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Abstract: Phenotypes typically display integration, i.e. correlations between traits. For 

quantitative traits—like many behaviors, physiological processes, and life-history traits—

patterns of integration are often assumed to have been shaped by the combination of 

linear, non-linear, and correlated selection, with trait correlations representative of 

optimal combinations and reflective of the adaptive landscapes that have shaped a 

population. Unfortunately, this assumption has rarely been critically tested, in part due to a 

lack of clear alternatives. Here we show that trait integration across 6 phyla and 60 species 

(including both Plantae and Animalia) is consistent with evolution across high dimensional 

“holey landscapes” rather than classical models of selection. This suggests that the leading 

conceptualizations and modeling of the evolution of trait integration fail to capture how 

phenotypes are shaped and that traits are integrated in a manner contrary to predictions of 

dominant evolutionary theory. 

One-Sentence Summary: Patterns of correlations among traits are inconsistent with 

dominant models of evolution and suggest, instead, that quantitative traits have 

predominantly evolved via drift of populations across high dimensional holey landscapes. 
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A common attribute of most organisms is 1 

that they display trait integration. For 2 

example, life-history traits are often 3 

correlated according to a slow-fast 4 

continuum 1,2. This trait integration is 5 

commonly understood in terms of trade-6 

offs and fitness maximization 3-8 and is 7 

frequently modeled as populations 8 

moving across adaptive landscapes 9 

toward peaks of higher fitness. However, 10 

this adaptive perspective has rarely been 11 

evaluated due to a lack of clear 12 

alternatives. Consequently, much of our 13 

understanding of when and why 14 

quantitative traits are correlated might be 15 

shaped by adaptive just-so-stories 9.  16 

Competing evolutionary processes  

Our understanding of selection has been 17 

strongly shaped by Sewall Wright’s 18 

conceptualization of an adaptive 19 

landscape, with populations moving from 20 

areas of low fitness to areas of higher 21 

fitness 10,11. While the simple one and two 22 

trait landscapes Wright originally detailed 23 

have been criticized as unrealistic, 24 

including by Wright himself 10, the general 25 

metaphor has nonetheless guided much of 26 

evolutionary thought 12.  27 

 
Figure 1. Example fitness landscapes. Redder 
colors correspond to higher fitness. A. A simple 
Gaussian, single peak Fujiyama landscape with 
a single optimum (1). B. A more rugged 
landscape with multiple local optima and a 
single global optimum. C. A simplified Holey 
landscape where particular combinations of 
values correspond to high, average, fitness (1) 
or low (0) fitness. 
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For quantitative traits, like many aspects of physiology, behavior, and morphology, 28 

Wright’s metaphor has been mathematically extended to complex topographies with ridges 29 

or tunnels of high fitness 13-15. Applying these adaptive landscape topologies in 30 

mathematical models has led to insights into how evolutionary change may not be 31 

monotonic and how correlations may evolve 15. Simulations have similarly led to the 32 

prediction that landscapes with complex topographic features like fitness ridges result in 33 

populations with genetic correlations aligned with these ridges 3-5. This has led, for 34 

example, to an ability to predict how the pace of evolution might be constrained 16. 35 

 Concurrent to the study of quantitative trait variation, the question of how the 36 

topography of fitness landscapes affects sequence evolution at the genomic level has 37 

garnered similar interest 17. Whereas theoreticians interested in quantitative trait variation 38 

have focused on relatively simple landscapes e.g. 3,4,5,18-20, theoretical research regarding 39 

sequence evolution has spanned simple single peak Gaussian “Fujiyama landscapes”, to 40 

“badlands landscapes” (Fig 1A & 1B 21), to abstract high-dimensional “holey landscapes” 41 

(Fig 1C 22). Among other topics, this research has explored how topographies of varying 42 

complexity (Fig 1) affect the ability of populations to reach optima 17. An important 43 

conclusion from this research is that evolutionary dynamics on simple landscapes often fail 44 

to properly predict evolution on landscapes of higher dimensionality. 45 

Of these landscapes, perhaps most conceptually unfamiliar and unintuitive to 46 

researchers focused on quantitative trait evolution are Gavrilets’ (1997) holey landscapes 47 

(Fig 1C). Holey landscapes consist of trait combinations conferring either average fitnesses 48 

or zero. The general concept of holey landscapes is that, because phenotypes are made up 49 

of a large number of traits, phenotypes are abstract high dimensional constructs and 50 

corresponding landscapes will consist of either trait combinations that are of average 51 

fitness or trait combinations that confer low fitness or are inviable 22,23. This results in flat 52 

landscapes with holes at inviable or low fitness phenotypes (Fig 1C). The flat landscape can 53 

be understood as stemming from the full multivariate nature of the phenotype: while there 54 

may be clear fitness differences in two dimensions, strong gradients will create holes in the 55 

landscape and peaks will average out when additional traits are considered. This is 56 

conceptually related to more recent discussions of the Pareto optimization of traits 24,25. 57 
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Under Pareto optimization across just three traits a flat fitness surface—the Pareto front—58 

connects single trait × environment optima (i.e. “archetypes” 25). Likewise, rugged 59 

landscapes can create steep fitness declines and consequent holes in the overall landscape. 60 

Unfortunately, predictions about quantitative trait evolution on holey landscapes are not 61 

clear.  62 

Even more broadly, it is not clear what the topography of landscapes typically is for 63 

natural populations. While portions of selection surfaces and fitness landscapes can be 64 

directly estimated 26,27, these estimates may differ from the underlying full landscape due 65 

to several factors. These include: the omission of fitness affecting traits 28, incomplete 66 

estimation of fitness 29,30, and insufficient power to estimate non-linear selection 67 

coefficients 31. An alternative to direct estimation of adaptive landscape topography is to 68 

infer landscape topography from observed trait (co)variances. For example, low additive 69 

genetic variation is suggestive of stabilizing or directional selection 32, and additive genetic 70 

correlations are expected to emerge from correlational selection and fitness ridges in a 71 

landscape, e.g. 13,14. Thus, an ability to gain an understanding of the topography of adaptive 72 

landscapes based on observed trait variation would aid our understanding as to how 73 

selection is realized in natural populations. 74 

 Here we used a simulation model to examine how evolution on different landscapes 75 

contributes to patterns of trait integration. We modeled populations that evolved solely via 76 

drift, that evolved via adaptation on simple Gaussian fitness landscapes stemming from 77 

