations (elevations of 476 and 480 meters, 608 
respectively). Notably, while individuals from the Acuapa population derive the majority of their 609 
genomes from X. birchmanni (~75%; [72]), the parental species with higher thermotolerance, 610 
individuals from the Tlatemaco population derive the majority of their genomes from X. 611 
malinche (~72%; [67]). Thus, regions that have unusually high X. birchmanni ancestry in both 612 
populations compared with the genome-wide background and that overlap with mapping or 613 
expression results may be of particular interest as candidates for loci underlying variation in 614 
thermotolerance phenotypes.  615 
 Focusing first on the QTL regions, we found that four genes under the chromosome 22 616 
QTL (akt3, sdccag8, and olig3) and a handful of genes under the chromosome 15 QTL 617 
(including nrxn3a and one nrxn3b isoform) have higher than average X. birchmanni ancestry in 618 
both low-elevation hybrid populations (Fig. 4A). This shared high X. birchmanni ancestry in 619 
both populations deviates significantly from expectation (based on permutations, Table S14).  620 
 We next evaluated ancestry in both hybrid populations among genes in the circadian 621 
clock gene expression module. Notably, two clock genes in this module that are misexpressed in 622 
F1 hybrids, nr1d2b and arntl1a, have unusually high X. birchmanni ancestry in both populations 623 
(>89% in both, permuted p-value<0.01; Fig. 4A, Table S14). Interestingly, nr1d2b directly 624 
represses arntl1a expression [105]. Clock genes with strong skews in ancestry in both natural 625 
hybrid populations may be adaptive in lower elevation habitats, as this level of ancestry sharing 626 
across the two populations is unexpected by chance (see Supporting Information 10). Together, 627 
these analyses highlight regions that may be under selection due to their impacts on 628 
thermotolerance in natural hybrid populations.  629 
 630 
Other phenotypes associated with thermotolerance in hybrids 631 
 632 

Given the overall pattern of reduced thermotolerance associated with heterozygous 633 
ancestry at the chromosome 22 QTL and aberrant expression of many thermally responsive 634 
genes in F1 hybrids, we wanted to further investigate other possible phenotypic drivers of 635 
reduced thermotolerance in hybrids. One trait that is present in hybrids but not in parental 636 
individuals of either species is a hybrid incompatibility involving a pigmentation phenotype 637 
called the “spotted caudal”. While the spotted caudal is a benign melanocyte pigmentation 638 
pattern in X. birchmanni, it can transform into a malignant melanoma in hybrids (Fig. 4B) with 639 
certain genotype combinations ([89]; those with X. birchmanni ancestry at the xmrk gene and X. 640 
malinche ancestry at cd97).  641 

