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Phenotypes typically display integration, i.e. correlations between traits. For 

quantitative traits—like many behaviors, physiological processes, and life-history 

traits—patterns of integration are often assumed to have been shaped by the 

combination of linear, non-linear, and correlated selection, with trait correlations 

representative of optimal combinations. Unfortunately, this assumption has rarely 

been critically tested, in part due to a lack of clear alternatives. Here we show that 

trait integration across 6 phyla and 60 species (including both Plantae and Animalia) 

is consistent with evolution across high dimensional “holey landscapes” rather than 

classical models of selection. This suggests that the leading conceptualizations and 

modeling of the evolution of trait integration fail to capture how phenotypes are 

shaped. Instead, traits are integrated in a manner contrary to predictions of 

dominant evolutionary theory. 

A common attribute of most organisms is that they display trait integration. For example, 1 

life-history traits are often correlated according to a slow-fast continuum 1,2. This trait 2 

integration is commonly understood in terms of trade-offs and fitness maximization 3-8 and 3 

is frequently modeled as populations moving across adaptive landscapes toward peaks of 4 

higher fitness. However, this adaptive perspective has rarely been evaluated due to a lack 5 

of clear alternatives. Consequently, much of our understanding of when and why 6 

quantitative traits are correlated might be shaped by adaptive just-so-stories 9.  7 

Competing evolutionary processes  

Our understanding of selection has been strongly shaped by Sewall Wright’s 8 

conceptualization of an adaptive landscape, with populations moving from areas of low 9 
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fitness to areas of higher fitness 10,11. While 10 

the simple one and two trait landscapes 11 

Wright originally detailed have been 12 

criticized as unrealistic, including by 13 

Wright himself 10, the general metaphor has 14 

nonetheless guided much of evolutionary 15 

thought 12.  16 

For quantitative traits, like many 17 

aspects of physiology, behavior, and 18 

morphology, Wright’s metaphor has been 19 

mathematically extended to complex 20 

topographies with ridges or tunnels of high 21 

fitness 13,14 15. Applying these adaptive 22 

landscape topologies in mathematical 23 

models has led to insights into how 24 

variation in traits, and correlations among 25 

traits, are expected to change over time 15. 26 

Simulations have similarly led to the 27 

prediction that landscapes with complex 28 

topographic features like fitness ridges 29 

result in populations with genetic 30 

correlations aligned with these ridges 3-5.  31 

 Concurrent to the study of 32 

quantitative trait variation, the question of 33 

how the topography of fitness landscapes 34 

affects sequence evolution at the genomic 35 

level has garnered similar interest 16. 36 

Whereas theoreticians interested in 37 

quantitative trait variation have focused on 38 

relatively simple landscapes e.g. 3,4,5,17-19, 39 

theoretical research regarding sequence 40 

 
Figure 1. Example fitness landscapes. Hotter 

colors correspond to higher fitness. A. A 

simple single peak Fujiyama landscape with a 

single optimum (1). B. A more rugged 
landscape with multiple local optima and a 

single global optimum. C. A simplified Holey 

landscape where particular combinations of 

values correspond to high, average, fitness (1) 

or low (0) fitness. 
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evolution has spanned simple single peak Gaussian “Fujiyama landscapes”, to “badlands 41 

landscapes” Fig 1A & 1B; 20, to abstract high-dimensional “holey landscapes” Fig 1C; 21. 42 

Among other topics, this research has explored how topographies of varying complexity 43 

(Fig 1) affect the ability of populations to reach optima 16. An important conclusion from 44 

this research is that evolutionary dynamics on simple landscapes often fail to properly 45 

predict evolution on landscapes of higher dimensionality. 46 

Of these landscapes, perhaps most conceptually unfamiliar and unintuitive to 47 

researchers focused on quantitative trait evolution are Gavrilets’ (1997) holey landscapes 48 

(Fig 1C). The general concept of holey landscapes is that, because phenotypes are made up 49 

of a large number of traits, phenotypes are necessarily high dimensional constructs and 50 

corresponding landscapes will consist of either trait combinations that are of average 51 

fitness or trait combinations that confer low fitness or are inviable 21,22. This results in flat 52 

landscapes with holes at inviable or low fitness phenotypes (Fig 1C). The flat landscape can 53 

be understood as stemming from the full multivariate nature of the phenotype: while there 54 

may be clear fitness differences in two dimensions, strong gradients will create holes in the 55 

landscape and peaks will average out when additional traits are considered. Unfortunately, 56 

predictions about quantitative trait evolution on holey landscapes are not clear.  57 

More broadly, it is not clear what the topography of landscapes typically is for 58 

natural populations. While portions of selection surfaces and fitness landscapes can be 59 

directly estimated 23,24, these estimates may differ from the underlying full landscape due 60 

to several factors. These include: the omission of fitness affecting traits 25, incomplete 61 

estimation of fitness 26,27, and insufficient power to estimate non-linear selection 62 

coefficients 28. An alternative to direct estimation of adaptive landscape topography is to 63 

infer landscape topography from observed trait (co)variances. For example, low additive 64 

genetic variation is suggestive of stabilizing or directional selection 29 and additive genetic 65 

correlations are expected to emerge from correlational selection and fitness ridges in a 66 

landscape e.g. 13,14. Thus, an ability to gain an understanding of the topography of adaptive 67 

landscapes based on observed trait variation would aid our understanding as to how 68 

selection is realized in natural populations. 69 

 Here we used a simulation model to examine how evolution on different landscapes 70 

contributes to patterns of trait integration. We modeled populations that evolved solely via 71 
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drift, that evolved via adaptation on simple Gaussian fitness landscapes stemming from 72 

