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ABSTRACT An in-depth understanding of microbial function and the division of ecological niches 11 
requires accurate delineation and identification of microbes at a fine taxonomic resolution. 12 
Microbial phylotypes are typically defined using a 97% small subunit (16S) rRNA threshold. 13 
However, increasing evidence has demonstrated the ubiquitous presence of taxonomic units of 14 
distinct functions within phylotypes. These so-called sequence-discrete populations (SDPs) have 15 
used to be mainly delineated by disjunct sequence similarity at the whole-genome level. However, 16 
gene markers that could accurately identify and quantify SDPs are lacking in microbial community 17 
studies. Here we developed a pipeline to screen single-copy protein-coding genes that could 18 
accurately characterize SDP diversity via amplicon sequencing of microbial communities. Fifteen 19 
candidate marker genes were evaluated using three criteria (extent of sequence divergence, 20 
phylogenetic accuracy, and conservation of primer regions) and the selected genes were subject to 21 
test the efficiency in differentiating SDPs within Gilliamella, a core honeybee gut microbial 22 
phylotype, as a proof-of-concept. The results showed that the 16S V4 region failed to report 23 
accurate SDP diversities due to low taxonomic resolution and changing copy numbers. In contrast, 24 
the single-copy genes recommended by our pipeline were able to successfully quantify Gilliamella 25 
SDPs for both mock samples and honeybee guts, with results highly consistent with those of 26 
metagenomics. The pipeline developed in this study is expected to identify single-copy protein 27 
coding genes capable of accurately quantifying diverse bacterial communities at the SDP level.  28 
 29 
IMPORTANCE Microbial communities can be distinguished by discrete genetic and ecological 30 
characteristics. These sequence-discrete populations are foundational for investigating the 31 
composition and functional structures of microbial communities at high resolution. In this study, we 32 
screened for reliable single-copy protein-coding marker genes to identify sequence-discrete 33 
populations through our pipeline. Using marker gene amplicon sequencing, we could accurately and 34 
efficiently delineate the population diversity in microbial communities. These results suggest that 35 
single copy protein-coding genes can be an accurate, quantitative and economical alternative for 36 
characterizing population diversity. Moreover, the feasibility of a gene as marker for any bacterial 37 
population identification can be quickly evaluated by the pipeline proposed here.  38 
 39 
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 41 
INTRODUCTION 42 

Accurate identification of distinct functional units in natural bacterial communities is crucial in 43 
understanding their ecological roles, interactions within the network, as well as the fine-scale 44 
composition and dynamic changes within the whole community. As a rule of thumb, a bacterial 45 
phylotype is often defined by grouping strains that share a sequence identify greater than 97% for a 46 
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selected fragment of the small subunit (16S) rRNA gene [1]. However, increasing evidence has 47 
indicated that a bacterial phylotype may contain multiple finer lineages, each showing distinct 48 
biological traits. For example, closely related enterotoxigenic Escherichia coli (ETEC) isolates 49 
form discrete lineages with consistently definable variations in virulence profiles [2]. Such intra-50 
phylotype lineages could be delineated based on divergence in genomic sequences and phylogenetic 51 
inferences. These finer subdivisions of phylotypes are called sequence-discrete populations (SDPs), 52 
which typified by genetic and genealogical discontinuity from the rest of the community, and are 53 
delineated by overall sequence divergence at the whole-genome level [3-5]. A broad comparison of 54 
90,000 bacterial genomic sequences, with a close examination of pairwise genomic similarities in 55 
natural bacterial communities, has proved the pervasive discontinuity in genetic similarity below 56 
and above SDPs [3]. Bacteria in the same SDP normally show less than ca. 5% variation in whole-57 
genome sequences. This genetic divergence is much less than those among strains of the same 58 
phylotype (ca. 30%) [6]. With respect to habitats, specific SDPs are likely ubiquitous in various 59 
environments, such as human and animal guts [5, 7, 8], freshwater [9], ocean [10] and soil [11]. 60 
Therefore, SDPs are probably better than phylotypes, as taxonomic units that represent functional 61 
entities in bacterial communities, which are likely shaped by ecological pressure and evolutionary 62 
selection. As such, SDPs are important units of microbial diversity and should be considered as 63 
baseline information for investing crucial questions, such as how do bacterial populations interact 64 
and evolve within communities [4].  65 

Despite the essential nature of accurate SDP identification, a rapid and accurate method that can 66 
trace SDP boundaries is still lacking, especially with regards to the selection of proper markers for 67 
evaluating sequence divergence. It is obvious that genetic divergence among bacterial strains is 68 
dependent on which genes are compared. We now understand that the commonly used 16S gene 69 
cannot generally provide sufficient resolution to characterize SDP diversity [12, 13]. For example, 70 
in cases where the SDPs show a ~5-10% genome-wide divergence, they varied mostly merely < 0.1% 71 
in the 16S sequences [14]. Moreover, the copy number of the 16S gene may vary significantly 72 
among phylotypes or even among strains of the same phylotype, making quantitative 73 
characterization of bacterial community a challenging, if not impossible, task [15, 16]. The 16S was 74 
selected for phylotype delineation years ago because it has conserved primer sites that flank 75 
relatively variable regions that made it easy to sequence with Sanger technology. Currently, much 76 
effort has been put into developing genes or gene segments that can be easily sequenced, and that 77 
vary enough to serve as practical proxies for SDP delineation [17-19]. However, a systematic 78 
evaluation of the validity and performance of such genes in SDP delineation, which includes the 79 
rapidly increasing but heterogeneously sampled database, has not been carried out.  80 

Fortunately, recent developments in microbial genomics show a promising solution to 81 
complement the coverage of bacterial genomes. The number of sequenced genomes of various 82 
bacterial lineages has been growing rapidly. For example, the Genomes OnLine Database (GOLD) 83 
now contains 437,099 bacterial genomes, the majority of which (397,945) are uncultured, 84 
representing host-associated, environmental and engineered ecosystems [20]. The ever-growing 85 
bacterial genome dataset offers a great opportunity to screen phylogenetically informative genes 86 
that show good performance in taxonomic delineation, including those capable of quantitatively 87 
charactering bacterial communities at the SDP level [21, 22]. For instance, Wu and colleagues 88 
identified 114 PhyEco universal markers for all bacteria [23]. From these universal markers, 15 89 
single-copy protein-coding genes were successfully applied in estimating species abundances using 90 
shotgun metagenomic data [24]. On the other hand, growing numbers of genomes and 91 
metagenomes produced for particular bacterial communities or taxonomic groups allow for 92 
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comprehensive characterization of SDP diversity within focal environments and bacterial groups. 93 
Taking social bee gut microbiota as an example, diverse strains derived from major honeybee hosts 94 
have been isolated and deep-sequenced [25], including well-covered SDPs of nearly all core gut 95 
bacterial phylotypes [5, 26, 27]. Thus, the relatively complete genome dataset provides a genome-96 
wide-based gold standard for defining SDPs for the honeybee core bacteria. 97 