Wright’s metaphor, or that evolved on holey landscapes. This allowed us to generate 78 

testable predictions for how the structure of additive genetic variances and covariances (G) 79 

are shaped by different landscape topographies. We next compared these modeled 80 

outcomes to 181 estimates of G, representing 60 species from 6 phyla, including both 81 

plants and animals, to determine if observed trait integration is consistent with any of the 82 

modeled processes. 83 

Model Construction 84 

We developed an individual variance components model (Methods, Fig S1 33) wherein 85 

individuals had phenotypes comprised of 10 traits (k), with each trait being highly 86 

heritable (h2 = 0.8), and initial genetic covariances between traits set at zero. Populations 87 
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of individuals evolved on one of five landscapes: (i) a flat landscape where no selection 88 

occurred (i.e. drift alone), (ii) Gaussian landscapes where fitness for each pair of traits was 89 

characterized by a single peak but with correlational selection, and three (iii – v) 90 

implementations of holey landscapes differing by p 22,23, the proportion of viable 91 

phenotypes in a holey landscape (p = 0.2, 0.5, and 0.8). Each of the modeling scenarios was 92 

simulated 250 times for populations of 7500 individuals and for 100 generations for each 93 

population. Full modeling details are provided in the Methods and all modeling code is 94 

available at https://github.com/DochtermannLab/Wright_vs_Holey.  95 

Model analysis 96 

Following these simulations, the eigen structures of the resulting 1250 population genetic 97 

covariance matrices were compared. Because the simulated phenotypes consisted of 10 98 

traits, it was the overall multivariate pattern of variation that was of interest rather than 99 

any specific single trait or pairwise combination. To do so, we calculated the ratio of each 100 

matrix’s second eigen value (λ2) to its dominant eigen value (i.e. 𝜆2 𝜆1⁄ ). This metric 101 

provides a better estimate of the compression of variance into a leading dimension than do 102 

other common metrics like the variation of the first eigen value to the sum of eigen values 103 

(i.e. 𝜆1 ∑ 𝜆⁄ ). For example, 𝜆1 ∑ 𝜆⁄  could be low if the variation not captured by λ1 is equally 104 

distributed across all other dimensions, even if all other dimensions contained relatively 105 

little variation. The same scenario would produce a high value for 𝜆2 𝜆1⁄ . 106 

𝜆2 𝜆1⁄  was then compared across the modeling scenarios using analysis of variance 107 

and Tukey post-hoc testing. Four alternative metrics for characterizing covariance matrices 108 

were consistent with the results for 𝜆2 𝜆1⁄  (see Supplementary Results). We also present 109 

the results of analyses of a broad range of starting conditions and model conditions in the 110 

Supplementary Results. These supplemental analyses confirmed the robustness of the 111 

findings reported below. 112 

Model outcomes 113 

When evolving on holey landscapes, populations lost greater relative variation in the non-114 

dominant dimensions as compared to when evolving on simple Gaussian landscapes or 115 

when subject solely to drift (Fig 2; Fig S5). 𝜆2 𝜆1⁄  significantly differed depending on 116 
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selection regime (F4,1245 = 368, p << 0.01; Fig 2). Populations experiencing either just drift 117 

or evolving on Gaussian landscapes maintained a more even amount of variation across 118 

dimensions compared to those evolving on holey landscapes (i.e. higher 𝜆2 𝜆1⁄  all post-hoc 119 

comparisons p < 0.001; Fig 2, Table S3). All populations evolving on holey landscapes 120 

exhibited similar 𝜆2 𝜆1⁄  ratios regardless of p (all post-hoc comparisons of outcomes for 121 

holey landscapes: p > 0.05; Fig 2, Table S3). This similarity likely is due to the observation 122 

elsewhere that, when p is greater than 1/2k, a cluster of viable phenotypic values—and 123 

therefore phenotypic space exists—through which a population can drift 34,35. Given that k 124 

here was 10, this condition was satisfied. 125 

While a modest difference, populations evolving due to drift alone also exhibited a 126 

significantly greater ratio than populations evolving on Gaussian landscapes (difference = 127 

0.06, p = 0.002; Fig 2, Table S3). This magnitude of a difference is unlikely to be biologically 128 

important or detectable in natural populations and instead is likely driven by the high 129 

power available with simulations. These differences were consistent across multiple 130 

approaches to summarizing G and are robust to conditions of the simulations (Tables S4 – 131 

S7, Figs S6 – S8). Interestingly, examination of single population outcomes suggests that the 132 

outcomes observed for populations evolving on Gaussian landscapes stem from the 133 

populations becoming trapped at local optima (e.g. Fig S4). 134 

These modeling results produce the general prediction that greater relative variation 135 

in multiple dimensions is maintained when populations evolve on Gaussian landscapes than 136 

when evolving on holey landscapes. Put another way, evolving on holey landscapes is 137 

predicted to result in a large decrease in variation from the dominant to subsequent 138 

dimensions and, consequently, a lower 𝜆2 𝜆1⁄  value (Fig 2). 139 
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 140 
Figure 2. Modified “Orchard plot” of 𝜆2 𝜆1⁄  values for simulated (above solid line) and observed G matrices. 141 
Trunks (large points) are the medians for the specified group (e.g. Gaussian landscapes or Insecta), branches 142 
(thick lines) are interquartile ranges, twigs (thin lines) give the full range of values, and fruits (smaller points) 143 
are individual estimates within a simulation or taxonomic group. Rightmost letters correspond to statistical 144 
significance—or lack thereof—of comparisons of ratios among simulations. Datasets sharing letters did not 145 
significantly differ (Table S3). Populations evolving due to drift alone had a significantly higher ratio than 146 
observed for either stabilizing selection or evolution on any of the holey landscapes. Populations evolving on 147 
holey landscapes also had lower ratios than those experiencing stabilizing selection but did not differ from 148 
each other. Rightmost numbers are the number of estimates available via literature search. (organism 149 
silhouettes courtesy of phylopic.org, Public Domain Mark 1 licenses or CCA 3.0; Chlorophyceae: S.A. Muñoz-150 
Gómez, Superrosid: D.J. Bruzzese, Superasterid: T.M. Keesey & Nadiatalent).  151 
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Observed patterns of trait integration 152 

