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Abstract

Motivation: Long read sequencing methods have consider-
able advantages for characterising RNA isoforms. Oxford
nanopore sequencing records changes in electrical current
when nucleic acid traverses through a pore. However, base-
calling of this raw signal (known as a squiggle) is error prone,
making it challenging to accurately identify splice junctions.
Existing strategies include utilising matched short-read data
and/or annotated splice junctions to correct nanopore reads
but add expense or limit junctions to known (incomplete) an-
notations. Therefore, a method that could accurately identify
splice junctions solely from nanopore data would have nu-
merous advantages.
Results: We developed “NanoSplicer” to identify splice
junctions using raw nanopore signal (squiggles). For each
splice junction the observed squiggle is compared to candi-
date squiggles representing potential junctions to identify the
correct candidate. Measuring squiggle similarity enables us
to compute the probability of each candidate junction and
find the most likely one. We tested our method using 1.
synthetic mRNAs with known splice junctions 2. biologi-
cal mRNAs from a lung-cancer cell-line. The results from
both datasets demonstrate NanoSplicer improves splice junc-
tion identification, especially when the basecalling error rate
near the splice junction is elevated. Our method is imple-
mented in the software package NanoSplicer, available at
https://github.com/shimlab/NanoSplicer.

1 Introduction
Splicing is an essential mechanism in eukaryotic cells that
removes introns from pre-mRNAs to create mRNA. Alterna-
tive splicing varies which sequences are intronic and exonic,
enabling a single gene to produce multiple mRNA products
(isoforms). Almost 95% of human genes (Pan et al., 2008)
and 60% of Drosophila genes (Graveley et al., 2011) undergo
alternative splicing, creating a diverse set of transcript iso-
forms whose expression can control cell functions in a partic-
ular condition or developmental stage. Short-read sequencing
technologies (e.g., Illumina sequencing) have been success-
fully used to identify and quantify local splicing events, such
as exon skipping. However, their read lengths (∼150 nt) are
much shorter than typical transcript lengths, making it dif-
ficult to combine each splicing event and identify the full-

length isoform(s) present (LeGault and Dewey, 2013; Stei-
jger et al., 2013; Tang et al., 2020; Alqassem et al., 2021;
Parker et al., 2021). As such our understanding of the iso-
form repertoire expressed in different organisms and those
that control cell functions remains incomplete.

Nanopore sequencing by Oxford Nanopore Technologies
(ONT) is a long-read sequencing method that can con-
nect splicing events by sequencing full-length transcripts
(Bolisetty et al., 2015; Byrne et al., 2017). Nanopore se-
quencing works by recording changes in electrical current
when a DNA or RNA molecule traverses through a pore.
This raw signal, (known as a squiggle) is then basecalled
by computational methods, yielding reads that can cover the
entire transcript and identify the expressed isoform. How-
ever, nanopore reads have a considerably higher basecall-
ing error rate (∼5-10%) and lower throughput compared to
short reads, making their analysis challenging. In particu-
lar, the former makes read mapping near splice sites diffi-
cult (Tang et al. (2020); Volden et al. (2018); Weirather et al.
(2017)) making it challenging to distinguish real splice junc-
tions from mapping errors (Fig. 1A). Incorrect detection of
splice junctions results in the identification of non-existent
isoforms and omission of real isoforms, which inhibits the
study of encoded proteins and isoform functions. In this pa-
per, we develop a method to accurately identify splice junc-
tions using nanopore sequencing, the performance of which
is independent of sequencing throughput.