Wright’s metaphor, or that evolved on holey landscapes. This allowed us to generate 73 

testable predictions for how the structure of additive genetic variances and covariances (G) 74 

are shaped by different landscape topographies. We next compared these modeled 75 

outcomes to 181 estimates of G, representing 60 species from 6 phyla, including both 76 

plants and animals, to determine if observed trait integration is consistent with any of the 77 

modeled processes. 78 

Model Construction 79 

We developed an individual variance components model (Methods, Fig S1; 30) wherein 80 

individuals had phenotypes comprised of 10 traits (k), with each trait being highly 81 

heritable (h2 = 0.8), and initial genetic covariances between traits set at zero. Populations 82 

of individuals evolved on one of five landscapes: (i) a flat landscape where no selection 83 

occurred (i.e. drift alone), (ii) Gaussian landscapes where fitness for each pair of traits was 84 

characterized by a single peak but with correlational selection, and three (iii – v) 85 

implementations of holey landscapes differing by p 21,22, the proportion of viable 86 

phenotypes in a holey landscape (p = 0.2, 0.5, and 0.8). Each of the modeling scenarios was 87 

simulated 250 times for populations of 7500 individuals and for 100 generations for each 88 

population. Full modeling details are provided in the Methods and all modeling code is 89 

available at https://github.com/DochtermannLab/Wright_vs_Holey.  90 

Model analysis 91 

Following these simulations, the eigen structures of the resulting 1250 population 92 

genetic covariance matrices were compared. Because the simulated phenotypes consisted 93 

of 10 traits, it was the overall multivariate pattern of variation that was of interest rather 94 

than any specific single trait or pairwise combination. To do so, we calculated the ratio of 95 

each matrix’s second eigen value (λ2) to its dominant eigen value (i.e. 𝜆2 𝜆1⁄ ). This metric 96 

provides a better estimate of the compression of variance into a leading dimension than do 97 

other common metrics like the variation of the first eigen value to the sum of eigen values 98 

(i.e. 𝜆1 ∑ 𝜆⁄ ). For example, 𝜆1 ∑ 𝜆⁄  could be low if the variation not captured by λ1 is equally 99 
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distributed across all other dimensions, even if all other dimensions contained relatively 100 

little variation. The same scenario would produce a high value for 𝜆2 𝜆1⁄ . 101 

𝜆2 𝜆1⁄  was then compared across the modeling scenarios using analysis of variance 102 

and Tukey post-hoc testing. Alternative metrics for characterizing covariance matrices 103 

were consistent with the results for 𝜆2 𝜆1⁄  (see Supplementary Results). We also present 104 

the results of analyses of a broad range of starting conditions and model conditions in the 105 

Supplementary Results. These supplemental analyses confirmed the robustness of the 106 

findings reported below. 107 

Model outcomes 108 

When evolving on holey landscapes, populations lost greater relative variation in the non-109 

dominant dimensions as compared to when evolving on simple Gaussian landscapes or 110 

when subject solely to drift (Fig 2; Fig S3 A-D). 𝜆2 𝜆1⁄  significantly differed depending on 111 

selection regime (F4,1245 = 368, p << 0.01; Fig 2). Populations experiencing either just drift 112 

or evolving on Gaussian landscapes maintained a more even amount of variation across 113 

dimensions compared to those evolving on holey landscapes (i.e. higher 𝜆2 𝜆1⁄  all post-hoc 114 

comparisons p < 0.001; Fig 2, Table S3). All populations evolving on holey landscapes 115 

exhibited similar 𝜆2 𝜆1⁄  ratios regardless of p (all post-hoc comparisons of outcomes for 116 

holey landscapes: p > 0.05; Fig 2, Table S3). While a modest difference, populations 117 

evolving due to drift alone also exhibited a significantly greater ratio than populations 118 

evolving on Gaussian landscapes (difference = 0.06, p = 0.002; Fig 2, Table S3). This 119 

magnitude of a difference is unlikely to be biologically important or detectable in natural 120 

populations and instead is likely driven by the high power available with simulations. 121 

These differences were consistent across approaches to summarizing G and are robust to 122 

conditions of the simulations (Supplementary Results).  123 

These modeling results generate the general prediction that greater relative variation 124 

in multiple dimensions is maintained when populations evolve on Gaussian landscapes than 125 

when evolving on holey landscapes. Put another way, evolving on holey landscapes is 126 

predicted to result in a large decrease in variation from the dominant to subsequent 127 

dimensions and, consequently, a lower 𝜆2 𝜆1⁄  value (Fig S3). 128 

  129 
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Observed patterns of trait integration 130 

We next sought to determine which of the modeled processes produced results consistent 131 

with observed patterns of trait integration. To do so we conducted a literature review 132 

 
Figure 2. Modified “Orchard plot” of 𝜆2 𝜆1⁄  values for simulated (above solid line) and observed 
G matrices. Trunks (large points) are the medians for the specified group (e.g. Gaussian 
landscapes or Insecta), branches (thick lines) are interquartile ranges, twigs (thin lines) give the 
full range of values, and fruits (smaller points) are individual estimates within a simulation or 
taxonomic group. Rightmost letters correspond to statistical significance—or lack thereof—of 
comparisons of ratios among simulations. Datasets sharing letters did not significantly differ 
(Table S3). Populations evolving due to drift alone had a significantly higher ratio than observed 
for either stabilizing selection or evolution on any of the holey landscapes. Populations evolving 
on holey landscapes also had lower ratios than those experiencing stabilizing selection but did 
not differ from each other. Rightmost numbers are the number of estimates available via 
literature search. (organism silhouettes courtesy of phylopic.org, Public Domain Mark 1 licenses 
or CCA 3.0; Chlorophyceae: S.A. Muñoz-Gómez, Superrosid: D.J. Bruzzese, Superasterid: T.M. 
Keesey & Nadiatalent). 
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wherein we used Web of Science to search the journals American Naturalist, Ecology and 133 

Evolution, Evolution, Evolutionary Applications, Evolutionary Ecology, Genetics, Heredity, 134 

Journal of Evolutionary Biology, Journal of Heredity, Nature Ecology and Evolution, and the 135 