We next wanted to determine which of the modeled processes produced results consistent 153 

with observed patterns of trait integration. To do so, we conducted a literature review 154 

wherein we used Web of Science to search the journals American Naturalist, Ecology and 155 

Evolution, Evolution, Evolutionary Applications, Evolutionary Ecology, Genetics, Heredity, 156 

Journal of Evolutionary Biology, Journal of Heredity, Nature Ecology and Evolution, and the 157 

Proceedings of the Royal Society (B). We searched these journals using the terms “G 158 

matrix” on 14 May 2019, yielding a total of 272 articles. Each article was reviewed and 159 

estimated G matrices extracted if the article met inclusion criteria. For inclusion, an 160 

estimated G matrix must have been estimated for more than 2 traits (i.e. > 2 × 2), must 161 

have been reported as variances and covariances (i.e. not genetic correlations), and must 162 

not have been estimated for humans. Based on these inclusion criteria, we ended up with a 163 

dataset of 181 estimated G matrices from 60 articles (Fig S2). For each published G matrix, 164 

we estimated 𝜆2 𝜆1⁄ .  165 

Observed outcomes 166 

Across all taxa, average 𝜆2 𝜆1⁄  was 0.36 (sd: 0.23, Fig 2). This estimate is consistent with 167 

and statistically indistinguishable from those observed for simulated populations evolving 168 

on Holey landscapes (tdf:17.275 = 0.32, 1.20, -0.05, p > 0.2 (all) versus Holey landscapes with 169 

p = 0.2, 0.5, and 0.8 respectively; Fig 2, Table S10) and substantially less than observed for 170 

simulated populations that evolved on Gaussian landscapes or via drift alone (tdf:17.275 = -171 

12.42, -14.55 respectively, p < 0.001 (both)). 172 

While some individual estimates at the species level exhibited high 𝜆2 𝜆1⁄  values (Fig 173 

2), phylogeny explained little variation in these values (phylogenetic heritability = 0.05; 174 

Table S9). As was the case across all taxa, median 𝜆2 𝜆1⁄  values for each taxonomic Class (or 175 

comparable level clade) were consistently lower than expected if evolution occurred on 176 

Gaussian landscapes or via drift alone (Fig 2). Instead, these results are strongly consistent 177 

with evolution on Holey landscapes. 178 
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Conclusions 179 

The observation that traits linked to fitness are frequently correlated has been a major 180 

driver of research across evolutionary ecology. Research in life-history, physiology, and 181 

behavior has frequently been structured around such observations, arguing that this 182 

integration stems from optimization in the face of trade-offs 1,2,36-38. However, because 183 

selection is frequently acting on many traits, patterns of integration quickly diverge from 184 

simple expectations, even under conventional models of evolution. However, our results 185 

suggest something substantively different is occurring: the observed pattern of variation 186 

across taxa suggests that classic models of the evolution of quantitative traits—e.g. stabilizing 187 

and correlational selection—are not what have predominantly shaped trait integration. 188 

Instead, drift across holey landscapes 22,23 is more consistent with observed quantitative 189 

genetic variation (Fig 2).  190 

Much of the theoretical development of holey landscapes focused on the ability of 191 

populations to traverse genomic sequence differences via drift, with some sequences being 192 

inviable (e.g. due to missense differences in coding regions). How this extended to 193 

quantitative traits was less clear. Our simulation model provides one approach to applying 194 

the holey landscape framework to quantitative traits, treating each trait as a threshold 195 

character 39. Other approaches to modeling quantitative traits on holey landscapes and 196 

evolution in response to these versions, such as the generalized Russian roulette model 23, 197 

may produce different outcomes. It is also important to recognize that the broad support 198 

for evolution on holey landscapes does not preclude subsets of traits from having evolved 199 

on Gaussian landscapes. Indeed, stabilizing selection has been observed in natural 200 

populations 31, though understanding its general strength even on a case-by-case basis is 201 

confounded with methodological problems 40,41. Regardless, our finding that observed 202 

patterns of quantitative genetic variation across taxonomic groups are not consistent with 203 

traditional evolutionary models stands.  204 

This disconnect between observed patterns of multivariate variation and 205 

expectations under conventional models of selection suggests that Wright’s metaphor of 206 

fitness landscapes and the subsequent implementation of this metaphor as Gaussian 207 

surfaces may have contributed to an improper, or at least incomplete, understanding of 208 
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how selection has shaped phenotypes. A potential contributor to this problem has been the 209 

lack of clear alternative explanations besides a simple null hypothesis of drift with no 210 

selection. Moving forward, clear development of alternative models of the action of 211 

selection and evolution in multivariate space are needed. 212 
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Materials and Methods 

Simulation Models 336 

Model Construction 337 

We developed an individual variance components model Fig S1; sensu 33 wherein 338 

individuals had phenotypes comprised of 10 traits (k) and with each trait being highly 339 

heritable (h2 = 0.8) and initial genetic covariances between traits of 0. A high heritability 340 

was initially used to reduce the number of generations needed to determine the response 341 

of populations to selection. Genetic covariances were set to an initial value of zero to 342 

simulate a population under linkage equilibrium. Viability selection was applied based on 343 

fitness, which was determined either by location on a ten-dimensional holey landscape or 344 

on simple Gaussian landscapes with a single optimum per trait pair.  345 

Holey Landscapes 346 

For simulations evaluating holey landscapes, we simulated populations in which traits 347 

were inherited as though continuous but expressed categorically as one of two phenotypic 348 

variants (e.g. phenotype 0 versus 1 for trait 1). Specifically, at the start of simulations, we 349 

drew genotypes for each individual from a normal distribution with a mean of zero and 350 

standard deviation of 1. To these normally distributed genotypes, we added 351 

“environmental” values (µ = 0, all covariances = 0) to generate a phenotype with a 352 

heritability of 0.8. These continuously distributed phenotypic values were then 353 

transformed as one implementation of the holey landscape is based on the fitness of 354 

specific and discrete combinations. Specifically, the continuously distributed values were 355 

transformed to be a phenotype of 0 or 1, with a genotype < 0 being “0” and a genotype > 0 356 

being “1” (Table S1).   357 

The holey landscape for a specific simulation was then constructed by randomly 358 

assigning a fitness of 0 or 1 to the 1024 possible phenotypes (2k) trait combinations based 359 