We found that the spotted caudal phenotype was significantly correlated with CTmax in 642 
lab-reared offspring from wild mothers collected from a natural X. malinche-X. birchmanni 643 
hybrid population from Chahuaco Falls (Fig. 1A). In particular, hybrid individuals with an 644 
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expanded spot typical of early melanoma as well as hybrids with a more advanced 3D melanoma 645 
phenotype had significantly reduced CTmax compared to those with a benign spot or no spot (Fig. 646 
4B). This poor performance in hybrids with incompatible genotype combinations highlights one 647 
potential mechanism through which underdominance in traits such as thermotolerance could 648 
occur. We discuss the implications of this result in more detail in Supporting Information 11. 649 
 650 
Discussion  651 
 652 
How adaptive traits arise at the genetic level has been a classic question in evolutionary biology 653 
for decades. Here, we used a QTL mapping approach to identify loci contributing to variation in 654 
thermotolerance in hybrids between the northern swordtail species X. malinche and X. 655 
birchmanni. Mapping CTmax QTL in an artificial hybrid population revealed one underdominant 656 
QTL spanning ~1.5 Mb on chromosome 22 and a putative interacting QTL on chromosome 15. 657 
This finding, along with our gene expression results, points to a breakdown in the response to 658 
thermal stress in hybrids, with important implications for understanding the genetic architecture 659 
and evolution of ecologically relevant traits in general. 660 
 661 
Though more commonly reported in plants ([90,106–108]; but see [109]), underdominant QTL 662 
provide insight into genotypes that may be disadvantageous in hybrids. For example, mapping 663 
pollen fertility in Mimulus has identified hybrid sterility loci in heterozygotes caused by 664 
structural rearrangements [90] and mapping in tomatoes has revealed a reduction in fruit size in 665 
heterozygotes [108]. Unlike these QTL, which generally appear to have a simple genetic 666 
architecture, we find that the QTL on chromosome 22 explains a modest proportion of the total 667 
variation in this trait in X. malinche-X. birchmanni artificial hybrids. This both highlights the 668 
complex nature of this trait, and explains why, despite an average signal of reduced CTmax in 669 
individuals heterozygous at the chromosome 22 QTL (Fig. 2C), most F1 and F2 hybrids have a 670 
CTmax that is intermediate to the parental ranges (Fig. 2A; Supporting Information 4).  671 
 672 
What mechanisms drive reduced thermotolerance of heterozygous individuals at the 673 
chromosome 22 QTL? One clue comes from gene expression results from X. malinche, X. 674 
birchmanni, and F1 hybrids. We see widespread misexpression in F1 hybrids (approximately 9% 675 
and 3% of temperature responsive genes in parental brain and liver, respectively), where 676 
heterozygous individuals show expression patterns far outside the range of either parental 677 
species, including at genes under the chromosome 22 QTL (Fig. 2D). These aberrant expression 678 
patterns likely result from disruption of gene expression networks in hybrids at the molecular 679 
level [43], and could lead to phenotypic effects such as the reduced CTmax we observe at the 680 
chromosome 22 QTL. While well-documented in literature on the evolution of gene regulation 681 
[36,94,110–112], these types of misexpression dynamics have only recently been appreciated in 682 
the speciation genetics community as a source of hybrid incompatibilities between species [94]. 683 
 684 
One particularly intriguing example of gene expression misregulation in F1 hybrids occurs in 685 
circadian clock pathways. Overall, we find strong correlations between co-expression patterns of 686 
clock genes and temperature treatment in our RNAseq datasets. This finding is consistent with 687 
decades of data showing that expression levels of core clock genes are regulated in response to 688 
temperature across taxa (for example in plants: [104,113]; flies: [114]; fish: [115–119]; 689 
mammals: [120]). This regulatory response is important for maintaining homeostasis and timing 690 
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of the biological clock regardless of temperature-induced shifts in basic processes like enzymatic 691 
activity [121]. While we observe a strong circadian clock regulatory response to temperature 692 
treatment in both X. malinche and X. birchmanni, we find that an unexpectedly large number of 693 
circadian clock genes are misexpressed in F1 hybrids (permuted p-value<10-6), particularly after 694 
exposure to high temperature (Fig. 3C-D; Supporting Information 7). The response observed in 695 
parent species suggests that proper regulation of these genes is important in thermal stress 696 
response in Xiphophorus, and enriched misexpression in F1 hybrids points to a potential 697 
breakdown of basic regulatory processes in hybrids. Moreover, multiple pairs of genes that fall 698 
under the chromosome 22 and 15 QTLs are known to interact with clock genes. For example, 699 
several loci under the QTL regions (akt3, zbtb18, nrxn3b, tnfaip3, and nfkbia) are co-expressed 700 
or interact with the regulatory clock gene bhlhe40 [122–126]. Future work should address the 701 
functional basis of this misregulation as well as whether hybrids exhibit difficulty maintaining 702 
homeostasis compared to the two parental species, particularly at a range of rearing 703 
temperatures.  704 
 705 
Consistent with a role in fitness in natural populations, we see evidence of selection on ancestry 706 
at a handful of temperature-associated clock genes. Natural hybrids from the Acuapa and 707 
Tlatemaco populations derive the majority of their genomes from X. birchmanni and X. 708 
malinche, respectively, but both reside at X. birchmanni typical elevations. Specifically, clock 709 
genes nr1d2b and arntl1a (Fig. 4A) are unusually skewed towards X. birchmanni ancestry in 710 
both populations. This could indicate an ecological advantage of the X. birchmanni alleles at 711 
these genes (or selection to resolve misexpression).  712 
 713 
Given evidence for poorer performance and widespread misexpression in some hybrid 714 
individuals in response to thermal stress, we were curious about the ways that known hybrid 715 
incompatibilities interact with the thermal environment. Previous work has shown that in X. 716 
malinche-X. birchmanni hybrids, the combination of X. malinche ancestry at the gene cd97 and 717 
X. birchmanni ancestry at the gene xmrk results in the formation of a malignant melanoma. This 718 
incompatibility appears to reduce fitness in the wild based on population resampling results, but 719 
the mechanism is unclear, as individuals can survive for more than 2 years in the lab even with 720 
severe melanoma [89]. We found that both 3D melanoma and less severe melanoma are 721 
significantly correlated with reduced CTmax in X. malinche-X. birchmanni hybrids. This hints at a 722 
potential ecological fitness consequence for individuals with the melanoma incompatibility and 723 
exploring whether this relationship is causal is an exciting future direction (we discuss this result 724 
more thoroughly in Supporting Information 11). 725 
 726 
We set out to use QTL mapping and differential gene expression analysis to identify the genetic 727 
basis of differences in thermotolerance between X. malinche and X. birchmanni, so that we could 728 
identify regions of the genome that may undergo adaptive introgression in response to changing 729 
thermal environments. However, our mapping and RNAseq results instead uncovered signals of 730 
hybrid breakdown and potential BDMIs. Our results highlight a more general problem with QTL 731 
mapping of species-level differences; in some cases, breakdown in the biological processes and 732 
traits of interest in hybrids will obscure the differences between the parental species that 733 
researchers seek to map. On the other hand, our results provide indirect clues into the expected 734 
outcomes for our original questions. Hybrids between X. malinche and X. birchmanni experience 735 
widespread misregulation of genes that respond to thermal treatments in the parental species, and 736 
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some individuals that harbor heterozygous ancestry at the chromosome 22 QTL or a common 737 
hybrid incompatibility between species exhibit markedly reduced thermotolerance. These results 738 
suggest that adaptive introgression of as of yet unidentified X. birchmanni thermotolerance 739 
alleles may not be sufficient to offset the costs of hybridization, and therefore may not lead to 740 
higher thermotolerance in X. malinche populations. We also note that although we focus on 741 
CTmax in the present study, X. malinche is found in environments with lower temperatures than 742 
those experienced by any other Xiphophorus species. Studying the genetic architecture of 743 
tolerance of cool temperatures in X. malinche may provide insight into the pressures driving 744 
regulatory divergence between species and misexpression in hybrids.  745 
 746 
Together, this work highlights the potential for ecological incompatibilities to play a role in 747 
selection on X. malinche-X. birchmanni hybrids [46]. Nearly a decade of work has uncovered 748 
evidence for genetic incompatibilities between these two species, but most cases that have been 749 
evaluated in detail have focused on intrinsic hybrid incompatibilities [89,127]. Our results 750 
underscore how shifts in global climate may impact a suite of biological processes and 751 
exacerbate or uncover ecological incompatibilities in hybrids. Such potential consequences may 752 
limit the success of genetic rescue as an effective strategy for population conservation. 753 
  754 
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 755 
Figure 1.  756 