Proceedings of the Royal Society (B). We searched these journals using the terms “G 136 

matrix” on 14 May 2019, yielding a total of 272 articles. Each article was reviewed and 137 

estimated G matrices extracted if the article met inclusion criteria. For inclusion, an 138 

estimated G matrix must have been estimated for more than 2 traits (i.e. > 2 × 2), must 139 

have been reported as variances and covariances (i.e. not genetic correlations), and must 140 

not have been estimated for humans. Based on these inclusion criteria, we ended up with a 141 

dataset of 181 estimated G matrices from 60 articles (Fig S2). For each published G matrix, 142 

we estimated 𝜆2 𝜆1⁄ .  143 

Observed outcomes 144 

Across all taxa, average 𝜆2 𝜆1⁄  was 0.36 (sd: 0.23, Fig 2). This estimate is consistent and 145 

statistically indistinguishable from those observed for simulated populations evolving on 146 

Holey landscapes (tdf:17.275 = 0.32, 1.20, -0.05, p > 0.2 (all) versus Holey landscapes with p = 147 

0.2, 0.5, and 0.8 respectively; Fig 2, Table S10) and substantially less than observed for 148 

simulated populations that evolved on Gaussian landscapes or via drift alone (tdf:17.275 = -149 

12.42, -14.55 respectively, p < 0.001 (both)). 150 

While some individual estimates at the species level exhibited high 𝜆2 𝜆1⁄  values (Fig 151 

2), phylogeny explained little variation in these values (phylogenetic heritability = 0.05; 152 

Table S9). As was the case across all taxa, median 𝜆2 𝜆1⁄  values for each taxonomic Class (or 153 

comparable level clade) were consistently lower than expected if evolution occurred on 154 

Gaussian landscapes or via drift alone (Fig 2). Instead, these results are strongly consistent 155 

with evolution on Holey landscapes. 156 

Conclusions 157 

The observation that traits linked to fitness are frequently correlated has been a major 158 

driver of research across evolutionary ecology. Research in life-history, physiology, and 159 

behavior has frequently been structured around such observations, arguing that this 160 

integration stems from optimization in the face of trade-offs 1,2,31-33. However, because 161 
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selection is frequently acting on many traits, patterns of integration quickly diverge from 162 

simple expectations, even under conventional models of evolution. However, our results 163 

suggest something substantively different is occurring: the observed pattern of variation 164 

across taxa suggests that classic models of the evolution of quantitative traits—e.g. stabilizing 165 

and correlational selection—are not what have predominantly shaped trait integration. 166 

Instead, drift across holey landscapes 21,22 is more consistent with observed quantitative 167 

genetic variation (Fig 2).  168 

Much of the early theoretical development of holey landscapes focused on the ability 169 

of populations to traverse genomic sequence differences via drift, with some sequences 170 

being inviable (e.g. due to missense differences in coding regions). How this extends to 171 

quantitative traits had been less clear. Our simulation model provides one approach to 172 

applying the holey landscape framework to quantitative traits, treating each trait as a 173 

threshold character 34. Other approaches to modeling quantitative traits on holey 174 

landscapes and evolution in response to these versions, such as the generalized Russian 175 

roulette model 22, may produce different outcomes. It is also important to recognize that 176 

the broad support for evolution on holey landscapes does not preclude that subsets of 177 

traits from having evolved on Gaussian landscapes. Indeed, stabilizing selection has been 178 

observed in natural populations 28, though understanding its general strength even on a 179 

case by case basis is confounded with methodological problems 35,36. Regardless, our 180 

finding that observed patterns of quantitative genetic variation across taxonomic groups 181 

are not consistent with traditional evolutionary models stands.  182 

This disconnect between observed patterns of multivariate variation and 183 

expectations under conventional models of selection suggests that Wright’s metaphor of 184 

fitness landscapes and the subsequent implementation of this metaphor as Gaussian 185 

surfaces may have contributed to an improper, or at least incomplete, understanding of 186 

how selection has shaped phenotypes. A potential contributor to this problem has been the 187 

lack of clear alternative explanations besides a simple null hypothesis of drift with no 188 

selection. Moving forward, clear development of alternative models of the action of 189 

selection and evolution in multivariate space are needed. 190 
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Supplemental Methods 

Simulation Models 288 

Model Construction 289 

We developed an individual variance components model Fig S1; sensu 30 wherein 290 

individuals had phenotypes comprised of 10 traits (k) and with each trait being highly 291 

heritable (h2 = 0.8) and initial genetic covariances between traits of 0. A high heritability 292 

was initially used to reduce the number of generations needed to determine the response 293 

of populations to selection. Genetic covariances were set to an initial value of zero to 294 

simulate a population under linkage equilibrium. Viability selection was applied based on 295 

fitness, which was determined either by location on a ten-dimensional holey landscape or 296 

on simple Gaussian landscapes with a single optimum per trait pair.  297 

Holey Landscapes 298 

For simulations evaluating holey landscapes, we simulated populations in which 299 

traits were inherited as though continuous but expressed categorically as one of two 300 

phenotypic variants (e.g. phenotype 0 versus 1 for trait 1). Specifically, at the start of 301 

simulations, we drew genotypes for each individual from a normal distribution with a 302 

mean of zero and standard deviation of 1. To these normally distributed genotypes, we 303 

added “environmental” values (µ = 0, all covariances = 0) to generate a phenotype with a 304 

heritability of 0.8. These continuously distributed phenotypic values were then 305 

transformed as one implementation of the holey landscape is based on the fitness of 306 

specific and discrete combinations. Specifically, the continuously distributed values were 307 

transformed to be a phenotype of 0 or 1, with a genotype < 0 being “0” and a genotype > 0 308 

being “1” (Table S1).   309 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465488
http://creativecommons.org/licenses/by-nc-nd/4.0/