on the parameter p. “p” was the probability that a trait combination had a fitness of 1 and 360 

corresponds to Gavrilets’ (2004) percolation parameter. We used three values of p in our 361 

simulation ranging from weak (p = 0.2), moderate (p = 0.5) and high (p =0.8). p can vary 362 

between 0 and 1, with values of 1 corresponding to a landscape where all trait 363 

combinations are viable and have a fitness of 1. As p approaches 0, few trait combinations 364 

are viable. 365 

After the first generation, genotypes were drawn from a multivariate normal 366 

distribution based on the means and genetic variance-covariance matrix of the population 367 

that survived selection. Environmental contributions again had an average of 0 and no 368 

environmental correlation with a variance set to keep heritability at 0.8 (or other values 369 

during parameter exploration, below). The resulting phenotypic values were then 370 
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converted to 0’s and 1’s as above. This approach to generating subsequent generations 371 

follows the structure of individual variance components models described by Roff 33. We 372 

used this individual variance components approach rather than an agent-based approach 373 

as the latter combined with the computational requirements of matching phenotypes to 374 

fitness under the holey landscape model was not amenable to simulation analysis. 375 

 

Table S1. Example conversion of an underlying genotype to a phenotype under the two modelling 

scenarios. The same individual has a genotypic value for each of the 10 traits simulated (e.g. -0.918 

for trait 10). To this, “environmental” contributions are added, taking heritability to 0.8. For Holey 

Landscape simulations, these phenotypic values are then converted to either 0 or 1 based on 

whether the phenotype is negative or positive. 

 Trait 

 1 2 3 4 5 6 7 8 9 10 

Genotype 0.008 0.770 0.477 0.112 -0.512 0.751 -1.752 -0.944 0.030 -0.918 

Environmental 

Contribution 
0.402 -0.221 0.023 0.053 0.082 -0.25 0.63 0.285 -0.007 0.271 

Holey Landscape 

Phenotype 
1 1 1 1 0 1 0 0 1 0 

Gaussian 

Landscape 

Phenotype 

0.410 0.549 0.500 0.165 -0.430 0.501 -1.122 -0.659 0.023 -0.647 

Gaussian (Wrightian) adaptive landscapes 376 

For simulations evaluating Gaussian landscapes, we generated genotypes and phenotypes 377 

as above but without the categorical conversion (Table S1). We then generated random 378 

landscapes such that the optima (θ) for all traits was set to zero. The topography of the 379 

landscape for each pair of traits (e.g. ωi,j) was defined as [
1 𝜔𝑖,𝑗

𝜔𝑖,𝑗 1
] consistent with 380 

previous simulation studies examining the evolution of quantitative traits reviewed by 3. 381 

This approach corresponds to single peak landscapes in any two dimensions. The forty-five 382 

ωi,j values that fully describe the landscape were generated using the LKJ onion method for 383 

constructing random correlation matrices with a pseudo-normal distribution of 384 

correlations where the average correlation is 0 (η = 1; Lewandowski et al. 2009; Fig S2). 385 

Using the LKJ onion method ensures that the full description of the landscape (ω) is 386 

positive semi-definite with feasible partial correlations. We then calculated each 387 

individual’s fitness based on a Gaussian surface 43:  388 
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wh = exp(-.5(zh-θ)Tω-1(zh- θ)) 389 

where wh is the fitness of individual h, zh is a vector of the observed phenotypic values for 390 

individual h, ω is the selection surface, and θ is the optima for traits (0). Truncation 391 

selection was applied based on fitness, with the 50% of individuals possessing the highest 392 

fitness surviving (main results). In an additional set of simulations, stronger truncation 393 

selection was applied and only 10% of the population survived. 394 

Following selection in either framework, the next generation was constructed using 395 

an individual variance components approach 33. Specifically, the next generation was 396 

generated as described above based on the trait means, variances and covariances of 397 

survivors. Selection therefore acted via changes in means and variances and drift during 398 

the selection simulations was due to sampling error from the selection shaped phenotypic  399 

distributions. 400 

Drift alone 401 

 For populations evolving via drift alone phenotypes were generated as for Gaussian 402 

adaptive landscapes. Composition of subsequent generations was likewise generated based 403 

on the means and variances of the prior generation, without selection. The drift model 404 

therefore was simply a model of sampling error. 405 

Each of five modeling scenarios (simple landscapes, drift alone, three Holey 406 

landscapes with p = 0.2, 0.5, or 0.8) was simulated 250 times for populations of 7500 407 

individuals and for 100 generations for each population. All modeling code is available at 408 

https://github.com/DochtermannLab/Wright_vs_Holey.  409 

Statistical Comparison of Evolutionary Metrics 410 

To clarify differences in evolutionary outcomes across modeling scenarios, we summarized 411 

evolutionary outcomes at the level of G matrices based on several metrics: 412 

1. 𝜆2 𝜆1⁄ ; results for this metric are presented in the main text 413 

2. 𝜆1 ∑ 𝜆⁄ ; this is a commonly used summary value and represents the proportion of 414 

variation captured by dominant eigenvalue. This can be interpreted as the 415 

proportion variation in the main dimension of covariance 416 

3.  ∑ 𝜆; matrix trace, the total variation present. For simulations this is informative as 417 

to whether a particular process results in the loss of more or less variation 418 

4. ē: average evolvability across dimensions 44. Evolutionary potential throughout 419 

multivariate space 420 

5. ā: average reduction in evolvability due to trait covariance 44. Can be interpreted as 421 

how constrained evolutionary responses are based on correlations. At the extreme, 422 

an average autonomy of 0 would indicate absolute constraints on responses to 423 
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selection and an average autonomy of 1 indicates evolutionary independence. 424 

Values between 0 and 1 represent quantitative constraints. 425 

We compared these metrics across drift, Gaussian, and holey landscape simulations, 426 

following the main text, based on ANOVA followed by post-hoc comparisons based on 427 

calculation of Tukey’s Honest Significant Differences (HSD). 428 

Post-hoc Parameter Exploration 429 

The above modeling scenarios were used for our overall general analyses and for 430 

comparison to observed values. However, to explore whether our modeling outcomes were 431 

due to fundamentally different and generalizable outcomes or instead emerged from 432 

peculiarities of initial parameters, we expanded our analyses in two ways. 433 

 First, in addition to the moderate/weak strength of truncation selection modeled 434 

above (0.5), we also modeled stronger selection where only 10% of individuals survived. 435 