A. Map adapted from Google Earth showing the five natural populations from which fish 757 
were collected for data used in this study. Pure X. malinche mothers and X. birchmanni 758 
fathers used in crosses and for RNAseq experiments were originally collected from the 759 
Chicayotla and Coacuilco populations, respectively. Natural hybrids were collected from 760 
Chahuaco Falls to evaluate links between hybrid melanoma and CTmax, and natural 761 
hybrids for analysis of population-level ancestry were collected from the low elevation 762 
Acuapa and Tlatemaco hybrid populations.  763 

B. The cross design used to generate individuals for both the mapping and RNAseq datasets.  764 
Wild X. malinche mothers from Chicayotla and X. birchmanni fathers from Coacuilco 765 
were crossed create an F1 population. A subset of F1s were crossed to generate an 766 
artificial hybrid mapping population that was raised in common garden conditions. Other 767 
F1 individuals were raised in the lab and used for the RNAseq thermal stress experiment. 768 
Abbreviations: mal – X. malinche, birch – X. birchmanni. 769 

C. Temperature data collected by HOBO loggers deployed at Acuapa from 2016-2017 and 770 
Chicayotla from 2020-2021. Acuapa is a hybrid population that is found at a similar 771 
elevation to pure X. birchmanni sites (~400 meters versus ~250-300 meters; [64]), and 772 
Chicayotla is a site where pure X. malinche individuals are found (~1000 meters). Data 773 
points were collected four times per day by the loggers. Points and trend lines are shown 774 
in red for Acuapa and blue for Chicayotla.  775 
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 776 
Figure 2. 777 

A. Results of CTmax trials on parental and hybrid individuals raised under common garden 778 
conditions indicate that variation in thermal tolerance between X. birchmanni and X. 779 
malinche is controlled in part by genetic factors. X. birchmanni has a significantly higher 780 
CTmax than X. malinche, and F1s and F2s on average have an intermediate CTmax. See 781 
Table S1 for p-values for statistical comparisons between groups using Mann-Whitney 782 
Wilcoxon test. 783 

B. QTL mapping reveals one region on chromosome 22 associated with CTmax. The QTL is 784 
significant at a 10% false discovery rate threshold, determined by permutations (red line).  785 

C. Artificial hybrids individuals with a heterozygous genotype at the peak associated marker 786 
on chromosome 22 have a 0.3°C reduction in CTmax on average compared to hybrid 787 
individuals homozygous for X. malinche or X. birchmanni ancestry, which have 788 
comparable CTmax on average. Bars and whiskers show the CTmax means for each 789 
genotype and 1 standard deviation. Points represent the CTmax of individual hybrids. 790 