The holey landscape for a specific simulation was then constructed by randomly 310 

assigning a fitness of 0 or 1 to the 1024 possible phenotypes (2k) trait combinations based 311 

on the parameter p. “p” was the probability that a trait combination had a fitness of 1 and 312 

corresponds to Gavrilets’ (2004) percolation parameter. We used three values of p in our 313 

simulation ranging from weak (p = 0.2), moderate (p = 0.5) and high (p =0.8). p can vary 314 

between 0 and 1, with values of 1 corresponding to a landscape where all trait 315 

combinations are viable and have a fitness of 1. As p approaches 0, few trait combinations 316 

are viable. 317 

After the first generation, genotypes were drawn from a multivariate normal 318 

distribution based on the means and genetic variance-covariance matrix of the population 319 

that survived selection. Environmental contributions again had an average of 0 and no 320 

environmental correlation with a variance set to keep heritability at 0.8 (or other values 321 

during parameter exploration, below). The resulting phenotypic values were then 322 

converted to 0’s and 1’s as above. This approach to generating subsequent generations 323 

follows the structure of individual variance components models described by Roff 30. We 324 

used this individual variance components approach rather than an agent-based approach 325 

as the latter combined with the computational requirements of matching phenotypes to 326 

fitness under the holey landscape model was not amenable to simulation analysis. 327 

 328 

  329 
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Table S1. Example conversion of an underlying genotype to a phenotype under the two modelling 

scenarios. The same individual has a genotypic value for each of the 10 traits simulated (e.g. -0.918 

for trait 10). To this, “environmental” contributions are added, taking heritability to 0.8. For Holey 

Landscape simulations, these phenotypic values are then converted to either 0 or 1 based on 

whether the phenotype is negative or positive. 

 Trait 

 1 2 3 4 5 6 7 8 9 10 

Genotype 0.008 0.770 0.477 0.112 -0.512 0.751 -1.752 -0.944 0.030 -0.918 

Environmental 
Contribution 

0.402 -0.221 0.023 0.053 0.082 -0.25 0.63 0.285 -0.007 0.271 

Holey Landscape 
Phenotype 

1 1 1 1 0 1 0 0 1 0 

Gaussian 
Landscape 
Phenotype 

0.410 0.549 0.500 0.165 -0.430 0.501 -1.122 -0.659 0.023 -0.647 

 

Gaussian (Wrightian) adaptive landscapes 330 

For simulations evaluating Gaussian landscapes, we generated genotypes and 331 

phenotypes as above but without the categorical conversion (Table S1). We then generated 332 

random landscapes such that the optima (θ) for all traits was set to zero. The topography of 333 

the landscape for each pair of traits (e.g. ωi,j) was defined as [
1 𝜔𝑖,𝑗

𝜔𝑖,𝑗 1
] consistent with 334 

previous simulation studies examining the evolution of quantitative traits reviewed by 3. 335 

This approach corresponds to single peak landscapes in any two dimensions. The forty-five 336 

ωi,j values that fully describe the landscape were generated using the LKJ onion method for 337 

constructing random correlation matrices with a flat distribution of correlations (η = 1; 338 

Lewandowski et al. 2009). Using the LKJ onion method ensures that the full description of 339 

the landscape (ω) is positive semi-definite with feasible partial correlations. We then 340 

calculated each individual’s fitness based on a Gaussian surface 38:  341 
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wh = exp(-.5(zh-θ)Tω-1(zh- θ)) 342 

where wh is the fitness of individual h, zh is a vector of the observed phenotypic values for 343 

individual h, ω is the selection surface, and θ is the optima for traits (0). Truncation 344 

selection was applied based on fitness, with the 50% of individuals possessing the highest 345 

fitness surviving (main results). In an additional set of simulations, stronger truncation 346 

selection was applied and only 10% of the population survived. 347 

Following selection in either framework, the next generation was constructed using 348 

an individual variance components approach 30. Specifically, the next generation was 349 

generated as described above based on the trait means, variances and covariances of 350 

survivors. Selection therefore acted via changes in means and variances and drift during 351 

the selection simulations was due to sampling error from the selection shaped phenotypic  352 

distributions. 353 

Drift alone 354 

 For populations evolving via drift alone phenotypes were generated as for Gaussian 355 

adaptive landscapes. Composition of subsequent generations was likewise generated based 356 

on the means and variances of the prior generation, without selection. The drift model 357 

therefore was simply a model of sampling error. 358 

Each of five modeling scenarios (simple landscapes, drift alone, three Holey 359 

landscapes with p = 0.2, 0.5, or 0.8) was simulated 250 times for populations of 7500 360 

individuals and for 100 generations for each population. All modeling code is available at 361 

https://github.com/DochtermannLab/Wright_vs_Holey.  362 

Statistical Comparison of Evolutionary Metrics 363 
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 To clarify differences in evolutionary outcomes across modeling scenarios, we 364 

summarized evolutionary outcomes at the level of G matrices based on several metrics: 365 

1. 𝜆2 𝜆1⁄ ; results for this metric are presented in the main text 366 

2. 𝜆1 ∑ 𝜆⁄ ; this is a commonly used summary value and represents the proportion of 367 

variation captured by dominant eigenvalue. This can be interpreted as the 368 

proportion variation in the main dimension of covariance 369 

3.  ∑ 𝜆; matrix trace, the total variation present. For simulations this is informative as 370 

to whether a particular process results in the loss of more or less variation 371 

4. ē: average evolvability across dimensions 39. Evolutionary potential throughout 372 

multivariate space 373 

5. ā: average reduction in evolvability due to trait covariance 39. Can be interpreted as 374 

how constrained evolutionary responses are based on correlations. At the extreme, 375 

an average autonomy of 0 would indicate absolute constraints on responses to 376 

selection and an average autonomy of 1 indicates evolutionary independence. 377 

Values between 0 and 1 represent quantitative constraints. 378 

We compared these metrics across drift, Gaussian, and holey landscape simulations, 379 

following the main text, based on ANOVA followed by post-hoc comparisons based on 380 

calculation of Tukey’s Honest Significant Differences (HSD). 381 

Post-hoc Parameter Exploration 382 

The above modeling scenarios were used for our overall general analyses and for 383 

comparison to observed values. However, to explore whether our modeling outcomes were 384 

due to fundamentally different and generalizable outcomes or instead emerged from 385 

peculiarities of initial parameters, we expanded our analyses in two ways. 386 
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 First, in addition to the moderate/weak strength of truncation selection modeled 387 

above (0.5), we also modeled stronger selection where only 10% of individuals survived. 388 