Several authors have developed methods that correct splice
junctions from mapped long reads (e.g., Wyman and Mor-
tazavi (2019); Kovaka et al. (2019); Kuo et al. (2020); Tang
et al. (2020); Parker et al. (2021)). Methods such as FLAIR
(Tang et al., 2020) and TranscriptClean (Wyman and Mor-
tazavi, 2019) require a set of splice junctions, either from
annotations or from matched short reads, to be provided to
guide their corrections. However, suitable annotations may
not be available, for example, in a non-model organism or in
a disease causing altered mRNA processing, while matched
short-read sequencing increases costs. Furthermore, in some
circumstances, short-reads covering whole transcripts can-
not be generated. For example, nanopore sequencing is now
being performed on single cells using the popular 10x Ge-
nomics platform, however, matched 10x short reads only
cover transcript 3’ ends (Lebrigand et al., 2020). Other meth-
ods such as StringTie2 (Kovaka et al., 2019), TAMA (Kuo
et al., 2020) and 2passtools (Parker et al., 2021) use infor-
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mation from other reads (e.g., nearby splice junctions sup-
ported by high read counts) to guide splice junction cor-
rection. A limitation with this approach is that it can lead
to the replacement of rarer splice junctions with those from
more highly expressed isoforms, causing less abundant junc-
tions to go undetected (see Supplementary section 2.13 for
an example). Moreover, methods that depend on other reads
are not well suited to relatively low throughput nanopore
datasets, where many isoforms, particularly from lowly ex-
pressed genes, have few reads.
The poor performance of nanopore read mapping near splice
sites is largely due to basecalling errors, which arise when
basecalling methods misinterpret the raw signal squiggles.
Motivated by this, here we propose a method, NanoSplicer,
that exploits the information in the squiggles to improve
splice junction identification. The key idea is to identify,
for each splice junction, which of the squiggles predicted
from potential splice junction sequences best matches the ob-
served junction squiggle. This “squiggle matching” idea has
been successfully applied to map raw signals to a reference
genome (Loose et al., 2016; Kovaka et al., 2021; Zhang et al.,
2021), and we adapt this idea to develop a method for splice
junction identification. By using the squiggle correspond-
ing to each read, NanoSplicer does not require annotations
or matched short reads and its performance is not affected
by other reads and is independent of read depth, enabling
it to identify rare splice junctions. We demonstrate the im-
proved performance of NanoSplicer compared to the initial
mapping using both synthetic and real data. Our method is
implemented in the software package NanoSplicer, available
at https://github.com/shimlab/NanoSplicer.

2 Methods
We developed NanoSplicer to accurately identify splice junc-
tions using nanopore sequencing data. It takes as input
mapped nanopore reads, their squiggles and a reference
genome sequence. For each read it outputs lists of candi-
date splice junctions and the assignment probabilities quan-
tifying the support for each of the candidates. Fig. 1 shows
an overview of the NanoSplicer workflow. It consists of the
following steps.

A. Locate subsequences in the mapped reads which split
and map to different exons, supporting potential splice
junctions. We refer to these subsequences as junction
within reads (JWRs). See Supplementary section 1.1
for further details regarding JWR identification.

For each JWR, we improve splice junction identification as
follows:

B1. Obtain the section of the squiggle corresponding to the
JWR location, referred to as a junction squiggle.

B2. Construct a list of candidate splice junctions, and pre-
dict an expected squiggle for each candidate, referred
to as a candidate squiggle.

C. Align the junction squiggle to each of the candidate
squiggles.

D. Use the NanoSplicer model to quantify the support for
each candidate squiggle (assignment probability).

NanoSplicer also allows users to provide additional informa-
tion to guide the choice of candidate splice junctions in step
B2 (see section 2.2).
We discuss steps B-D in detail in the following sections.

2.1 Obtaining a junction squiggle
For each JWR, we obtain its junction squiggle, i.e., the
squiggle section corresponding to the location of the JWR, as
follows. First we use the “resquiggle” tool in Tombo (Stoiber
et al., 2016) to align the nanopore read containing the JWR
with its squiggle. Tombo performs the alignment by assign-
ing current measurements in the squiggle to each base of the
read. Then, we extract the part of the squiggle aligned to the
JWR.
Tombo normalises squiggles during the alignment
to remove systemic differences in shift (median
value) and scale between squiggles (https://
nanoporetech.github.io/tombo/resquiggle.
html#signal-normalization). This normalisation
enables the resulting junction squiggles to be comparable to
candidate squiggles in sections 2.3 and 2.4. See Supplemen-
tary section 1.3 for additional squiggle preprocessing.
Basecalling errors create challenges in aligning current mea-
surements to bases within reads and therefore in identify-
ing the squiggle region corresponding to the JWR. However,
matching over longer regions allows sub-regions with good
alignment to be identified and the approximate position of
the JWR to be specified. To implement this we take ∼50 nt
of the read as the JWR region, which allows us to identify
the corresponding squiggle region even if exact base-current
alignment for each nucleotide is not obtained. Rare cases
where this process still identifies an incorrect region of the
squiggle are filtered out (see section 2.4.4).