In the present study, we developed a pipeline to screen potential marker genes capable of 98 
accurate identification and quantification of SDP diversity. We used the core bacterial phylotype 99 
Gilliamella derived from the eastern honeybee Apis cerana as a proof of concept, and delineated 100 
Gilliamella SDPs based on a set of comprehensive genome sequences. We further screened 15 101 
single-copy protein-coding genes, which are present in all bacteria, to identify candidate marker 102 
genes capable of differentiating the defined Gilliamella SDPs. Important characteristics such as the 103 
level of sequence divergence, phylogenetic robustness, and the presence of conservative primer 104 
regions, are considered in marker gene screening. Finally, we applied the candidate markers in 105 
amplicon sequencing of both bacterial mock samples and real honeybee guts to verify their 106 
efficiency in SDP profiling (Fig. 1). The markers we identified could accurately, consistently and 107 
quantitatively capture SDP diversity.  108 
 109 
RESULTS 110 

A comprehensive genome reference database for honeybee gut bacteria. A comprehensive 111 
genome reference database was constructed for honeybee gut bacteria (Table S1). A total of 242 112 
genomes were included, covering 103 isolates from A. cerana and 139 from A. mellifera. SDPs 113 
were identified for the core gut bacterial phylotypes using these reference genomes. SDPs differed 114 
between honeybee species, which is consistent with previous studies [27, 28]. Within A. cerana 115 
phylotypes, 5 SDPs were identified for Gilliamella (Gillia, n=65), 2 for Bifidobacterium (Bifido, 116 
n=9), 1 for Lactobacillus Firm5 (Firm5, n=6), 1 for Apibacter (Apib, n=16) and 2 for Snodgrassella 117 
(Snod, n=7). Within A. mellifera phylotypes, 6 SDPs were identified for Gillia (n=65), 9 for Bifido 118 
(n=19), 2 for Lactobacillus Firm4 (Firm4, n=2), 6 for Firm5 (n=18) and 2 for Snod (n=35) (Table 119 
S1). These SDPs delineated by genomes were used as references for subsequent taxonomic 120 
assignments for the 16S, marker gene, or metagenome-based SDP identifications.  121 
 122 
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 123 
 124 
FIG 1 Screening marker genes suitable for SDP discrimination and quantification. (A) SDPs are identified for gut 125 
bacterial phylotypes based on phylogenetic relationships and genome-wide pairwise average nucleotide identities 126 
(gANI). (B) A candidate marker gene for SDP discrimination is selected from a set of universal and single-copy 127 
genes based on sequence variation, phylogenetic relationship and well-conserved regions for primer design. (C) 128 
The performance of marker gene amplicon sequencing (MGAS) on SDP identification and quantification is 129 
validated and compared as characterized using the mock samples and gut gut communities. 130 
 131 

Single-copy marker genes showed higher sequence variations at the SDP level than the 132 
16S gene. Sufficient sequence variation is crucial for high resolution discrimination of bacterial 133 
SDPs. Here we compared the average Shannon entropy (ASE) between the whole-16S and the 15 134 
single-copy marker genes. Our results clearly showed that the marker genes had much higher ASEs 135 
at both phylotype and SDP levels compared to those of the 16S (Fig. 2A). The regional difference 136 
in the variation levels between 16S and selected marker genes was also compared along the full 137 
gene length. A slide-window (20 bp) ASE analysis showed that although several spikes of variable 138 
regions were identified along the 16S gene, with the highest variable region corresponded to part of 139 
the classic V3 region, its regional ASEs were generally lower compared to marker genes, e.g., NusA, 140 
PTH and frr (Fig. 2B; Fig. S1).  141 

Because phylogenetic placement of the query sequence is a critical step in our SDP 142 
identification method, each marker gene will need to first produce a “correct” phylogeny for the 143 
phylotype in question. Therefore, we further examined whether each of the 15 marker genes could 144 
produce the same SDP phylogeny as inferred from whole-genome sequences of Gilliamella. Here, 145 
the tree based on all 65 A. cerana Gilliamella genomes was used as the gold standard. The results 146 
showed that all 15 marker genes but rnhB reconstructed the SDP phylogeny, with all strains 147 
assigned to corresponding SDPs (Fig. S2). On the rnhB gene tree, two Gilliamella genomes were 148 
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misplaced from SDP Acer_Gillia_4 to Acer_Gillia_2, which was likely due to a higher sequence 149 
similarity between these two SDPs at a value of 90.93% ± 0.18 SD comparing to that between other 150 
SDPs (79.98% ± 1.89 SD). Therefore, rnhB was subsequently excluded from further screening. 151 

For the 14 remaining marker genes, we further explored for regions that were suitable for 152 
amplicon sequencing, based on the presence of conserved primer regions flanking the hyper-153 
variable region. The RimM gene lacked hyper variable regions across the full gene length (Fig. S1), 154 
while some other genes (murB, RecR, miaA, RbfA, RibF, RuvA, RsfS and YebY) did not demonstrate 155 
promising conserved regions for primer design. These genes were then excluded from the candidate 156 
gene pool. The 5 remaining candidates (frr, NusA, PTH, truB and smpB) all had a hyper-variable 157 
region of ~200-550 bp that was flanked by conservative primer regions. Among them, frr, NusA 158 
and PTH produced an amplicon of ~200 bp (Fig. 2B), which could be thoroughly sequenced with 159 
most current shotgun sequencing methods (e.g., PE100 or PE150). These 3 genes were then chosen 160 
for the final test for their performance in SDP discrimination in both identity and quantity, using 161 
Gilliamella mock samples and real honeybee guts. 162 

 163 

 164 
FIG 2 Marker genes are highly variable among SDPs. (A) Average Shannon entropy of the 15 marker genes and 165 
the 16S gene at both phylotype and SDP levels of honey bee gut bacteria. Numbers in brackets for each of the 166 
SDP groups indicate the number of strains examined for that specific group. (B) The Shannon entropy across 16S 167 
and candidate marker genes of all A. cerana Gilliamella. The Shannon entropy value is subsequently averaged by 168 
a 20-bp slide-window at a 5-bp step. Gray shadows depict conserved regions optimal for primer-binding sites and 169 
blue shadows are considered as hypervariable regions in this study. Dash lines represent the mean Shannon 170 
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entropy values cross all sequences. Gray lines depict the classic variable regions of the 16S gene. Apib: Apibacter; 171 
Bifido: Bifidobacterium; Firm5: Lactobacillus Firm5; Gillia: Gilliamella; Snod: Snodgrassella alvi. 172 
 173 