For this stronger strength of selection we again conducted 250 simulations of 7500 389 

individuals for 100 generations. These simulations were included in the above analyses. 390 

 Second, to more broadly examine the sensitivity of our results to different starting 391 

values, we conducted simulation studies for our selection model, our model of drift, and 392 

our model of evolution on flat holey landscapes. For each modeling scenario (Gaussian 393 

surfaces, drift, Holey landscapes) we conducted 1000 simulations where both the 394 

magnitude of initial genetic variation in each trait varied and h2 varied (h2 was defined 395 

independently). For each scenario we then explored how other changes in starting 396 

parameters affected the eigenstructure of G (Table S2). 397 

We then quantitatively assessed the relevance of each varied parameter on 𝜆2 𝜆1⁄ —398 

within modeling scenario—using linear models. All two-way interactions were included in 399 

analyses and variables (model parameters) were mean centered but unscaled. We then 400 

qualitatively compared 𝜆2 𝜆1⁄  across modeling scenarios based on heat plots.  401 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465488
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S2. Parameters varied across simulation iterations by modeling scenario and range of 402 

possible values 403 
Modeling Scenario Parameter varied Parameter values 

Gaussian surfaces 

Genetic variation 
present in traits 

Single trait variabilities were independently drawn from 
uniform distributions ranging from 0.1 to 1.9. 

Correlations among 
traits 

Initial genetic correlations were drawn according to the 
LKJ onion method 37 with η = 1.  

h2 
Heritabilities were drawn from a uniform distribution 
ranging from 0.01 to 0.99 

Selection strength 
Proportion of individuals surviving to reproduce was 
drawn from a uniform distribution ranging from 0.1 to 0.9. 

Drift 

Genetic variation 
present in traits 

Single trait variabilities were independently drawn from 
uniform distributions ranging from 0.1 to 1.9. 

Correlations among 
traits 

Initial genetic correlations were drawn according to the 
LKJ onion method 37 with η = 1.  

h2 
Heritabilities were drawn from a uniform distribution 
ranging from 0.01 to 0.99 

Holey landscapes 

Genetic variation 
present in traits 

Single trait variabilities were independently drawn from 
uniform distributions ranging from 0.1 to 1.9. 

Correlations among 
traits 

Initial genetic correlations were drawn according to the 
LKJ onion method 37 with η = 1.  

h2 
Heritabilities were drawn from a uniform distribution 
ranging from 0.01 to 0.99 

p 
Proportion of inviable phenotypes, Gavrilets’ percolation 
parameter 

Empirically Estimated G Matrices 404 

Observed patterns of multivariate genetic variation 405 

We conducted a literature review with Web of Science to search the journals American 406 

Naturalist, Ecology and Evolution, Evolution, Evolutionary Applications, Evolutionary 407 

Ecology, Genetics, Heredity, Journal of Evolutionary Biology, Journal of Heredity, Nature 408 

Ecology and Evolution, and the Proceedings of the Royal Society (B). These journals were 409 

searched using the terms “G matrix” on 14 May 2019, yielding a total of 272 articles. Each 410 

article was reviewed to determine if the article met inclusion criteria. Our inclusion criteria 411 

were:  412 

1. A G matrix must have been estimated for more than 2 traits (i.e. > 2 × 2) 413 

2. Must have been reported as variances and covariances (i.e. not genetic correlations) 414 

3. Must not have been estimated for humans.  415 
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Based on these inclusion criteria, we ended up with 181 estimated G matrices (Fig S2). For 416 

each published G matrix, we calculated 𝜆2 𝜆1⁄  using a purpose-built R Shiny App (link).  417 

 For each estimate we recorded the paper from which it was drawn (recorded as a 418 

unique study ID), taxonomic information (Kingdom through species epithet), trait category 419 

(life-history, physiology, morphology, behavior or mixed), the number of traits in the 420 

matrix, 𝜆1, 𝜆2, 𝜆2 𝜆1⁄ , number of dimensions 40, number of dimensions divided by the 421 

number of traits, and all bibliographic information.  422 

Phylogenetic Signal in 𝜆2 𝜆1⁄  423 

To test for phylogenetic signal we fit a simple taxonomic mixed-effects model. This 424 

modeling approach incorporates the hierarchical non-independence due to taxonomic 425 

relationships but does not require a full phylogeny 41. Essentially, at each node of a 426 

phylogeny, relationships are modeled according to a star relationship. Each taxonomic 427 

grouping was included as a random effect, as was study ID, and the resulting model fit with 428 

the lme4 package in R 42. From this model we estimated phylogenetic signal as the 429 

proportion of variation attributable to taxonomy, the variation attributable to study ID, and 430 

the residual variance. Confidence intervals were then estimated based on likelihood profile 431 

likelihoods. 432 

Comparison of Observed Results to Simulation Results 433 

Finally, we compared the observed values to the average for each of the simulation using 434 

the intercept coefficient of the above linear model. For this, t was calculated as 43:  435 

𝑡 =
𝛽̂ − 𝛽𝐻0

𝑠. 𝑒. (𝛽̂)
 436 

where 𝛽̂ was the estimated intercept from the taxonomic model (above) and 𝛽𝐻0
 was a 437 

simulation average. p was calculated with degrees of freedom estimated using 438 

Satterthwaite’s method (df = 17.275). 439 

Supplemental Results 440 

Simulation Models 441 
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Statistical Comparison of Evolutionary Metrics 442 

Populations that evolved on different landscapes (drift alone, Gaussian, or holey) 443 

significantly differed from each other in the structure of G after 100 generations (Tables S3 444 

– S7). Holey landscapes were characterized by a compression of most variation into the 445 

dominant dimension in multivariate space (Tables S3 & S4; Figures 2 & S3).  Populations 446 

evolving on Gaussian landscapes were characterized by a drastic reduction in the total 447 

variation present, which was also reflected in reduced evolvability (Tables S5 & S6; Figures 448 