2.2 Obtaining candidate squiggles
We obtain candidate squiggles by first constructing a list of
candidate splice junctions, and then for each candidate, iden-
tifying a candidate junction motif and predicting its expected
candidate squiggle (Fig 1B2). We discuss each step in this
section; see Supplementary section 1.2 for further details.

Candidate splice junctions: NanoSplicer provides multiple
options to facilitate the selection of candidate splice junctions
for each JWR, including a variety of inputs. This allows users
to incorporate pre-existing information regarding splice junc-
tion usage (if available). By default NanoSplicer will select:

1. The splice junction supported by the JWR (mapped
splice junction).

2. Nearby canonical splice junctions. We define these as
introns that start with GT and end with AG (Fig. 1B2),
a motif present in over ∼99% of mammalian splice
junctions (Burset et al., 2000).

Inputs for each JWR can also include:

1. Annotated splice junctions.
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Fig. 1. NanoSplicer workflow: A. Identify junctions within reads (JWRs). The left panel shows an example of inconsistently mapped splice junctions in nanopore reads,
which may require correction. A splice junction refers to a pair of 5’ and 3 splice sites, which are the boundaries between introns and exons (shown in green in the figure).
Right panel: NanoSplicer locates JWRs in mapped nanopore reads. The two dotted boxes connected by a black curve show a JWR, which is a subsequence of the read that
is split and mapped to different exons. B1: Identification of junction squiggles. A basecalled nanopore read and its matched raw squiggle are aligned and the portion of the
squiggle corresponding to the JWR (dotted boxes) is obtained. B2: Prediction of candidate squiggles. NanoSplicer identifies all possible canonical (“GT-AG”) splice junctions
within 10 bases of the mapped splice sites. Possible 5’ and 3’ splice site nucleotides shown in white. Two candidate splice junctions (1 and 2) are shown (red and orange
lines). Candidate junction motifs surrounding the splice junctions are then obtained using the reference genome and candidate squiggles for these motifs predicted with
Tombo (Stoiber et al., 2016). Candidate squiggles include predicted mean current (solid line) +/- 1 standard deviation (dotted line). C: Alignment of candidate and junction
squiggles. Top: The junction squiggle (blue) is aligned to each candidate squiggle (red/orange) using dynamic time warping. Dotted lines show which locations of the two
squiggles are aligned. Bottom: Each current measurement in the junction squiggle (blue) is shown vertically aligned with its corresponding mean-standard deviation in the
candidate squiggle. D: The NanoSplicer model provides assignment probabilities for each candidate by quantifying the squiggle similarity of each alignment.

2. User defined list of candidate splice junctions (e.g.,
from short-read sequencing).

3. Nearby splice junctions supported by other mapped
reads (above a user-specified read count threshold).

Unless stated otherwise, we used the default option to choose
candidate splice junctions in this paper. This allows NanoS-
plicer to identify splice junctions solely from the long-read
data and does not require prior annotations or information
from other reads. For ‘nearby canonical splice junctions’,
NanoSplicer identified all GT and AG sequences within 10nt
of the mapped 5’ and 3’ splice sites respectively and included
the splice junctions these would create as candidates.

Candidate junction motifs: Once we construct a list of can-
didate splice junctions, we assemble a junction motif for each

candidate by connecting sequences from each side of the can-
didate splice junction using the reference genome. Each can-
didate junction motif for a JWR extends 5’ and 3’ from the
candidate splice junction to a common location. This ensures
each candidate has the same nucleotide sequence (and squig-
gle signal) at the beginning and end, ensuring differences be-
tween candidate squiggles are solely due to the various splice
junctions utilised.