Marker gene amplicon sequencing (MGAS) showed high accuracy, sensitivity and 174 
repeatability in SDP profiling of mock samples. Mock samples contained varied proportions of 175 
the representative strain cultures of the 5 Gilliamella SDPs. These samples were extracted for DNA 176 
and amplified for the hyper-variable regions of the 3 candidate marker genes (frr, NusA and PTH). 177 
Twenty-four barcoded amplicons were pooled and shotgun sequenced for ca. 1 Gb data (ca. 2.5 178 
million reads). Each mock sample was sequenced three times. An average of 73,462, 86,467 and 179 
113,498 reads per sample was generated for frr, NusA and PTH, respectively. 180 

The results of MGAS showed a high level of repeatability across the three replicates, where the 181 
average ICC(C,1) > 0.9, except for PTH, which had an ICC(C,1) of 0.752 among samples with 182 
equal proportion of bacterial DNA (Fig. 3A; Fig. S4C). With regards to detection accuracy, MGAS 183 
correctly detected all bacterial members present in 22/24 samples, while two samples (S03 and S04) 184 
showed false positive results, which was probably derived from sample contamination or 185 
sequencing error (Fig. 3B). Because the sensitivity of amplicon sequencing was affected by 186 
sequencing depth, we calculated the minimum read numbers required to detect members at low 187 
abundances, using rarefaction curves (Fig. S5). The results suggested that strains with a relative 188 
abundance of 1% could be detected by a minimum of ca. 1,123, 2,953 and 5,034 reads for frr, NusA 189 
and PTH (equivalent to 0.49, 1.29 and 2.44 Mb data per sample), respectively. Accordingly, lower 190 
abundance would require deeper sequencing. At a relative abundance of 0.02%, approximately 191 
17,778, 18,518 and 22,222 reads (7.75, 8.07 and 10.76 Mb data) were required for frr, NusA and 192 
PTH, respectively (Fig. 3D; Fig. S5). The sequencing depth was generally sufficient for SDP 193 
detection in our study. Among the 216 sequenced samples, only two samples were sequenced with 194 
only 963 (frr) and 2,348 (PTH) reads, respectively, and failed in identifying corresponding SDP 195 
members at the lowest proportions (1% and 0.1%, respectively) due to insufficient sequencing 196 
depth.  197 

In addition to accurately identify Gilliamella SDPs, all three marker genes performed well in 198 
quantifying relative abundances for mock samples. The relative abundances revealed by amplicon 199 
reads were highly congruent with corresponding mock proportions in bacterial mock samples, with 200 
the average R2 values of 0.91, 0.74 and 0.66 for frr, NusA and PTH, respectively (p < 2.2e-16, Fig. 201 
3C). The DNA mock samples yielded similar results, with the average R2 values of 0.99, 0.91 and 202 
0.99, for frr, NusA and PTH, respectively (Fig. S4B). Taken together, the MGAS method showed 203 
high levels of accuracy, sensitivity and repeatability in characterizing SDP compositions, in both 204 
taxonomic identity and relative abundance. 205 
 206 
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 207 
 208 

FIG 3 MGAS accurately identifies A. cerana Gilliamella SDPs. (A) Intraclass correlation coefficient (ICC) of 209 
relative abundance among the three replicates of MGAS samples. The ICC is calculated using the two-way mixed 210 
effects model with consistency (C) as the relationship among replicates, and single (1) result as the unit of 211 
measurement, i.e., ICC(C, 1). (B) Relative SDP abundances in mock samples revealed by marker gene sequencing. 212 
The results shown in the heatmap are the logarithms of the relative abundances of the five representative strains of 213 
the five SDPs of A. cerana Gilliamella. Grey box indicates a relative abundance at zero. False positive results are 214 
framed in red. (C) Spearman correlation of SDP abundances in A. cerana Gilliamella communities revealed by 215 
sequencing against mock samples. p ＜2.2e-16. The black line presents the linear regression of the MGAS results 216 
against SDP abundances in mock samples. The blue solid and gray dashed lines represent a 1: 1 line and the fitted 217 
exponential regression (with 95 % confidence interval shown in gray shade), respectively. (D) Minimum read 218 
numbers required for detecting members at low abundances. 219 
 220 

MGAS performed equally well as metagenomics in characterizing honeybee gut SDP 221 
diversity. To examine the performance of the MGAS method in characterizing honeybee gut 222 
microbiota, we used frr (Fig. 4) and PTH (Fig. S6) genes to calculate Gilliamella SDP diversities 223 
for the 12 A. cerana workers from Sichuan and Taiwan, China. The MGAS was able to assign 224 
strains to the correct SDP at accurate abundance for real gut samples, with results were highly 225 
congruent with those from metagenomic sequencing (with R2 = 0.99 for frr and 0.97 for PTH, p < 226 
2.2e-16, Fig. 4B; Fig. S6B). Both results revealed that most individual bees were dominated by two 227 
or three Gilliamella SDPs, yet with significant variations in dominant members and compositions 228 
among individuals and across geographical locations (Fig. 4A). Gillia_Acer_2 was the dominant 229 
SDP in most of the sequenced bees, which was found in 11 out of the 12 samples, with 10 bearing 230 
relative abundances of 48.06 - 98.37% (Fig. 4A). Both methods showed congruent results in alpha 231 
diversity (p = 0.82 and 0.79 for MGAS and metagenomics sequencing, respectively, Wilcoxon 232 
rank-sum test, Fig. 4C). At the beta diversity level, the principal coordinate analysis (PCoA) based 233 
on Bray-Curtis dissimilarity revealed that the gut bacterial communities from bees of Sichuan and 234 
Taiwan formed two distinct clusters, which separated along the first axis (Fig. 4D). This result was 235 
again consistent between the MGAS and metagenomic methods (Adonis PERMANOVA, R2 = 236 
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0.056, p = 0.204 for MGAS and R2 = 0.096, p = 0.134 for metagenomics). Thus, the performance of 237 
SDP profiling using MGAS was parallel to the metagenomic gold standard in microbial community 238 
studies. 239 
 240 