S4 & S5). The combination of high standing genetic variation and this variation being 449 

distributed across dimensions led to populations that evolved solely due to drift to exhibit 450 

significantly greater autonomy than observed in any of the other modeling scenarios (Table 451 

S7; Figure S6). This greater constraint in populations evolving on either Gaussian or holey 452 

landscapes is likely due to the loss of variation for populations evolving on Gaussian 453 

landscapes (Figures S4 & S5) and the compression of variation for populations evolving on 454 

holey landscapes (Figures 2 & S3).  455 

  456 
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Table S3. ANOVA and Tukey HSD results for 𝜆2 𝜆1⁄ . Significantly greater genetic variation 457 

was maintained across all dimensions when populations evolved on Gaussian landscapes 458 

or due to drift than when evolving on holey landscapes (Figure 2, main text). 459 
ANOVA Results 
 df SS MSS F p 

Simulation type 5 54.98 10.996 343.5 <0.01 
Residual  1494 47.82 0.032   

Tukey HSD      
Simulation Comparison Difference Lower Upper p 

Holey p = 0.5-Holey p = 0.2 -0.026 -0.071 0.020 0.589 
Holey p = 0.8-Holey p = 0.2 0.011 -0.035 0.057 0.984 
Wright 0.1-Holey p = 0.2 0.293 0.248 0.339 <0.01 
Wright 0.5-Holey p = 0.2 0.374 0.329 0.420 <0.01 
Drift-Holey p = 0.2 0.437 0.391 0.483 <0.01 
Holey p = 0.8-Holey p = 0.5 0.037 -0.009 0.082 0.198 
Wright 0.1-Holey p = 0.5 0.319 0.273 0.365 <0.01 
Wright 0.5-Holey p = 0.5 0.400 0.354 0.446 <0.01 
Drift-Holey p = 0.5 0.463 0.417 0.508 <0.01 
Wright 0.1-Holey p = 0.8 0.282 0.237 0.328 <0.01 
Wright 0.5-Holey p = 0.8 0.363 0.318 0.409 <0.01 
Drift-Holey p = 0.8 0.426 0.380 0.472 <0.01 
Wright 0.5-Wright 0.1 0.081 0.035 0.127 <0.01 
Drift-Wright 0.1 0.144 0.098 0.189 <0.01 
Drift-Wright 0.5 0.063 0.017 0.108 <0.01 

 460 

Table S4. ANOVA and Tukey HSD results for 𝜆1 ∑ 𝜆⁄ . Significantly greater proportional 461 

genetic variation was retained in the dominant multivariate direction for populations that 462 

evolved on Gaussian landscapes or via drift than when evolving on holey landscapes 463 

(Figure S3). 464 
ANOVA Results 
 df SS MSS F p 

Simulation type 5 29.49 5.90 325.4 <0.01 
Residual  1494 27.08 0.02   

Tukey HSD      
Simulation Comparison Difference Lower Upper p 

Holey p = 0.5-Holey p = 0.2 0.044 0.010 0.079 <0.01 
Holey p = 0.8-Holey p = 0.2 0.019 -0.015 0.054 0.594 
Wright 0.1-Holey p = 0.2 -0.188 -0.223 -0.154 <0.01 
Wright 0.5-Holey p = 0.2 -0.233 -0.268 -0.199 <0.01 
Drift-Holey p = 0.2 -0.320 -0.354 -0.285 <0.01 
Holey p = 0.8-Holey p = 0.5 -0.025 -0.059 0.009 0.307 
Wright 0.1-Holey p = 0.5 -0.232 -0.267 -0.198 <0.01 
Wright 0.5-Holey p = 0.5 -0.278 -0.312 -0.243 <0.01 
Drift-Holey p = 0.5 -0.364 -0.398 -0.330 <0.01 
Wright 0.1-Holey p = 0.8 -0.208 -0.242 -0.173 <0.01 
Wright 0.5-Holey p = 0.8 -0.253 -0.287 -0.218 <0.01 
Drift-Holey p = 0.8 -0.339 -0.374 -0.305 <0.01 
Wright 0.5-Wright 0.1 -0.045 -0.080 -0.011 <0.01 
Drift-Wright 0.1 -0.132 -0.166 -0.097 <0.01 
Drift-Wright 0.5 -0.086 -0.121 -0.052 <0.01 
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Table S5. ANOVA and Tukey HSD results for the total genetic variation in populations at the 465 

end of simulations ∑ 𝜆. The amount of total variation significantly varied across simulation 466 

types. Populations that evolved on Gaussian landscapes lost considerably more genetic 467 

variation than those evolving on other landscapes (Figure S4).  468 
ANOVA Results 
 df SS MSS F p 

Simulation type 5 357826 71565 6.23 <0.01 
Residual  1494 17167085 11491   

Tukey HSD      
Simulation Comparison Difference Lower Upper p 

Holey p = 0.5-Holey p = 0.2 -1.050 -28.408 26.308 1.000 
Holey p = 0.8-Holey p = 0.2 -18.153 -45.511 9.205 0.407 
Wright 0.1-Holey p = 0.2 -37.651 -65.009 -10.293 <0.01 
Wright 0.5-Holey p = 0.2 -37.237 -64.595 -9.879 <0.01 
Drift-Holey p = 0.2 -27.791 -55.149 -0.433 0.044 
Holey p = 0.8-Holey p = 0.5 -17.103 -44.461 10.255 0.477 
Wright 0.1-Holey p = 0.5 -36.601 -63.959 -9.243 <0.01 
Wright 0.5-Holey p = 0.5 -36.187 -63.545 -8.830 <0.01 
Drift-Holey p = 0.5 -26.741 -54.099 0.617 0.060 
Wright 0.1-Holey p = 0.8 -19.498 -46.856 7.860 0.324 
Wright 0.5-Holey p = 0.8 -19.084 -46.442 8.274 0.348 
Drift-Holey p = 0.8 -9.638 -36.996 17.720 0.916 
Wright 0.5-Wright 0.1 0.414 -26.944 27.771 1.000 
Drift-Wright 0.1 9.860 -17.498 37.218 0.908 
Drift-Wright 0.5 9.446 -17.912 36.804 0.923 