Candidate squiggles: We predict a candidate squiggle
for each candidate junction motif using an “expected cur-
rent level model” in Tombo (Stoiber et al., 2016). This
model provides the mean and standard deviation of the
current level for each nucleotide in a candidate junc-
tion motif (https://nanoporetech.github.io/
tombo/model_training.html describes how Tombo
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computes these means and standard deviations). The candi-
date squiggle can then be visualised by fitting a line through
the sequence of means for each nucleotide.

2.3 Aligning the junction squiggle to each candidate
squiggle
For each JWR, we now have its junction squiggle (sec-
tion 2.1) and candidate squiggles (section 2.2). Before mea-
suring the similarity between each candidate and junction
squiggle, we first align them, i.e., assign current measure-
ments in the junction squiggle to each mean and standard
deviation in the candidate squiggle, so that their time axes
are comparable (Fig 1C). We adapt Dynamic Time Warping
(DTW) (Sakoe and Chiba, 1978) to align the two squiggles.
DTW is an efficient algorithm for aligning two sequences
which may vary in speed; see Keogh and Ratanamahatana
(2005) for background on DTW. Supplementary section 1.4
describes our implementation of DTW which makes the fol-
lowing modifications.

1. We treat the junction squiggle as observations from a
model that has the means and standard deviations of
each candidate squiggle as parameters. Then, we use
the support in the junction squiggle for the model as a
measure of similarity in DTW.

2. A single observation has only one mean-standard devi-
ation in a model. Thus, we assign each measurement
in the junction squiggle to only one mean-standard de-
viation in the candidate squiggle.

3. In practice, the start and end of the junction squiggle
may not perfectly match that of the candidate squig-
gles. Thus, we include more nucleotides at each side
of the candidate junction motif as a buffer, and then al-
low the junction squiggle to be aligned to a part of the
candidate squiggle.

4. The junction squiggle alignment is expected to cover
most nucleotides in the candidate junction motif. Thus,
we prevent current measurements in the junction squig-
gle from being aligned to only a small proportion of the
candidate squiggle.

2.4 NanoSplicer model: accurate identification of
splice junctions
Suppose, for a given JWR, we have its junction squiggle,
M candidate squiggles, and M alignments, each of which
aligns the junction squiggle to each candidate squiggle. Let
x = (x1, . . . ,xK) denote a junction squiggle with length K,
where xk is the k-th current measurement. The m-th candi-
date squiggle, cm, is the sequence of the mean-standard de-
viation of the current level for each nucleotide in its junction
motif. The M alignments can be represented by an M ×K
matrix A = [amk], where amk indicates the index of the
mean-standard deviation in cm where xk is aligned. Fig. S5
provides a toy example.

2.4.1 Junction squiggle segmentation
Motivated by basecalling methods (Rang et al., 2018), we
partition x into multiple segments, combine noisy measure-
ments of x into a more stable summary value (e.g., mean,
median) at each segment, and use the summary values as data
in our NanoSplicer model (section 2.4.2). Specifically, we
define a segment of x as consecutive measurements whose
alignments to the M candidate squiggles (the columns of
A) are the same; see Fig. S5 for a toy example and Sup-
plementary section 1.6 for our practical implementation of
the segmentation. Suppose we have N segments in x. Then,
we compute the summary y = (y1, . . . ,yN ), where yi sum-
marises information in x at its i-th segment. In this paper, we
use medians for the summary as they are relatively robust to
outliers.
We then compute the candidate squiggles and alignments of
y (denoted by c1

s, . . . ,c
M
s and As, respectively) from that of

x; see Supplementary section 1.6 for details. The NanoS-
plicer model for y uses c1

s, . . . ,c
M
s as model parameters and

As provides alignments between y and the model parame-
ters.