 241 
 242 
FIG 4 MGAS shows high congruence to metagenomic sequencing at SDP-level analysis. (A) Relative 243 
abundances of Gilliamella SDPs revealed by MGAS (frr) and metagenomics sequencing of A. cerana gut 244 
communities. (B) Spearman correlation coefficient between MGAS and metagenomics results, with R2 = 0.99, p < 245 
2.2e-16. The black line presents the linear regression of the MGAS results in SDP abundances against those of 246 
metagenomics. The blue solid and gray dashed lines represent a 1: 1 line and the fitted exponential regression 247 
(with 95 % confidence interval shown in gray shade), respectively. (C) Shannon diversity index of SDP 248 
frequencies for bee guts from two locations calculated by MGAS (left panel) and metagenomic sequencing (right 249 
panel). The two methods showed no significant difference, with the p-value of 0.70 and 0.82 in SC and TW, 250 
respectively, by Wilcoxon rank-sum test. (D) Principal coordinate analysis (PCoA) based on Bray-Curtis 251 
dissimilarity of SDP compositions of honey bee workers from Sichuan and Taiwan using MGAS (left panel, 252 
Adonis PERMANOVA, R2 = 0.056, p = 0.204) and metagenomic sequencing (right panel, Adonis 253 
PERMANOVA, R2 = 0.096, p = 0.134). Each point represents the value for an individual bee and the color 254 
represent the location (Sichuan or Taiwan) of each bee. The shaded ellipses represent 95% confidence intervals on 255 
the ordination. (E) Relative abundances of Gilliamella OTUs in the gut microbiota of A. cerana assigned by 256 
clustering at 97% or 99% thresholds for 16S V4 and frr. The result shown in the heatmap are the logarithms of the 257 
relative abundances of the OTUs or five SDPs. Individual bees are marked to right of each row. Grey box 258 
indicates a relative abundance at zero. 259 
 260 

The 16S V4 region was also used to determine the Gilliamella SDP compositions for the 6 bee 261 
gut samples from Sichuan. We applied operational taxonomic unit (OTU) clustering based on 262 
sequence similarity at 97% and 99% identity thresholds, which are commonly adopted for 263 
surveying phylotype and intra-phylotype microbial diversities, respectively [12, 29], to assess the 264 
efficacy of 16S in SDP profiling. 16S amplicon sequencing resulted in 8 and 10 OTUs at 97% and 265 
99% thresholds, respectively, with a frequency cut off at > 100. The identified OTU numbers 266 
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differed from those of the MGAS results at the same sequence similarity thresholds (Fig. 4E). 267 
Alarmingly, 16S amplicons failed to assign OTUs to the correct SDPs via blast. And the relative 268 
OTU proportions revealed by 16S disagreed with those from MGAS, where the numbers of 269 
dominant OTUs (> 1%) revealed by MGAS were more congruent to those from metagenomics. The 270 
improved performance with the MGAS method in characterizing SDP diversity is likely due to 271 
greater sequence divergence of the marker genes. For instance, the average pairwise inter-SDPs 272 
sequence similarity in the frr hyper-variable region was significantly lower (90.92% ± 3.18, n = 65) 273 
than that of the 16S rRNA gene V4 region (99.95% ± 0.65, n = 44) (Wilcoxon rank-sum test, p < 274 
2e-16).  275 
 276 
SUMMARY AND DISCUSSION 277 

We developed a pipeline to identify reliable marker genes for accurate identification and 278 
quantification of SDPs from bacterial communities. Three important criteria were applied in the 279 
assessment: the extent of sequence divergence, phylogenetic accuracy, and the presence of flanking 280 
conservative primer regions. Single-copy protein-coding genes identified by our pipeline were 281 
applied as marker genes in SDP quantification of honeybee gut microbiota, successfully producing 282 
results consistent with those from metagenomics, which were used as the gold standard. Conversely, 283 
we showed that the widely used 16S contained limited sequence divergence within phylotypes, 284 
failing to provide sufficient resolution in differentiating SDPs. As a result, 16S V4 amplicon 285 
sequencing cannot reflect fine scale bacterial diversity for the community. Consequently, dominant 286 
OTUs delineated by 16S at 97% or 99% thresholds significantly differed from the defined SDPs. 287 
On the other hand, the OTUs of single-copy protein-coding genes screened out by our pipeline were 288 
successfully assigned to the correct SDPs, and the numbers of dominant OTUs showed more 289 
congruent results to those from metagenomics. 290 

Compared with whole-genome shotgun sequencing, amplicon sequencing of single-copy 291 
protein-coding genes provides an alternative solution to characterize SDP diversity in an accurate, 292 
quantitative and economical way. We address that not every single copy protein-coding gene is 293 
efficacious in SDP quantification. The candidate gene must meet all three criteria integrated in our 294 
pipeline to be a good marker gene. For a phylotype that is well represented by genomes of various 295 
lineages, all single-copy genes, including protein-coding genes, can be evaluated by our pipeline. In 296 
this case, we expect dozens to hundreds of proper marker genes to be filtered out. On the other hand, 297 
a small set of core single-copy protein-copy genes that are determined to be universally present 298 
among known bacteria, such as the 15 marker genes tested in this study, will likely provide 299 
candidate genes suitable for accurate characterization of SDP diversity for less known bacterial taxa.  300 

Accurate identification of the SDP composition will also facilitate the prediction of the 301 
functional capacity of microbial communities. Functional attributes of a given bacterial lineage are 302 
strongly correlated to its phylogenetic position [30]. Therefore, various approaches, e.g., PICRUTs 303 
[31], have been developed to predict potential functions of a given microbial community based on 304 
phylogenetic profiles of bacterial members. However, 16S sequences are employed in most current 305 
programs for phylogenetic reconstruction. As demonstrated in this study, single-copy protein-306 
coding genes identified by our pipeline show better fidelity in revealing phylogenetic relationships 307 
for the focal phylotype. Therefore, we anticipate that function prediction for microbial communities 308 
will be further improved by integrating single-copy protein-coding genes and the screening pipeline 309 
described here. 310 
 311 

MATERIALS AND METHODS 312 
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Genome references of core gut bacteria of honeybees. A total of 242 bacterial genomes 313 
associated with A. mellifera and A. cerana were downloaded from the NCBI genome database 314 
(Table S1). These 242 genomes were used as the reference database of honeybee gut bacteria, 315 
which comprised the 6 major phylotypes: Apibacter (n=16), Bifidobacterium (n=28), Lactobacillus 316 
Firm4 (n=2), Lactobacillus Firm5 (n=24), Gilliamella (n=130) and Snodgrassella (n=42). 317 