For this stronger strength of selection we again conducted 250 simulations of 7500 436 

individuals for 100 generations. These simulations were included in the above analyses. 437 

 Second, to more broadly examine the sensitivity of our results to different starting 438 

values, we conducted simulation studies for our selection model, our model of drift, and 439 

our model of evolution on flat holey landscapes. For each modeling scenario (Gaussian 440 

surfaces, drift, Holey landscapes) we conducted 1000 simulations where both the 441 

magnitude of initial genetic variation in each trait varied and h2 varied (h2 was defined 442 

independently). For each scenario we then explored how other changes in starting 443 

parameters affected the eigenstructure of G (Table S2). 444 

We then quantitatively assessed the relevance of each varied parameter on 𝜆2 𝜆1⁄ —445 

within modeling scenario—using linear models. All two-way interactions were included in 446 

analyses and variables (model parameters) were mean centered but unscaled. We then 447 

qualitatively compared 𝜆2 𝜆1⁄  across modeling scenarios based on heat plots.  448 
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Table S2. Parameters varied across simulation iterations by modeling scenario and range of 449 

possible values 450 

Modeling Scenario Parameter varied Parameter values 

Gaussian surfaces 

Genetic variation 

present in traits 

Single trait variabilities were independently drawn from 

uniform distributions ranging from 0.1 to 1.9. 

Correlations among 

traits 

Initial genetic correlations were drawn according to the 

LKJ onion method 42 with η = 1.  

h2 
Heritabilities were drawn from a uniform distribution 

ranging from 0.01 to 0.99 

Selection strength 
Proportion of individuals surviving to reproduce was 

drawn from a uniform distribution ranging from 0.1 to 0.9. 

Drift 

Genetic variation 

present in traits 

Single trait variabilities were independently drawn from 

uniform distributions ranging from 0.1 to 1.9. 

Correlations among 

traits 

Initial genetic correlations were drawn according to the 

LKJ onion method 42 with η = 1.  

h2 
Heritabilities were drawn from a uniform distribution 

ranging from 0.01 to 0.99 

Holey landscapes 

Genetic variation 

present in traits 

Single trait variabilities were independently drawn from 

uniform distributions ranging from 0.1 to 1.9. 

Correlations among 

traits 

Initial genetic correlations were drawn according to the 

LKJ onion method 42 with η = 1.  

h2 
Heritabilities were drawn from a uniform distribution 

ranging from 0.01 to 0.99 

p 
Proportion of inviable phenotypes, Gavrilets’ percolation 

parameter 

Empirically Estimated G Matrices 451 

Observed patterns of multivariate genetic variation 452 

We conducted a literature review with Web of Science to search the journals American Naturalist, 453 

Ecology and Evolution, Evolution, Evolutionary Applications, Evolutionary Ecology, Genetics, 454 

Heredity, Journal of Evolutionary Biology, Journal of Heredity, Nature Ecology and Evolution, and 455 

the Proceedings of the Royal Society (B). These journals were searched using the terms “G matrix” 456 

on 14 May 2019, yielding a total of 272 articles. Each article was reviewed to determine if the 457 

article met inclusion criteria. Our inclusion criteria were:  458 

1. A G matrix must have been estimated for more than 2 traits (i.e. > 2 × 2) 459 

2. Must have been reported as variances and covariances (i.e. not genetic correlations) 460 

3. Must not have been estimated for humans.  461 

Based on these inclusion criteria, we ended up with 181 estimated G matrices (Fig S3). For each 462 

published G matrix, we calculated 𝜆2 𝜆1⁄  using a purpose-built R Shiny App (link).  463 

 For each estimate we recorded the paper from which it was drawn (recorded as a unique 464 

study ID), taxonomic information (Kingdom through species epithet), trait category (life-history, 465 
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physiology, morphology, behavior or mixed), the number of traits in the matrix, 𝜆1, 𝜆2, 𝜆2 𝜆1⁄ , 466 

number of dimensions 45, number of dimensions divided by the number of traits, and all 467 

bibliographic information.  468 

Phylogenetic Signal in 𝜆2 𝜆1⁄  469 

To test for phylogenetic signal we fit a simple taxonomic mixed-effects model. This modeling 470 

approach incorporates the hierarchical non-independence due to taxonomic relationships but does 471 

not require a full phylogeny 46. Essentially, at each node of a phylogeny, relationships are modeled 472 

according to a star relationship. Each taxonomic grouping was included as a random effect, as was 473 

study ID, and the resulting model fit with the lme4 package in R 47. From this model we estimated 474 

phylogenetic signal as the proportion of variation attributable to taxonomy, the variation 475 

attributable to study ID, and the residual variance. Confidence intervals were then estimated based 476 

on likelihood profile likelihoods. 477 

Comparison of Observed Results to Simulation Results 478 

Finally, we compared the observed values to the average for each of the simulation using the 479 

intercept coefficient of the above linear model. For this, t was calculated as 48:  480 

𝑡 =
�̂� − 𝛽𝐻0

𝑠. 𝑒. (�̂�)
 481 

where �̂� was the estimated intercept from the taxonomic model (above) and 𝛽𝐻0
 was a simulation 482 

average. p was calculated with degrees of freedom estimated using Satterthwaite’s method (df = 483 

17.275). 484 

Supplemental Results 485 

Simulation Models 486 

Statistical Comparison of Evolutionary Metrics 487 

Populations that evolved on different landscapes (drift alone, Gaussian, or holey) 488 

significantly differed from each other in the structure of G after 100 generations (Tables S3 489 

– S7). Holey landscapes were characterized by a compression of most variation into the 490 

dominant dimension in multivariate space (Tables S3 & S4; Figures 2 & S5).  Populations 491 

evolving on Gaussian landscapes were characterized by a drastic reduction in the total 492 

variation present, which was also reflected in reduced evolvability (Tables S6 & S7; Figures 493 

S5 & S6). The combination of high standing genetic variation and this variation being 494 

distributed across dimensions led to populations that evolved solely due to drift to exhibit 495 

significantly greater autonomy than observed in any of the other modeling scenarios (Table 496 