2.4.2 NanoSplicer model
For a given JWR, we build a mixture model to identify a
splice junction among the M candidates. We introduce a
latent variable z ∈ {1, . . . ,M} indicating which candidate
the junction squiggle came from. The mixture model for
y = (y1, . . . ,yN ) can be written as

P(y|Θ) =
M∑

m=1
P(y|z =m,Θ)P(z =m|Θ), (1)

where Θ = (c1
s, . . . ,c

M
s ,As). We assume that y1, . . . ,yN are

independent conditional on their means and standard devia-
tions, yielding

P(y|z =m,Θ) =
N∏

n=1
N ∗(yn;µm

i ,σ
m
i ), (2)

where µm
i , σm

i are the mean and standard deviation in the
candidate squiggle cm

s aligned to yn through As (i.e., i =
as

mn). We model yn using modified normal distributions (de-
noted byN ∗) which have flat tails, making our method robust
to measurements that match none of the M candidate squig-
gles; see Supplementary section 1.5 for details of these distri-
butions. Such measurements could appear, for example, due
to genetic variants which are not currently incorporated into
our junction motifs (see section 2.2).
When there is other information reflecting the general
propensity of a candidate to be a splice junction, we can
model the mixing proportion P(z = m|Θ) as a function of
that information (e.g., nucleotide composition near splice
sites for eukaryotes (Irimia and Roy, 2008); see section 4 and
Supplementary section 1.8). Otherwise, P(z =m|Θ) = 1

M .

2.4.3 Identification of splice junctions
Identification of splice junctions can be performed by com-
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puting the posterior probability for each JWR:

P(z =m|y,Θ) = P(y|z =m,Θ)P(z =m)∑M
m′=1 P(y|z =m′,Θ)P(z =m′)

(3)

We call this the assignment probability that quantifies the
support of the junction squiggle for each candidate. In prac-
tice, we restrict our identification to JWRs where a single
candidate has strong support (e.g., we required an assignment
probability > 0.8 in this paper).

2.4.4 Squiggle information quality
In practice, we implement the following step to improve per-
formance: the NanoSplicer model assumes that the junction
squiggle corresponds to the location of the JWR, however
Tombo can potentially align the JWR to an incorrect squiggle
location. Therefore, we add a step to filter out junction squig-
gles that do not have a high quality alignment to any can-
didate squiggle, suggesting they emanate from an off-target
read subsequence. First we measure the alignment quality
between a junction squiggle and each of its candidate squig-
gles using the average log likelihood over the nucleotides of
the candidate squiggle; see Supplementary section 1.7 for de-
tails. Then, we compute the maximum of these alignment
qualities across M candidates, referred to as squiggle infor-
mation quality (SIQ). In practice, we restrict our splice junc-
tion identification to JWRs with SIQ bigger than a threshold
to ensure their junction squiggles have high quality align-
ments at least one of their candidate squiggles. To choose
a suitable threshold, we use an empirical distribution of SIQ
constructed by pooling SIQ values from multiple JWRs in the
analysis. Assuming that most JWRs are well aligned to cor-
rect squiggle locations, we choose an SIQ threshold that iden-
tifies junction squiggles whose SIQ values are much smaller
than the majority of SIQs in the distribution. We illustrate our
choice of thresholds in sections 3 and 4. See Supplementary
section 2.9.1 for a discussion on how the choice of thresholds
involves trade-offs between accuracy and the ability to iden-
tify splice junctions. Note that, although we propose this SIQ
step to filter out junction squiggles from an off-target region,
it can also help identify poor quality junction squiggles due
to experimental artifacts (e.g., current spikes, pore blockages,
or uneven dwell time of nucleotides in the pore, etc.) as they
can also lead to poor alignments.