SDP delineation for honeybee core phylotypes. Protein-coding genes of all sequenced 318 
genomes were annotated using Prokka (https://github.com/tseemann/prokka) [32]. Core genes, 319 
which were defined as being shared by > 99% strains of a given phylotype, were identified using 320 
Roary (version 3.13.0) [33] with the parameter -blastp 75. Multiple sequence alignments were 321 
carried out using MAFFT (version v7.467, https://github.com/The-Bioinformatics-322 
Group/Albiorix/wiki/mafft) [34]. Phylogenetic trees were constructed using core single-copy genes 323 
of each phylotype by RAxML (version 8.2.12, -x 12345 -N 1000 -p 12345 -f a -m GTRGAMMA) 324 
[35]. Phylogenies were visualized in R (version 3.6.0) using the package ggtree_v2.4.1 [36] or 325 
iTOL (version 6.1.1) [37]. Pairwise genome-wide average nucleotide identity (gANI) values were 326 
calculated using pyani (version 0.2.10; https://github.com/widdowquinn/pyani) [38]. A clade with a 327 
gANI ≥ 95% from its closest clade was defined as an SDP. 328 

Screening for candidate marker genes capable of discriminating Gilliamella SDPs. The 329 
fifteen universal single-copy maker genes (frr, NusA, PTH, RbfA, RecR, rnhB, RibF, RimM, RsfS, 330 
RuvA, smpB, truB, miaA, murB and YebY, listed in Table S2) [24] were evaluated as candidate 331 
genes. The sequences of candidate marker genes were retrieved by MIDAS (version 1.3.2) [24], 332 
whereas the 16S genes were retrieved from the reference genomes using an in-house script. The 333 
average Shannon entropy (ASE) of the full gene length was used to assess sequence variation 334 
between strains of inter- and intra-SDPs for all phylotypes, where the Shannon entropy for each 335 
nucleotide site across genomes in comparison was calculated using oligotyping (version 2.1) [39]. 336 

The phylotype Gilliamella, which contains the most genomes available for this study, was used 337 
as a proof of concept to examine the efficacy of marker genes in SDP differentiation. For each 338 
SDPs in phylotype Gilliamella, the Shannon entropy values were subsequently averaged for each 339 
20-bp slide-window with a 5-bp step to evaluate the regional genetic divergence along the full 340 
length of the marker genes. Pairwise sequence similarities were determined by Clustal Omega [40]. 341 

From the candidate genes, potential marker genes that may efficiently distinguish all known 342 
SDPs of the Gilliamella phylotype were screened. The following criteria were followed: 1) the 343 
marker genes should contain conservative regions flanking the hyper-variable region for designing 344 
primers enabling recovery target phylotype; 2) the amplicon length is between ~150-550 bps; 3) the 345 
amplified region is sufficiently variable to allow the discrimination of SDPs; and 4) the primers are 346 
specific to the focal phylotype to avoid off-target amplifications. The aforementioned 15 marker 347 
genes were subject to these criteria, and 5 of them (ffr, NusA, PTH, truB and smpB) were selected as 348 
potential markers for identifying SDPs of A. cerana Gilliamella. Among these, three genes (ffr, 349 
NusA and PTH) were subjected to further testing as a proof of concept, because their amplicon 350 
lengths were 206, 206 and 230 bp, respectively, which were ideal for current shotgun sequencing 351 
platforms. To increase the throughput and cost efficiency, 24 amplicons were pooled for one 352 
sequencing run. The 5’ end of both forward and reverse primers were tagged with 6-bp unique 353 
barcode sequences (see Table S3) to distinguish positive and negative DNA strains, and to 354 
differentiate samples. 355 

Bacterial mock samples. One representative strain from each of the five Gilliamella SDPs 356 
associated with A. cerana was cultured at 35°C and 5% CO2 for 48 h, on heart infusion agar (HIA) 357 
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medium containing 5% sheep’s blood [41]. To screen potential contaminations, the full-length 16S 358 
gene was amplified for each bacterial culture using universal primers 27F and 1492R [41] and was 359 
subject to Sanger sequencing. 16S sequences were checked against those of the reference strains for 360 
identification, before strains were mixed for mock samples. Each Gilliamella culture was adjusted 361 
to OD600 = 0.5. Twenty-four mock SDP communities were prepared by mixing up 2-5 of the 362 
representative strains at varied proportions. The compositions of the mock samples were set as: 363 
equal proportion of each of the five strains, equal proportion of four strains with the absence of one 364 
strain at a time, equal proportion of three strains with the absence of two randomly selected strains, 365 
and a series of varied compositions with relative abundances ranging from ca. 0.02% to 50%. DNA 366 
of the bacterial mixtures were extracted using a CTAB-based DNA extraction protocol followed by 367 
recovery in 10 mM Tris-EDTA buffer (1×TE, pH 7.4) and quantified using the Qubit® DNA Assay 368 
Kit on a Qubit® 3.0 Fluorometer (Life Technologies, CA, USA). Alternatively, genomic DNA of 369 
each of the five representative strain cultures was extracted separately and the mixed at varied 370 
compositions and proportions (see Table S4). 371 

SDP identification and quantification for mock samples using amplicon sequencing of the 372 
three marker genes. PCR amplification was performed for frr (frr-F 5’ 373 
GCTGAAGATGCAAGAAC and frr-R 5’ GCATCACGACGAATATT), NusA (NusA-F 5’ 374 
CTTGAAATTGAAGAACT and NusA-R 5’ GTACCTTGTTCAGCTAA), and PTH (PTH-F 5’ 375 
AAACTTATTGTAGG and PTH-R 5’ CCACTTAAATTCATAAA) for each mock sample with 376 
three replicates. Triplicate 50-μl reactions were carried out with 25 μl of 2 × Phanta Max Master 377 
Mix (Vazyme Biotech, Nanjing, China), 2 μl (each) of 10 μM primer, 19 μl of ddH2O, and 2 μl of 378 
template DNA. The thermocycling profile consisted of an initial 3-min denaturation at 95 °C, 35 379 
cycles of 15 s at 95 °C, 15 s at 52 °C for NusA and frr or at 42 °C for PTH, and 20 s at 72 °C and a 380 
final 10-min extension step at 72 °C. After being visualized on 2% agarose gels, DNA was purified 381 
using a gel extraction kit (Qiagen, Germany) and quantified using the Qubit® DNA Assay Kit on a 382 
Qubit® 3.0 Fluorometer. Barcoded amplicons of up to 24 mock samples were pooled together and 383 
subject to Illumina sequencing using a NovaSeq 6000 platform (PCR-free library, 150 PE) at 384 
Novogene (Beijing, China). Approximately 1 Gb of raw data were obtained from each pooled 385 
library (Table S5). 386 