S7; Figure S8). This greater constraint in populations evolving on either Gaussian or holey 497 

landscapes is likely due to the loss of variation for populations evolving on Gaussian 498 
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landscapes (Figures S6 & S7) and the compression of variation for populations evolving on 499 

holey landscapes (Figures 2 & S5).  500 

 501 

Table S3. ANOVA and Tukey HSD results for 𝜆2 𝜆1⁄ . Significantly greater genetic variation 502 

was maintained across all dimensions when populations evolved on Gaussian landscapes 503 

or due to drift than when evolving on holey landscapes (Figure 2, main text). 504 
ANOVA Results 
 df SS MSS F p 

Simulation type 5 54.98 10.996 343.5 <0.01 
Residual  1494 47.82 0.032   

Tukey HSD      
Simulation Comparison Difference Lower Upper p 

Holey p = 0.5-Holey p = 0.2 -0.026 -0.071 0.020 0.589 
Holey p = 0.8-Holey p = 0.2 0.011 -0.035 0.057 0.984 
Wright 0.1-Holey p = 0.2 0.293 0.248 0.339 <0.01 
Wright 0.5-Holey p = 0.2 0.374 0.329 0.420 <0.01 
Drift-Holey p = 0.2 0.437 0.391 0.483 <0.01 
Holey p = 0.8-Holey p = 0.5 0.037 -0.009 0.082 0.198 
Wright 0.1-Holey p = 0.5 0.319 0.273 0.365 <0.01 
Wright 0.5-Holey p = 0.5 0.400 0.354 0.446 <0.01 
Drift-Holey p = 0.5 0.463 0.417 0.508 <0.01 
Wright 0.1-Holey p = 0.8 0.282 0.237 0.328 <0.01 
Wright 0.5-Holey p = 0.8 0.363 0.318 0.409 <0.01 
Drift-Holey p = 0.8 0.426 0.380 0.472 <0.01 
Wright 0.5-Wright 0.1 0.081 0.035 0.127 <0.01 
Drift-Wright 0.1 0.144 0.098 0.189 <0.01 
Drift-Wright 0.5 0.063 0.017 0.108 <0.01 

 505 

  506 
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Table S4. ANOVA and Tukey HSD results for 𝜆1 ∑ 𝜆⁄ . Significantly greater proportional 507 

genetic variation was retained in the dominant multivariate direction for populations that 508 

evolved on Gaussian landscapes or via drift than when evolving on holey landscapes 509 

(Figure S5). 510 
ANOVA Results 
 df SS MSS F p 

Simulation type 5 29.49 5.90 325.4 <0.01 
Residual  1494 27.08 0.02   

Tukey HSD      
Simulation Comparison Difference Lower Upper p 

Holey p = 0.5-Holey p = 0.2 0.044 0.010 0.079 <0.01 
Holey p = 0.8-Holey p = 0.2 0.019 -0.015 0.054 0.594 
Wright 0.1-Holey p = 0.2 -0.188 -0.223 -0.154 <0.01 
Wright 0.5-Holey p = 0.2 -0.233 -0.268 -0.199 <0.01 
Drift-Holey p = 0.2 -0.320 -0.354 -0.285 <0.01 
Holey p = 0.8-Holey p = 0.5 -0.025 -0.059 0.009 0.307 
Wright 0.1-Holey p = 0.5 -0.232 -0.267 -0.198 <0.01 
Wright 0.5-Holey p = 0.5 -0.278 -0.312 -0.243 <0.01 
Drift-Holey p = 0.5 -0.364 -0.398 -0.330 <0.01 
Wright 0.1-Holey p = 0.8 -0.208 -0.242 -0.173 <0.01 
Wright 0.5-Holey p = 0.8 -0.253 -0.287 -0.218 <0.01 
Drift-Holey p = 0.8 -0.339 -0.374 -0.305 <0.01 
Wright 0.5-Wright 0.1 -0.045 -0.080 -0.011 <0.01 
Drift-Wright 0.1 -0.132 -0.166 -0.097 <0.01 
Drift-Wright 0.5 -0.086 -0.121 -0.052 <0.01 

 511 

Table S5. ANOVA and Tukey HSD results for the total genetic variation in populations at the 512 

end of simulations ∑ 𝜆. The amount of total variation significantly varied across simulation 513 

types. Populations that evolved on Gaussian landscapes lost considerably more genetic 514 

variation than those evolving on other landscapes (Figure S6).  515 
ANOVA Results 
 df SS MSS F p 

Simulation type 5 357826 71565 6.23 <0.01 
Residual  1494 17167085 11491   

Tukey HSD      
Simulation Comparison Difference Lower Upper p 

Holey p = 0.5-Holey p = 0.2 -1.050 -28.408 26.308 1.000 
Holey p = 0.8-Holey p = 0.2 -18.153 -45.511 9.205 0.407 
Wright 0.1-Holey p = 0.2 -37.651 -65.009 -10.293 <0.01 
Wright 0.5-Holey p = 0.2 -37.237 -64.595 -9.879 <0.01 
Drift-Holey p = 0.2 -27.791 -55.149 -0.433 0.044 
Holey p = 0.8-Holey p = 0.5 -17.103 -44.461 10.255 0.477 
Wright 0.1-Holey p = 0.5 -36.601 -63.959 -9.243 <0.01 
Wright 0.5-Holey p = 0.5 -36.187 -63.545 -8.830 <0.01 
Drift-Holey p = 0.5 -26.741 -54.099 0.617 0.060 
Wright 0.1-Holey p = 0.8 -19.498 -46.856 7.860 0.324 
Wright 0.5-Holey p = 0.8 -19.084 -46.442 8.274 0.348 
Drift-Holey p = 0.8 -9.638 -36.996 17.720 0.916 
Wright 0.5-Wright 0.1 0.414 -26.944 27.771 1.000 
Drift-Wright 0.1 9.860 -17.498 37.218 0.908 
Drift-Wright 0.5 9.446 -17.912 36.804 0.923 
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Table S6. ANOVA and Tukey HSD results for evolvability, ē. Because more genetic variation 516 

was maintained when populations evolved on holey landscapes or drift (Table S5), 517 

evolvability was significantly lower when populations evolved on Gaussian landscapes 518 

(Figure S7). (evolvability is just the matrix trace divided by the number of traits) 519 
ANOVA Results 
 df SS MSS F p 