3 Synthetic RNA data analysis
A potential advantage of NanoSplicer is that it can exploit
the information in squiggles. To assess the benefit of this
feature, we compared the accuracy, defined as the propor-
tion of correctly identified splice junctions, of NanoSplicer to
the initial mapping results. We assessed the performance of
NanoSplicer using sequin RNA standards (Hardwick et al.,
2016), which enables us to compare NanoSplicer outputs
to a known ground truth. Sequins are a set of synthetic
spliced mRNA isoforms whose sequences and quantities are
precisely known. An in-silico sequin chromosome contains
each sequin gene and isoform, creating a known ground truth
for the position of each splice junction, which mapping- and

NanoSplicer-based results can be compared to. Sequins con-
tain 160 isoforms from 76 genes and 745 splice junctions (all
but 3 are canonical GT-AG junctions). We used a nanopore
cDNA sequins dataset generated using the Oxford Nanopore
Technologies GridION platform with a R9.4.1 MinION flow-
cell from Dong et al. (2021); see Supplementary section 2.1
for details of the data. We basecalled raw signals (squiggles)
using Guppy 3.6.1 and mapped basecalled reads to the sequin
genome using minimap2 (Li, 2018), resulting in 1,919,714
mapped reads to 76 genes and 4,270,674 JWRs. We deacti-
vated the “splice flank” sequence preference option in min-
imap2 as this preference is not present in sequins. Supple-
mentary sections 2.2 and 2.3 provides Guppy and minimap2
command lines for our analyses.
For the purpose of assessment, we first defined a ground truth
splice junction for each JWR by choosing one among the
known 745 sequin splice junctions as follows. We mapped
the reads to the sequin isoforms using minimap2, providing a
1-1 correspondence between each read and a sequin isoform
(Supplementary section 2.3.2). We restricted our assess-
ment to 1,528,017 reads with the maximum mapping qual-
ity (mapQ = 60 in minimap2), for which we can accurately
identify their corresponding isoforms. These reads contained
3,492,373 JWRs, of which 3,477,172 could be analysed by
Nanosplicer (see Supplementary section 2.6 for details of the
remaining 15,201 JWRs). Then, on the strand the isoform
maps to, we searched for a sequin splice junction whose
splice sites are within 10 bases of the mapped JWR splice
sites and treated it as a ground truth for that JWR. All the
JWRs have either one or zero known sequin splice junctions
within 10 bases, supporting their correct assignment. The
134,529 JWRs (3.9%) without a nearby known splice junc-
tion have no ground truth and we will refer to them as com-
pletely missed JWRs.

3.1 NanoSplicer improves upon the initial mapping re-
sults using squiggles
We used 3,477,172 JWRs (encompassing 650 known se-
quin splice junctions) to assess the performance of NanoS-
plicer. The initial mapping failed to identify the ground truths
for 228,181 JWRs, (6.56%, including 134,529 completely
missed JWRs and 93,652 within 10 bases of the known se-
quin splice junction). Although any splice junctions identi-
fied by NanoSplicer for the completely missed JWRs will be
incorrect, we include them in the analysis to assess how well
SIQ (section 2.4.4) and assignment probability (section 2.4.3)
in NanoSplicer recognise and filter out these JWRs.
We applied NanoSplicer to the dataset to improve upon the
initial mapping results; see Supplementary section 2.12 for
NanoSplicer run time. We chose candidates using the de-
fault option in section 2.2, used a uniform prior for mix-
ing proportion (section 2.4.2), and chose -0.8 as a thresh-
old for SIQ using an empirical distribution in Fig. S8. This
meant all JWRs had the ground truth as a candidate, except
for the completely missed JWRs, as well as JWRs where the
ground truth was non-canonical and was not identified as the
mapped splice junction. NanoSplicer reports identified splice
junctions for 3,058,814 JWR, which have SIQ > −0.8 and
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Fig. 2. Splice junction identification accuracy of NanoSplicer and minimap2. A: Accuracy of splice junction identification in synthetic data. B: Accuracy of splice junction
identification in biological data. A and B: all JWRs were binned based on junction alignment quality (JAQ). The interval “a-b” in the x-axis represents “a < JAQ ≤ b”.
Initial mapping (from minimap2) is based on all JWRs. NanoSplicer accuracy is based on the JWRs where NanoSplicer identifies the splice junction (SIQ > -0.8, strongest
assignment probability > 0.8). The number of JWRs in each JAQ bin, including completely missed JWRs, is shown in Table S1.

strongest assignment probability > 0.8, with an accuracy of
96.4%. Therefore NanoSplicer improved the overall accu-
racy of splice junction detection compared to the initial map-
ping (93.4%).