The program fastq-multx (version 1.3.1. https://github.com/brwnj/fastq-multx) was employed 387 
to demultiplex sequencing reads based on barcode sequences. The 6-bp barcodes in reverse 388 
sequences were trimmed using Seqtk (https://github.com/lh3/seqtk). The demultiplexed paired-end 389 
reads were then analyzed in QIIME2 (version 2020.2. https://qiime2.org) [42]. A plugin DATA2 390 
[43] was used to denoise reads and to group sequences into amplicon sequence variants (ASVs). 391 
Individual ASVs were then taxonomically classified using blast (classify-consensus-blast) at a 97% 392 
identity threshold (Fig. S3) against the 3 marker genes (ffr, NusA and PTH) derived from the 393 
customized bee gut bacterial dataset. The relative abundance of each SDP (RASDP) was calculated 394 
as: RASDP = (NRSDP) / (NRGillia)*100, where NRSDP represents the number of reads mapped to the 395 
focal SDP and NRGillia represents the number of reads mapped to all Gilliamella SDPs. These 396 
estimated abundances were then compared to those of the mock samples. The performance of SDP 397 
profiling of the 3 marker genes was evaluated on the basis of accuracy, sensitivity and repeatability. 398 
Intraclass correlation coefficient (ICC) with a two way random/mixed (ICC(C,1) ) model was used 399 
to assess the repeatability of this method using SPSS (version 20.1) [44]. 400 

Rarefaction curves were plotted using identified SDP numbers against read numbers, which 401 
were used to infer the minimum read number required to detect strains at varied proportions. For 402 
each sample, ASVs with a depth <100 were filtered out. Rarefaction was performed using QIIME2 403 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2021. ; https://doi.org/10.1101/2021.10.22.465537doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465537
http://creativecommons.org/licenses/by-nc-nd/4.0/


with the plugin alpha-rarefaction and a sampling depth of 40,000 reads per sample and default 404 
parameters. Minimum read numbers for identifying SDPs with relative abundances of 0.02%, 1% 405 
and 20% were chosen manually. 406 

SDP identification and quantification for A. cerana gut microbiota using 16S, marker 407 
genes, and metagenome sequencing. Adult worker bees collected in Sichuan were used to 408 
quantify Gilliamella SDP diversity using three different methods (16S V4 region amplicon 409 
sequencing, MGAS and metagenomic sequencing). Bees were first cooled at 4 °C for 10 min. Then 410 
the entire guts were dissected from the abdomen using sterile forceps and DNA was extracted using 411 
a CTAB bead-beating protocol described previously [45].  412 

Firstly, the 16S V4 region was amplified for six bee guts from Sichuan and sequenced using an 413 
Illumina Hiseq X Ten platform (250-300 bp insert size, 250 PE) at BGI-Shenzhen (Shenzhen, 414 
China). Raw reads obtained for each sample were summarized in Table S6. Data quality control 415 
was performed using fastp (version 0.13.1, -q 20 -u 10 -w 16) [46]. The demultiplexed sequences 416 
were denoised and grouped into ASVs using an open reference method VSEARCH [47] embedded 417 
in QIIME 2. The taxonomic identification for ASVs was subsequently performed using the naive-418 
Bayesian classifier trained on the BGM-Db, a curated 16S reference database for the classification 419 
of honeybee and bumblebee gut bacteria [48]. A feature table and ASVs consisting of filtered 16S 420 
reads pertaining to Gilliamella was constructed. OTU clustering was performed at both 97% and 99% 421 
identity thresholds, respectively, using VSEARCH with cluster-features-de-novo method. 422 
Additionally, low-abundant OTUs comprising of <100 reads were removed. Taxonomic 423 
assignments for OTUs were performed using blast against the BGM-Db with SDP-level taxonomy. 424 
OTU composition heatmaps were generated based on relative abundances and visualized in R. 425 

Secondly, for each sample, the marker genes frr and PTH, which demonstrated the best and 426 
worst performances in accuracy and sensitivity, respectively, among the 3 marker genes, were 427 
applied following the same pipeline used in the mock samples. ASVs of the six sample from 428 
Sichuan were clustered into OTUs and filtered following the abovementioned 16S V4 pipeline. 429 
Taxonomic assignments for OTUs were performed by blast against frr sequences derived from the 430 
customized bee gut bacterial genome sequence database. 431 

Finally, metagenome sequencing of four bee (B0108, B0120, B0154 and B0174) guts was 432 
performed using an Illumina Hiseq X Ten platform (300-400 bp insert size, 150 PE) at BGI-433 
Shenzhen. Additional metagenomes of eight worker bee guts (BioProject PRJNA705951) were 434 
download from NCBI (Table S6). The metagenome sequencing was used as the gold standard for 435 
Gilliamella diversity distributed in the honeybee guts. Shotgun reads mapped to the A. cerana 436 
genome (GCF_001442555.1) using BWA aln (version 0.7.16a-r1181, -n 1) [49] were identified as 437 
host reads and subsequently excluded. We used the ‘run_midas.py species’ script in MIDAS with 438 
default parameters to estimate the relative abundances of SDPs for each sample. Finally, the results 439 
from MGAS were compared to those from metagenome sequencing to assess the performance of 440 
the marker genes. 441 

Data availability. Raw data from MGAS, 16S V4 amplicon and metagenomic sequencing have 442 
been submitted to NCBI under BioProject PRJNA772085. 443 
 444 
SUPPLEMENTAL MATERIAL 445 
FIG S1 The Shannon entropy across the remain marker genes of all A. cerana Gilliamella. The 446 
Shannon entropy value is subsequently averaged by a 20-bp slide-window at a 5-bp step. Dash lines 447 
represent the mean Shannon entropy values cross all sequences. 448 
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FIG S2 All but rnhB of the 15 marker genes produce five SDPs for A. cerana Gilliamella 449 
phylotype in concert with the whole-genome result. 450 
FIG S3 Histograms of average nucleotide identity values of the 3 marker genes from comparisons 451 
between strains belonging to the same SDPs (green) or different SDPs (red). Vertical black line 452 
indicates the threshold for bacterial SDPs taxonomy for the present method. 453 
FIG S4 MGAS accurately identifies the A. cerana Gilliamella SDPs in DNA mock samples. (A) 454 
Relative SDP abundances in mock samples revealed by MGAS. The results shown in the heatmap 455 
are the logarithms of the relative abundances percentage of the five representative strains of the five 456 
SDPs of A. cerana Gilliamella. Grey box indicates a relative abundance at zero. (B) Spearman 457 
correlation of SDP abundances in A. cerana Gillimella communities revealed by sequencing against 458 
mock samples, p < 2.2e-16. The black line presents the linear regression of the MGAS results 459 
against SDP abundances in mock samples. The blue solid and gray dashed lines represent a 1: 1 line 460 
and the fitted exponential regression (with 95 % confidence interval shown in gray shade), 461 
respectively. (C) Repeatability of relative abundance between replicates of DNA mock samples. n = 462 
6, ICC(C,1) is 0.936, 0.974 and 0.752 for frr, NusA and PTH genes, respectively. 463 
FIG S5 Rarefaction curves of detected bacterial SDPs in bacterial mock samples reach the 464 
saturation stage with increasing read numbers.  465 
FIG S6 Amplicon sequencing with the PTH gene showed high congruence to metagenomic 466 
sequencing at SDP-level analyses. (A) Relative abundances of Gilliamella SDPs revealed by 467 
MGAS (PTH gene) and metagenomics sequencing of A. cerana gut communities. (B) Spearman 468 
correlation coefficient between MGAS and metagenomics results, with R2 = 0.97, p < 2.2e-16. The 469 
black line presents the linear regression of the MGAS results in SDP abundances against those of 470 
metagenomics. The blue solid and gray dashed lines represent a 1: 1 line and the fitted exponential 471 
regression (with 95 % confidence interval shown in gray shade), respectively. 472 
TABLE S1 Information of the reference genomes. 473 
TABLE S2 Information of the marker genes. 474 
TABLE S3 List of barcode sequences. 475 
TABLE S4 Mixing ratio of mock samples. 476 
TABLE S5 Statistics of data outputs. 477 
TABLE S6 Summary of read processing and data obtained from marker gene, 16S V4 amplicon 478 
and metagenomic sequencing of honey bee guts. 479 
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 637 