Simulation type 5 3578 715.7 6.23 <0.01 
Residual  1494 171671 114.9   

Tukey HSD      
Simulation Comparison Difference Lower Upper p 

Holey p = 0.5-Holey p = 0.2 -0.105 -2.841 2.631 1.000 
Holey p = 0.8-Holey p = 0.2 -1.815 -4.551 0.921 0.407 
Wright 0.1-Holey p = 0.2 -3.765 -6.501 -1.029 <0.01 
Wright 0.5-Holey p = 0.2 -3.724 -6.460 -0.988 <0.01 
Drift-Holey p = 0.2 -2.779 -5.515 -0.043 0.044 
Holey p = 0.8-Holey p = 0.5 -1.710 -4.446 1.025 0.477 
Wright 0.1-Holey p = 0.5 -3.660 -6.396 -0.924 <0.01 
Wright 0.5-Holey p = 0.5 -3.619 -6.355 -0.883 <0.01 
Drift-Holey p = 0.5 -2.674 -5.410 0.062 0.060 
Wright 0.1-Holey p = 0.8 -1.950 -4.686 0.786 0.324 
Wright 0.5-Holey p = 0.8 -1.908 -4.644 0.827 0.348 
Drift-Holey p = 0.8 -0.964 -3.700 1.772 0.916 
Wright 0.5-Wright 0.1 0.041 -2.694 2.777 1.000 
Drift-Wright 0.1 0.986 -1.750 3.722 0.908 
Drift-Wright 0.5 0.945 -1.791 3.680 0.923 

 
Table S7. ANOVA and Tukey HSD results for autonomy, ā. Significantly greater variation 520 

was maintained across all dimensions when populations evolved on Gaussian landscapes 521 

or due to drift than when evolving on holey landscapes (Figure S8). 522 
ANOVA Results 
 df SS MSS F p 

Simulation type 5 43.61 8.72 518.3 <0.01 
Residual  1494 25.14 0.02   

Tukey HSD      
Simulation Comparison Difference Lower Upper p 

Holey p = 0.5-Holey p = 0.2 -0.021 -0.054 0.012 0.479 
Holey p = 0.8-Holey p = 0.2 -0.042 -0.075 -0.009 <0.01 
Wright 0.1-Holey p = 0.2 -0.148 -0.181 -0.115 <0.01 
Wright 0.5-Holey p = 0.2 0.395 0.362 0.428 <0.01 
Drift-Holey p = 0.2 0.077 0.044 0.110 <0.01 
Holey p = 0.8-Holey p = 0.5 -0.022 -0.055 0.011 0.424 
Wright 0.1-Holey p = 0.5 -0.127 -0.160 -0.094 <0.01 
Wright 0.5-Holey p = 0.5 0.415 0.382 0.448 <0.01 
Drift-Holey p = 0.5 0.098 0.064 0.131 <0.01 
Wright 0.1-Holey p = 0.8 -0.106 -0.139 -0.072 <0.01 
Wright 0.5-Holey p = 0.8 0.437 0.404 0.470 <0.01 
Drift-Holey p = 0.8 0.119 0.086 0.152 <0.01 
Wright 0.5-Wright 0.1 0.543 0.509 0.576 <0.01 
Drift-Wright 0.1 0.225 0.192 0.258 <0.01 
Drift-Wright 0.5 -0.318 -0.351 -0.285 <0.01 
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Post-hoc Parameter Exploration 523 

For populations evolving on Gaussian landscapes, compression of genetic variation into the 524 

leading dimension decreased with increasing heritability and an increasing strength of 525 

selection (Table S8, Figure S9). No two-way interaction was statistically significant. Put 526 

another way, 𝜆2 𝜆1⁄ , increased with heritability and the strength of selection and average 527 

𝜆2 𝜆1⁄  was 0.68 for average parameter values (Table S8). 528 

 For populations evolving solely due to drift, 𝜆2 𝜆1⁄  increased with greater initial 529 

total genetic variation (Table S9). However, the strength of this effect was minimal. More 530 

dramatically, 𝜆2 𝜆1⁄  significantly and strongly decreased with increasing average initial 531 

absolute genetic correlation (Table S9). At the extreme, 𝜆2 𝜆1⁄  approached 0 as the average 532 

initial absolute correlation approaches 1. No two-way interaction was statistically 533 

significant. Average 𝜆2 𝜆1⁄  was 0.69 for average parameter values (Table S9). 534 

 When evolving on holey landscapes, and consistent with prior simulation 535 

comparisons, 𝜆2 𝜆1⁄  was lower for average parameter values (0.42, Table S10). 536 

Compression into a single dimension also increased with increasing heritability and 537 

increasing average absolute initial correlations (Table S10).  538 

 Genetic variation was more strongly compressed into a primary dimension when 539 

populations evolved on holey landscapes versus when they evolved due to drift or due to 540 

selection on Gaussian surfaces (Tables S8 – S10; Figures S9 – S11). This was a surprisingly 541 

robust result regardless of the starting parameters of a simulation (Figures S9 – S12). This 542 

parameter robustness 49 supports the generality of our modeling. Unfortunately, we were 543 

not able to investigate other forms of robustness 49 due to computational limitations. 544 

Table S8. Linear modeling results for Gaussian landscape parameter exploration. All 545 

covariates were modeled while centered (but not variance standardized).  546 

Covariate Estimate 
Standard 

Error 
t* p 

Intercept (average) 0.680 0.004 157.94 <0.01 

Total variation (tot. var) 0.004 0.003 1.33 0.182 

Mean |correlation| (mean cor) -0.256 0.170 -1.51 0.132 

h2 0.103 0.015 6.70 <0.01 

Selection strength (ss) 0.069 0.019 3.60 <0.01 

tot.var × mean cor -0.070 0.107 -0.66 0.513 

tot.var × h2 -0.008 0.010 -0.75 0.454 

tot.var × ss 0.012 0.013 0.95 0.344 

mean cor × h2 0.806 0.601 1.34 0.180 

mean cor × ss 0.384 0.733 0.52 0.600 

h2 × ss -0.098 0.070 -1.39 0.164 

*p values are based on this t value with 989 degrees of freedom 
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Table S9. Linear modeling results for parameter exploration of the drift model. All 547 