3.2 NanoSplicer improvement is greatest when junc-
tion alignment quality (JAQ) is low
To better understand the advantages of NanoSplicer we next
asked under what circumstances it improved upon splice
junction detection in the initial mapping. Basecalling errors
can result in low quality alignments between the JWR and
the reference genome. Therefore we hypothesized that the
initial mapping would perform poorly for JWRs with high
basecalling errors and that the advantage of NanoSplicer will
be greatest for these. We quantified the junction alignment
quality (JAQ) for each JWR, which we defined as the per-
centage of matched bases in its alignment, to test this. For
example, a JAQ of 0.96 can be interpreted as 4% of bases in
an alignment being inserted/deleted or mismatched; see Sup-
plementary section 2.5 for further details.
Fig. 2A shows the accuracy of each approach for JWRs with
different ranges of junction alignment quality. NanoSplicer
and minimap2 are both similarly accurate (98.3 vs 98.5%)
when the JAQ is > 0.95 and the JWR sequence aligns almost
perfectly. In such a circumstance there is little extra informa-
tion to be obtained from the squiggle. However, at an align-
ment quality of 0.95 and below (51.2% of all JWRs), NanoS-
plicer improves upon the initial mapping accuracy, displaying
progressively larger improvements as alignment quality de-
creases. For junction alignment qualities ≤ 0.8, NanoSplicer
increased the raw accuracy by 21.0% and decreased the pro-
portion of incorrect JWRs by 51% . Furthermore, most multi-
exon genes have more than one splice junction and JAQ can
vary over a read. We find that 17.6% and 76.8% of multi-exon
reads have a JWR whose JAQ is ≤ 0.8 and 0.95 respectively.
These results demonstrate that NanoSplicer has the potential
to improve splice junction identification in a significant pro-
portion of reads.
While the initial mapping reports splice junctions in all
JWRs, NanoSplicer identified splice junctions for 3,058,814
JWRs and the accuracy of NanoSplicer is evaluated on this

smaller set. Thus, multiple factors could contribute to its in-
creased accuracy. These include the ability of SIQ and as-
signment probability to identify wrongly mapped JWRs, as
well as NanoSplicer correction of the initial mapping results.
To investigate the contributions of these factors, we compute
the accuracy of the initial mapping on two sets of JWRs:
3,309,817 JWRs after SIQ filtering and 3,058,814 JWRs after
SIQ and strongest assignment probability filtering (Supple-
mentary section 2.7). All factors contribute to the increase
in accuracy. NanoSplicer correction showed a clear benefit
when JAQ ≤ 0.9. In contrast the contribution of SIQ filter-
ing is proportionately large for low quality alignments (JAQ
≤ 0.8). Moreover, we observed that JWRs filtered by SIQ
or assignment probability are enriched in completely missed
JWRs (Supplementary section 2.8), supporting that these pro-
cedures help identify JWRs without true junctions as candi-
dates.