D. Of the 45 genes under the CTmax QTL on chromosome 22, several show misexpression in 791 
F1s in at least one tissue or thermal context. The two examples shown here are p4ha1, 792 
which has significantly reduced expression in F1 brains at ambient temperature, and 793 
tnfaip3, which has significantly higher expression in F1 liver tissue under thermal stress 794 
(both at FDR adjusted p-value < 0.1). In these expression plots, mean normalized counts 795 
at 22.5°C are represented by a circle in a darker color and mean normalized counts at 796 
33.5°C are represented by a diamond in a brighter color. Error bars show one standard 797 
deviation of expression. 798 

E. A second QTL scan, adding genotype at the chromosome 22 QTL as an interaction term, 799 
uncovered a putative interacting QTL on chromosome 15. This QTL is significant at a 800 
10% false discovery rate threshold, determined by permutations (red line).  801 

F. Interaction plot of the peak associated marker of the chromosome 22 QTL (on the x-axis) 802 
and the peak associated marker of the chromosome 15 QTL (in the legend). This analysis 803 
shows that a combination of a heterozygous or homozygous X. malinche ancestry at the 804 
chromosome 15 QTL and a heterozygous genotype at the chromosome 22 QTL is 805 
associated with reduced CTmax. By contrast combination of homozygous X. birchmanni 806 
ancestry and heterozygous genotype at the chromosome 15 and 22 QTLs, respectively, is 807 
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associated with a modest increase in CTmax (see Table S5 for adjusted p-values). Bars and 808 
whiskers show the mean and 1 standard error. 809 

  810 
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 811 
Figure 3. 812 

A. PCA plot of normalized gene count data in the brain for all 17 individuals for which 813 
RNAseq data was collected. Individuals clearly separate by genotype and temperature 814 
treatment along PC1 and PC3 respectively. Genotype explained 23.01% of the variation 815 
in overall expression and temperature treatment explained 10.71%. PC2, which is not 816 
shown here, explained 19.22% of the variation in expression and was most strongly 817 
correlated with sequencing batch.  818 

B. Weighted gene co-expression analysis uncovered 12 temperature-associated modules in 819 
the brain (shown here) and 2 in the liver (Fig. S9). Traits are listed on the x-axis, and 820 
color blocks and labels on the y-axis represent the WGCNA module. Pearson’s 821 
correlation coefficients are listed for each module and trait, with box color corresponding 822 
to the strength of the correlation (yellow spectrum for a positive trait-module correlation, 823 
blue spectrum for a negative trait-module correlation). 824 

C. Several clock genes that were identified in the circadian clock gene-enriched module, 825 
including dbpb and bhlhe41, are misexpressed under both ambient and high temperature 826 
conditions in F1 brains. Interestingly, the mechanism of misexpression may be due to a 827 
failure of F1 hybrids to respond to temperature change. X. birchmanni and X. malinche 828 
strongly downregulate both genes in response to high temperature, while F1s do not. 829 

D. The gene network for core circadian clock genes in the Xiphophorus genome, predicted 830 
by GeneMania [128] and visualized with Cytoscape [129]. The structure of the network is 831 
colored based on the nature of evidence of each interaction, including direct interactions 832 
between genes (red), co-expression (purple), and shared domains (yellow). Genes that are 833 
misexpressed in F1 brains at high temperature in our study are highlighted in bright green, 834 
and genes that appeared in the circadian clock gene expression module identified by 835 
WGCNA are shown with a bold outline. 836 

 837 
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 838 
Figure 4. 839 

A. Ancestry at regions implicated in thermal stress response compared to the genome-wide 840 
ancestry distributions in two natural hybrid populations that occur at low elevations. 841 
Individuals from the Tlatemaco population derive on average ~75% of their genome from 842 
the X. malinche parent species and individuals from the Acuapa population derive on 843 
average ~28% of their genome from the X. malinche parent (genome-wide means 844 
represented by solid lines). Conversely, a handful of genes under the chromosome 22 845 
(olig3, sdccga8, akt3) and 15 (nrxn3a, nrxn3b) QTL and two clock genes (nr1d2b, 846 
arntl1a) have unusually high X. birchmanni ancestry in both populations, raising the 847 
possibility that there may be positive selection for X. birchmanni ancestry at these genes 848 
in low elevation populations (see Table S14 for p-values from permutations). 849 

B. The top image shows three Chahuaco Falls hybrids, from left to right, with 3D 850 
melanoma, normal spotted caudal, and expanded spot phenotypes. Boxplots show CTmax 851 
of lab-reared Chahuaco Falls hybrids, split by spotted caudal phenotype. Lab-reared 852 
individuals with expanded spot and 3D melanoma phenotypes have significantly lower 853 
CTmax compared to individuals with no spot or a normal spotting pattern. 854 

 855 
 856 
 857 

 858 
859 
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