 638 
FIG S1 The Shannon entropy across the remain marker genes of all A. cerana Gilliamella. The Shannon entropy 639 
value is subsequently averaged by a 20-bp slide-window at a 5-bp step. Dash lines represent the mean Shannon 640 
entropy values cross all sequences. 641 
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 644 

 645 
FIG S2 All but rnhB of the 15 marker genes produce five SDPs for A. cerana Gilliamella phylotype in concert 646 
with the whole-genome result. 647 
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 649 

 650 
FIG S3 Histograms of average nucleotide identity values of the 3 marker genes from comparisons between strains 651 
belonging to the same SDPs (green) or different SDPs (red). Vertical black line indicates the threshold for 652 
bacterial SDPs taxonomy for the present method. 653 
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 655 

 656 
 657 
FIG S4 MGAS accurately identifies the A. cerana Gilliamella SDPs in DNA mock samples. (A) Relative SDP 658 
abundances in mock samples revealed by MGAS. The results shown in the heatmap are the logarithms of the 659 
relative abundances percentage of the five representative strains of the five SDPs of A. cerana Gilliamella. Grey 660 
box indicates a relative abundance at zero. (B) Spearman correlation of SDP abundances in A. cerana Gillimella 661 
communities revealed by sequencing against mock samples, p < 2.2e-16. The black line presents the linear 662 
regression of the MGAS results against SDP abundances in mock samples. The blue solid and gray dashed lines 663 
represent a 1: 1 line and the fitted exponential regression (with 95 % confidence interval shown in gray shade), 664 
respectively. (C) Repeatability of relative abundance between replicates of DNA mock samples. n = 6, ICC(C,1) 665 
is 0.936, 0.974 and 0.752 for frr, NusA and PTH genes, respectively. 666 
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 668 
 669 
FIG S5 Rarefaction curves of detected bacterial SDPs in bacterial mock samples reach the saturation stage with 670 
increasing read numbers.  671 
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 674 
 675 

FIG S6 Amplicon sequencing with the PTH gene showed high congruence to metagenomic sequencing at SDP-676 
level analyses. (A) Relative abundances of Gilliamella SDPs revealed by MGAS (PTH gene) and metagenomics 677 
sequencing of A. cerana gut communities. (B) Spearman correlation coefficient between MGAS and 678 
metagenomics results, with R2 = 0.97, p < 2.2e-16. The black line presents the linear regression of the MGAS 679 
results in SDP abundances against those of metagenomics. The blue solid and gray dashed lines represent a 1: 1 680 
line and the fitted exponential regression (with 95 % confidence interval shown in gray shade), respectively. 681 
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TABLE S1 Information of the reference genomes. 683 

684 
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(Continued Table S1)685 
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TABLE S2 Information of the marker genes. 

PhyEco marker Gene Length/bp 
B000079 frr 558 
B000041 NusA 1,476 
B000103 PTH 642 
B000063 RbfA 378 
B000080 RecR 606 
B000039 rnhB 627 
B000096 RibF 939 
B000086 RimM 531 
B000062 RsfS 315 
B000071 RuvA 609 
B000065 smpB 483 
B000032 truB 921 
B000082 miaA 912 
B000114 murB 1,011 
B000081 YebY 468 
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TABLE S3 List of barcode sequences. 

Barcode NO. Forward seq (5'to 3') Reverse seq (5'to 3') 
B01 ATCACG ACTGAT 
B02 CGATGT ATGAGC 
B03 TTAGGC ATTCCT 
B04 TGACCA CAAAAG 
B05 ACAGTG CAACTA 
B06 GCCAAT CACCGG 
B07 CAGATC CACGAT 
B08 ACTTGA CACTCA 
B09 GATCAG CAGGCG 
B10 TAGCTT CATGGC 
B11 GGCTAC CATTTT 
B12 CTTGTA CCAACA 
B13 AGTCAA CGGAAT 
B14 AGTTCC CTAGCT 
B15 ATGTCA CTATAC 
B16 CCGTCC CTCAGA 
B17 GTAGAG GACGAC 
B18 GTCCGC TAATCG 
B19 GTGAAA TACAGC 
B20 GTGGCC TATAAT 
B21 GTTTCG TCATTC 
B22 CGTACG TCCCGA 
B23 GAGTGG TCGAAG 
B24 GGTAGC TCGGCA 
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TABLE S4 Mixing ratio of mock samples. 