 
Table S6. ANOVA and Tukey HSD results for evolvability, ē. Because more genetic variation 469 

was maintained when populations evolved on holey landscapes or drift (Table S5), 470 

evolvability was significantly lower when populations evolved on Gaussian landscapes 471 

(Figure S5). (evolvability is just the matrix trace divided by the number of traits) 472 
ANOVA Results 
 df SS MSS F p 

Simulation type 5 3578 715.7 6.23 <0.01 
Residual  1494 171671 114.9   

Tukey HSD      
Simulation Comparison Difference Lower Upper p 

Holey p = 0.5-Holey p = 0.2 -0.105 -2.841 2.631 1.000 
Holey p = 0.8-Holey p = 0.2 -1.815 -4.551 0.921 0.407 
Wright 0.1-Holey p = 0.2 -3.765 -6.501 -1.029 <0.01 
Wright 0.5-Holey p = 0.2 -3.724 -6.460 -0.988 <0.01 
Drift-Holey p = 0.2 -2.779 -5.515 -0.043 0.044 
Holey p = 0.8-Holey p = 0.5 -1.710 -4.446 1.025 0.477 
Wright 0.1-Holey p = 0.5 -3.660 -6.396 -0.924 <0.01 
Wright 0.5-Holey p = 0.5 -3.619 -6.355 -0.883 <0.01 
Drift-Holey p = 0.5 -2.674 -5.410 0.062 0.060 
Wright 0.1-Holey p = 0.8 -1.950 -4.686 0.786 0.324 
Wright 0.5-Holey p = 0.8 -1.908 -4.644 0.827 0.348 
Drift-Holey p = 0.8 -0.964 -3.700 1.772 0.916 
Wright 0.5-Wright 0.1 0.041 -2.694 2.777 1.000 
Drift-Wright 0.1 0.986 -1.750 3.722 0.908 
Drift-Wright 0.5 0.945 -1.791 3.680 0.923 
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Table S7. ANOVA and Tukey HSD results for autonomy, ā. Significantly greater variation 473 

was maintained across all dimensions when populations evolved on Gaussian landscapes 474 

or due to drift than when evolving on holey landscapes (Figure S6). 475 
ANOVA Results 
 df SS MSS F p 

Simulation type 5 43.61 8.72 518.3 <0.01 
Residual  1494 25.14 0.02   

Tukey HSD      
Simulation Comparison Difference Lower Upper p 

Holey p = 0.5-Holey p = 0.2 -0.021 -0.054 0.012 0.479 
Holey p = 0.8-Holey p = 0.2 -0.042 -0.075 -0.009 <0.01 
Wright 0.1-Holey p = 0.2 -0.148 -0.181 -0.115 <0.01 
Wright 0.5-Holey p = 0.2 0.395 0.362 0.428 <0.01 
Drift-Holey p = 0.2 0.077 0.044 0.110 <0.01 
Holey p = 0.8-Holey p = 0.5 -0.022 -0.055 0.011 0.424 
Wright 0.1-Holey p = 0.5 -0.127 -0.160 -0.094 <0.01 
Wright 0.5-Holey p = 0.5 0.415 0.382 0.448 <0.01 
Drift-Holey p = 0.5 0.098 0.064 0.131 <0.01 
Wright 0.1-Holey p = 0.8 -0.106 -0.139 -0.072 <0.01 
Wright 0.5-Holey p = 0.8 0.437 0.404 0.470 <0.01 
Drift-Holey p = 0.8 0.119 0.086 0.152 <0.01 
Wright 0.5-Wright 0.1 0.543 0.509 0.576 <0.01 
Drift-Wright 0.1 0.225 0.192 0.258 <0.01 
Drift-Wright 0.5 -0.318 -0.351 -0.285 <0.01 

 

Post-hoc Parameter Exploration 476 

For populations evolving on Gaussian landscapes, compression of genetic variation into the 477 

leading dimension decreased with increasing heritability and an increasing strength of 478 

selection (Table S8, Figure S7). No two-way interaction was statistically significant. Put 479 

another way, 𝜆2 𝜆1⁄ , increased with heritability and the strength of selection and average 480 

𝜆2 𝜆1⁄  was 0.68 for average parameter values (Table S8). 481 

 For populations evolving solely due to drift, 𝜆2 𝜆1⁄  increased with greater initial 482 

total genetic variation (Table S9). However, the strength of this effect was minimal. More 483 

dramatically, 𝜆2 𝜆1⁄  significantly and strongly decreased with increasing average initial 484 

absolute genetic correlation (Table S9). At the extreme, 𝜆2 𝜆1⁄  approached 0 as the average 485 

initial absolute correlation approaches 1. No two-way interaction was statistically 486 

significant. Average 𝜆2 𝜆1⁄  was 0.69 for average parameter values (Table S9). 487 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465488
http://creativecommons.org/licenses/by-nc-nd/4.0/


 When evolving on holey landscapes, and consistent with prior simulation 488 

comparisons, 𝜆2 𝜆1⁄  was lower for average parameter values (0.42, Table S10). 489 

Compression into a single dimension also increased with increasing heritability and 490 

increasing average absolute initial correlations (Table S10).  491 

 Genetic variation was more strongly compressed into a primary dimension when 492 

populations evolved on holey landscapes versus when they evolved due to drift or due to 493 

selection on Gaussian surfaces (Tables S8 – S10; Figures S7 – S9). This was a surprisingly 494 

robust result regardless of the starting parameters of a simulation (Figures S7 – S9). This 495 

parameter robustness 44 supports the generality of our modeling. Unfortunately, we were 496 

not able to investigate other forms of robustness 44 due to computational limitations. 497 