covariates were modeled while centered (but not variance standardized).  548 

Covariate Estimate 
Standard 

Error 
t* p 

Intercept (average) 0.689 0.004 165.12 <0.01 

Total variation (tot. var) 0.009 0.003 3.62 <0.01 

Mean |correlation| (mean cor) -0.867 0.160 -5.41 <0.01 

h2 0.004 0.015 0.27 0.786 

tot.var × mean cor -0.034 0.103 -0.33 0.740 

tot.var × h2 0.015 0.009 1.63 0.103 

mean cor × h2 -0.209 0.555 -0.38 0.706 

*p values are based on this t value with 993 degrees of freedom 

Table S8. Linear modeling results for holey landscape parameter exploration. All covariates 549 

were modeled while centered (but not variance standardized).  550 

Covariate Estimate 
Standard 

Error 
t* p 

Intercept (average) 0.423 0.007 61.03 <0.01 

Total variation (tot. var.) 0.007 0.004 1.56 0.119 

Mean |correlation| (mean cor) -0.195 0.265 -0.74 0.462 

h2 -0.272 0.024 -11.22 <0.01 

p 0.011 0.024 0.47 0.640 

tot.var × mean cor 0.070 0.150 0.47 0.640 

tot.var × h2 0.012 0.015 0.78 0.435 

tot.var × p 0.007 0.015 0.48 0.631 

mean cor × h2 0.547 0.940 0.58 0.561 

mean cor × p -0.239 0.941 -0.26 0.799 

h2 × p -0.593 0.086 -6.93 <0.01 

*p values are based on this t value with 989 degrees of freedom 
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Empirically Estimated G Matrices 551 

Phylogenetic Signal in 𝜆2 𝜆1⁄  552 

Table S9. Variances for 𝜆2 𝜆1⁄ —with associated 95% confidence intervals—at each 553 

taxonomic level, for study ID, and residual. Proportion of variation for taxonomy, study ID, 554 

and residual are also provided 555 

Variance component Estimate (95% CI) Proportion of variance 

Study ID 0.026 (0.013 : 0.048) 0.45 

Taxonomy 0.003 0.05 

species 0 (0 : 0.01) 

 

Genus 0 (0 : 0.016) 

Family 0.003 (0 : 0.02) 

Order 0 (0 : 0.018) 

Class 0 (0 : 0.008) 

Phylum 0 (0 : 0.007) 

Kingdom 0 (0 : 0.011) 

Residual 0.029 (0.023 : 0.037) 0.50 

Comparison of Observed Results to Simulation Results 556 

Observed results did not significantly differ from simulated populations that evolved on holey 557 

landscapes (Figure 2; Table S10).  558 

Table S10. t values and associated p values for the comparison of the observed average of 𝜆2 𝜆1⁄  559 

versus the average 𝜆2 𝜆1⁄  for each set of simulations. The observed average and its standard error 560 

was taken from a taxonomic mixed-effects model. 561 

Average 

observed 

𝜆2 𝜆1⁄   

Simulation 
Simulation 

average 𝜆2 𝜆1⁄  
t p 

0.366 vs: 

(se: 0.03) 

Holey (p = 0.2) 0.357 0.320 0.753 

Holey (p = 0.5) 0.331 1.199 0.247 

Holey (p = 0.8) 0.368 -0.050 0.961 

Gaussian  

(surv. prob. = 0.1) 
0.650 -9.66 <0.01 

Gaussian  

(surv. prob. = 0.5) 
0.731 -12.416 <0.01 

Drift 0.794 -14.552 <0.01 

* degrees of freedom = 17.275 
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Figure S1. Model flow diagram for HL and gaussian landscapes  562 
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Figure S2. Distribution of 450000 random correlations generated using the LKJ Onion method with 563 

k = 10.   564 
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Figure S3. PRISMA diagram for studies and estimates included in taxonomic analyses. 565 

  566 
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 567 

Figure S4. Single population comparisons of population evolution over 100 generations under drift 568 

(A – C), on a Gaussian landscape (D – F), and on a holey landscape (G – I). Arrow heads in A, B, D, E, 569 

G, and H indicate the direction of evolutionary change at every second generation. Evolutionary 570 

change in the average values for traits 1 and 2 (A, D, and G; note the different scales for axes) show 571 

little change for either drift and on a Gaussian landscape. In contrast, the population shows 572 

substantial and directional change in trait values on a holey landscape (G). This suggests the 573 

population is moving between holes in G but is restricted to a local optimum in D. The first and 574 

second eigenvalues (λ1 & λ2) show little total change due to drift (B), consistent decreases on a 575 

Gaussian landscape (E), and larger changes—including overall increases—on a holey landscape (H). 576 

This is consistent with the overall compression of variance reported elsewhere in the main and 577 

supplemental results. The bivariate genetic correlation between the first two traits shows little 578 

directional change under either drift of on holey landscapes (C and I) but rapid absolute increase 579 

followed by becoming static on a Gaussian landscape (F). As was the case for eigenvalues (E), this is 580 

consistent with stabilizing selection at a local optimum. These results are consistent across multiple 581 

runs, though exact trajectories vary and the sign of genetic correlations is equally likely to be 582 

positive as negative.   583 
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Figure S5. Variation was more evenly distributed across dimensions when populations evolved on Gaussian landscapes or due solely to 584 

drift. Consequently, less total variation was present in the first dimension (Table S4). 585 
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Figure S6. The total genetic variation present after 100 generations in each of six modeling conditions and across 250 simulations. 586 

Selection on Gaussian surfaces led to a significant reduction in the amount of variation present (Table S5). 587 
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Figure S7. Multivariate evolvability after 100 generations in each of six modeling conditions and across 250 simulations. Selection on 588 

Gaussian surfaces led to a significant reduction in evolvability (Table S6). 589 
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Figure S8. Multivariate autonomy after 100 generations in each of six modeling conditions and across 250 simulations. Selection on 590 

Gaussian surfaces led to a significant reduction in autonomy (Table S7).591 
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Figure S9. 𝜆2 𝜆1⁄  after selection on Gaussian surfaces remained high regardless of starting 592 

parameters (Table S8).  593 
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Figure S10. 𝜆2 𝜆1⁄  after evolution due to drift remained high regardless of starting parameters 594 

(Table S9).  595 
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Figure S11. 𝜆2 𝜆1⁄  after evolution on holey landscapes remained low regardless of starting 596 

parameters (Table S10). 597 
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