SampleID Mixing ratio Barcode NO. 
B2776 B2889 B3801 B3172 B3788 

S01 20.00  20.00  20.00 20.00 20.00 B01 
S02 25.00  25.00  0.00 25.00 25.00 B02 
S03 0.00  25.00  25.00 25.00 25.00 B03 
S04 25.00  0.00  25.00 25.00 25.00 B04 
S05 25.00  25.00  25.00 0.00 25.00 B05 
S06 25.00  25.00  25.00 25.00 0.00 B06 
S07 33.33  33.33  0.00 33.33 0.00 B07 
S08 0.00  33.33  0.00 33.33 33.33 B08 
S09 0.00  0.00  33.33 33.33 33.33 B09 
S10 33.33  0.00  33.33 0.00 33.33 B10 
S11 33.33  33.33  33.33 0.00 0.00 B11 
S12 24.39  24.39  2.44 24.39 24.39 B12 
S13 24.94  24.94  0.25 24.94 24.94 B13 
S14 24.99  24.99  0.02 24.99 24.99 B14 
S15 20.00  20.00  20.00 20.00 20.00 B15 
S16 1.00  9.00  50.00 10.00 30.00 B16 
S17 50.00  1.00  30.00 9.00 10.00 B17 
S18 30.00  50.00  10.00 1.00 9.00 B18 
S19 10.00  30.00  9.00 50.00 1.00 B19 
S20 9.00  10.00  1.00 30.00 50.00 B20 
S21 0.00  0.00  10.00 90.00 0.00 B21 
S22 0.00  0.00  1.00 99.00 0.00 B22 
S23 0.00  0.00  0.10 99.90 0.00 B23 
S24 0.00  0.00  50.00 50.00 0.00 B24 
D01 20.00  20.00  20.00 20.00 20.00 B01 
D02 20.00  20.00  20.00 20.00 20.00 B02 
D03 20.00  20.00  20.00 20.00 20.00 B03 
D04 20.00  20.00  20.00 20.00 20.00 B04 
D05 20.00  20.00  20.00 20.00 20.00 B05 
D06 20.00  20.00  20.00 20.00 20.00 B06 
D07 90.00  9.00  0.90 0.09 0.01 B07 
D08 9.00  0.90  0.09 0.01 90.00 B08 
D09 0.90  0.09  0.01 90.00 9.00 B09 
D10 0.09  0.01  90.00 9.00 0.90 B10 
D11 0.09  0.01  90.00 9.00 0.90 B11 
D12 0.01  90.00  9.00 0.90 0.09 B12 
D13 90.00  9.00  0.90 0.09 0.01 B13 
D14 9.00  0.90  0.09 0.01 90.00 B14 
D15 0.90  0.09  0.01 90.00 9.00 B15 
D16 0.09  0.01  90.00 9.00 0.90 B16 
D17 0.09  0.01  90.00 9.00 0.90 B17 
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(Continued Table S4) 
D18 0.01  90.00  9.00 0.90 0.09 B18 
D19 0.00  0.00  1.64 16.39 81.97 B19 
D20 0.00  0.00  1.64 16.39 81.97 B20 
D21 0.00  1.64  16.39 81.97 0.00 B21 
D22 1.64  16.39  81.97 0.00 0.00 B22 
D23 16.39  81.97  0.00 0.00 1.64 B23 
D24 81.97  0.00  0.00 1.64 16.39 B24 
Note: B2776, B2889, B3801, B3172 and B3788 are the representative strain of Acer_Giliia_1 
to Acer_Giliia_5, respectively. 
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TABLE S5 Statistics of data outputs. 

LibraryID Raw 
reads 

Clean 
reads 

Raw 
base/G 

Clean 
base/G 

Effective 
rate/% Q20/% Q30/% GC 

content/% 
f1S01-f1S24 2,910,358  2,904,839  0.87 0.87 99.81 98.96 96.8 42.92
f2S01-f2S24 4,370,025  4,362,026  1.31 1.31 99.82 98.99 96.88 42.85
f3S01-f3S24 3,971,727  3,966,181  1.19 1.19 99.86 98.34 94.65 42.84
N1S01-N1S24 3,101,708  3,097,334  0.93 0.93 99.86 98.83 96.33 38.67
N2S01-N2S24 3,455,304  3,451,312  1.04 1.04 99.88 97.96 93.59 38.66
N3S01-N3S24 2,893,355  2,889,594  0.87 0.87 99.87 97.8 93.25 38.64
P1S01-P1S24 5,446,708  5,439,697  1.63 1.63 99.87 99.1 96.48 36.74
P2S01-P2S24 2,698,030  2,694,490  0.81 0.81 99.87 98.97 96.29 36.88
P3S01-P3S24 3,377,356  3,371,139  1.01 1.01 99.82 97.95 93.16 37.08
fD01-fD24 3,599,515  3,595,846  1.08 1.08 99.9 98.41 95.28 42.44
ND01-ND24 4,399,592  4,393,529  1.32 1.32 99.86 98.42 95.02 38.73
PD01-PD24 3,387,737  3,380,942  1.02 1.01 99.8 98.53 95.13 36.64
fB0061-fB14781 5,441,182  5,434,806 1.63 1.63 99.88 99.24 97.36 42.25
PB0061-PB14781 3,591,409  3,587,252  1.08 1.08 99.88 98.8 95.75 36.55
Note: 1. f1 - f3, N1 - N3 and P1 - P3 represent the three replicates for frr, NusA and PTH gene sequencing, and S01 - S24 are 
mock samples with different ratio of mixing bacterial cells shown in Table S4. 
2. f, N and P represent the frr, NusA and PTH gene sequencing, and D01 - D24 are mock sample with different ratio of mixing 
bacterial DNA shown in Table S4. 
3. f and P represent the frr and PTH gene sequencing, and BXXXX present Apis cerana gut sample 
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TABLE S6 Summary of read processing and data obtained from marker gene, 16S V4 amplicon and 
metagenomic sequencing of honey bee guts. 
 

Gut ID Raw PE reads Joined and filtered reads Gilliamella 
reads 

16S frr PTH Meta 16S frr PTH Meta 16S Meta 
B0061 84,584  358,851  65,424  33,687,518 82,760 311,842 60,964 5,159,739 25,700 3,185
B0070 85,169  253,390  94,393  37,685,288 83,491 223,179 91,436 5,909,974 47,892 7,661
B0108 83,908  349,570  123,368  45,115,102 82,132 344,248 121,018 4,242,595 39,424 2,189
B0120 85,368  389,432  29,023  34,543,934 83,267 262,273 28,277 4,523,366 22,741 815
B0154 83,691  289,878  - 34,969,488 81,143 226,310 - 4,622,933 26,346 1,086
B0174 84,281  361,728  75,882  38,471,836 81,979 287,357 68,222 6,058,633 18,258 243
B14756 - 224,748  118,334  21,491,068 - 194,850 114,236 4,622,933 - 17,472
B14757 - 354,956  158,879  22,959,909 - 328,188 156,087 4,622,933 - 5,546
B14758 - 277,823  165,638  24,408,709 - 224,100 160,741 9,658,926 - 4,182
B14779 - 342,928  151,481  23,802,654 - 285,197 146,421 7,922,065 - 8,133
B14780 - 301,064  48,088  23,495,452 - 272,069 47,247 7,123,654 - 3,064
B14781 - 291,415  71,187  22,381,871 - 237,037 68,190 9,626,197 - 3,686
Note: “16S” indicates 16S V4; “Meta” indicates metagenomic; “-” indicates no test. 
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