Table S8. Linear modeling results for Gaussian landscape parameter exploration. All 498 

covariates were modeled while centered (but not variance standardized).  499 

Covariate Estimate 
Standard 
Error 

t* p 

Intercept (average) 0.680 0.004 157.94 <0.01 
Total variation (tot. var) 0.004 0.003 1.33 0.182 
Mean |correlation| (mean cor) -0.256 0.170 -1.51 0.132 
h2 0.103 0.015 6.70 <0.01 
Selection strength (ss) 0.069 0.019 3.60 <0.01 
tot.var × mean cor -0.070 0.107 -0.66 0.513 
tot.var × h2 -0.008 0.010 -0.75 0.454 
tot.var × ss 0.012 0.013 0.95 0.344 
mean cor × h2 0.806 0.601 1.34 0.180 
mean cor × ss 0.384 0.733 0.52 0.600 
h2 × ss -0.098 0.070 -1.39 0.164 
*p values are based on this t value with 989 degrees of freedom 

Table S9. Linear modeling results for parameter exploration of the drift model. All 500 

covariates were modeled while centered (but not variance standardized).  501 

Covariate Estimate 
Standard 
Error 

t* p 

Intercept (average) 0.689 0.004 165.12 <0.01 
Total variation (tot. var) 0.009 0.003 3.62 <0.01 
Mean |correlation| (mean cor) -0.867 0.160 -5.41 <0.01 
h2 0.004 0.015 0.27 0.786 
tot.var × mean cor -0.034 0.103 -0.33 0.740 
tot.var × h2 0.015 0.009 1.63 0.103 
mean cor × h2 -0.209 0.555 -0.38 0.706 
*p values are based on this t value with 993 degrees of freedom 
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Table S8. Linear modeling results for holey landscape parameter exploration. All covariates 502 

were modeled while centered (but not variance standardized).  503 

Covariate Estimate 
Standard 
Error 

t* p 

Intercept (average) 0.423 0.007 61.03 <0.01 
Total variation (tot. var.) 0.007 0.004 1.56 0.119 
Mean |correlation| (mean cor) -0.195 0.265 -0.74 0.462 
h2 -0.272 0.024 -11.22 <0.01 
p 0.011 0.024 0.47 0.640 
tot.var × mean cor 0.070 0.150 0.47 0.640 
tot.var × h2 0.012 0.015 0.78 0.435 
tot.var × p 0.007 0.015 0.48 0.631 
mean cor × h2 0.547 0.940 0.58 0.561 
mean cor × p -0.239 0.941 -0.26 0.799 
h2 × p -0.593 0.086 -6.93 <0.01 
*p values are based on this t value with 989 degrees of freedom 

 

Empirically Estimated G Matrices 504 

Phylogenetic Signal in 𝜆2 𝜆1⁄  505 

Table S9. Variances for 𝜆2 𝜆1⁄ —with associated 95% confidence intervals—at each 506 

taxonomic level, for study ID, and residual. Proportion of variation for taxonomy, study ID, 507 

and residual are also provided 508 

Variance component Estimate (95% CI) Proportion of variance 

Study ID 0.026 (0.013 : 0.048) 0.45 

Taxonomy 0.003 0.05 

species 0 (0 : 0.01) 

 

Genus 0 (0 : 0.016) 

Family 0.003 (0 : 0.02) 

Order 0 (0 : 0.018) 

Class 0 (0 : 0.008) 

Phylum 0 (0 : 0.007) 

Kingdom 0 (0 : 0.011) 

Residual 0.029 (0.023 : 0.037) 0.50 

 

Comparison of Observed Results to Simulation Results 509 

Observed results did not significantly differ from simulated populations that evolved on 510 

holey landscapes (Figure 2; Table S10).  511 

  512 
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Table S10. t values and associated p values for the comparison of the observed average of 513 

𝜆2 𝜆1⁄  versus the average 𝜆2 𝜆1⁄  for each set of simulations. The observed average and its 514 

standard error was taken from a taxonomic mixed-effects model. 515 

Average 
observed 
𝜆2 𝜆1⁄   

Simulation 
Simulation 
average 𝜆2 𝜆1⁄  

t p 

0.366 vs: 
(se: 0.03) 

Holey (p = 0.2) 0.357 0.320 0.753 

Holey (p = 0.5) 0.331 1.199 0.247 

Holey (p = 0.8) 0.368 -0.050 0.961 

Gaussian  
(surv. prob. = 0.1) 

0.650 -9.66 <0.01 

Gaussian  
(surv. prob. = 0.5) 

0.731 -12.416 <0.01 

Drift 0.794 -14.552 <0.01 

* degrees of freedom = 17.275 
  516 
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 517 

 
Figure S1. Model flow diagram for HL and gaussian landscapes 518 
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Figure S2. PRISMA diagram for studies and estimates included in taxonomic analyses. 519 
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Figure S3. Variation was more evenly distributed across dimensions when populations evolved on Gaussian landscapes or due 520 

solely to drift. Consequently, less total variation was present in the first dimension (Table S4). 521 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465488
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure S4. The total genetic variation present after 100 generations in each of six modeling conditions and across 250 522 

simulations. Selection on Gaussian surfaces led to a significant reduction in the amount of variation present (Table S5). 523 
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Figure S5. Multivariate evolvability after 100 generations in each of six modeling conditions and across 250 simulations. 524 

Selection on Gaussian surfaces led to a significant reduction in evolvability (Table S6). 525 
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Figure S6. Multivariate autonomy after 100 generations in each of six modeling conditions and across 250 simulations. 526 

Selection on Gaussian surfaces led to a significant reduction in autonomy (Table S7).527 
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Figure S7. 𝜆2 𝜆1⁄  after selection on Gaussian surfaces remained high regardless of starting 528 

parameters (Table S8).  529 
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Figure S8. 𝜆2 𝜆1⁄  after evolution due to drift remained high regardless of starting 530 

parameters (Table S9).  531 
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Figure S9 𝜆2 𝜆1⁄  after evolution on holey landscapes remained low regardless of starting 532 

parameters (Table S10). 533 
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