3.3 Example of splice junction correction with NanoS-
plicer
To demonstrate how squiggles can provide extra information
to identify splice junctions, Fig. 3 A1 & A2 shows an ex-
ample JWR from the synthetic RNA dataset. Based on the
ground truth of the synthetic RNA, the first 5 exonic bases
after the 3’ splice site should be “CCCAG”, but were base-
called as “TG”. In the reference genome in Fig. 3A1, there
are two “AG” 3’ splice motifs 5 bases apart, leading to two
potential 3’ splice sites. The JWR was initially mapped to
the wrong one 5 bases inside the exon due to the basecall-
ing error. We compared the junction squiggle of this JWR to
the candidate squiggles obtained from the true splice junc-
tion and the splice junction matching the initial mapping.
Fig. 3A2 shows the alignments between the junction squig-
gle and the two candidate squiggles respectively. The squig-
gle from the true candidate splice junction is visually a closer
match to the junction squiggle. NanoSplicer quantified this
squiggle similarity, giving an assignment probability of 0.988
to the true candidate for this JWR. This example demon-
strates how nanopore squiggle signal can be used to correct
read alignments and accurately identify splice junctions. See
Supplementary section 2.10 for more examples.
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Fig. 3. Examples of NanoSplicer correcting wrongly mapped JWRs. A1 & A2: Synthetic RNA data, B1 & B2: Biological data. A1 & B1: JWR mapping. Reference genome
sequence shown in purple. Green line shows the location of the known ground truth splice junction. The mapped nanopore read (blue) shows the basecalled nucleotides
of the JWR and how they were aligned to the reference genome. Orange line shows the splice junction identified by the initial mapping of the JWR. Insertion - basecalled
nucleotides in read that were not part of genome alignment. A2 & B2: Alignment between the junction squiggle for the JWR (blue) and the corresponding candidate squiggles
from A1 & B1 (orange and green). Each junction squiggle current measurement is vertically aligned with its assigned mean-standard deviation in the candidate squiggle. The
junction motifs for each candidate are shown at the top of each panel. Each nucleotide in the motifs is aligned with its corresponding squiggle position. Panels focus on the
junction squiggle areas that distinguish between the candidates (grey background; the absolute difference in log likelihood between the two candidate models is bigger than
1.35; see Supplementary section 2.11 for details).

4 Biological RNA data analysis

In this section, we assess the performance of NanoSplicer
on real biological data. To this end, we used a nanopore
cDNA dataset (see Supplementary section 2.1 for detailed
data description) generated from the lung cancer cell line
NCI-H1975, for which short read data are also available (Ho-
lik et al., 2017). We basecalled all squiggles using Guppy
3.6.1 and mapped basecalled reads to the human GRCh38 as-
sembly using minimap2. We focused our analysis on 758,330
reads mapped to chromosome 1, yielding 2,216,054 JWRs,
of which 2,209,275 could be analysed by NanoSplicer (see
Supplementary section 2.6 for details of the remaining 6,779
JWRs). Note that we retained the “splice flank” sequence
preference option in minimap2 for this analysis, i.e., prefer-
ring “GTA” and “GTG” at the start of the intron and “CAG”
and “TAG” at the end of the intron, as it improved mapping
results.
For the purpose of assessment, we defined a ground truth for
each JWR using the short read data from Holik et al. (2017),
as short reads are expected to provide accurate information
on the locations of splice junctions. First, we mapped the
short reads to GRCh38 using STAR (Dobin et al., 2013) and
considered splice junctions with at least 3 mapped short reads
to be “known”; see Supplementary section 2.4 for details.
Then, for each JWR, we searched for a known splice junction
within 10 bases of the mapped splice sites and treated it as a
ground truth for that JWR. To avoid ambiguity in determining
the ground truth, we restricted our assessment to 2,073,181
JWRs that have at most one nearby known splice junction.

4.1 NanoSplicer improves upon the initial mapping re-
sults using squiggles
We assessed the performance of NanoSplicer on the
2,073,181 JWRs; see Supplementary section 2.12 for the run
time. As previously, we compared the accuracy (i.e., the
proportion of correctly identified splice junctions) of NanoS-
plicer to the initial mapping results. The initial mapping
failed to identify the ground truths for 111,560 JWRs (5.4%),
including 73,043 completely missed JWRs. In this analy-
sis, we incorporated “splice flank” sequence preferences, like
those in minimap2, as prior mixing proportions in NanoS-
plicer; see Supplementary section 1.8 for details. Other
steps in the NanoSplicer workflow were similar to the syn-
thetic data analysis: candidates were chosen using the de-
fault option in section 2.2, and SIQ >−0.8 (see Fig. S8) and
strongest assignment probability > 0.8 thresholds were used.
NanoSplicer identified splice junctions for 1,902,248 JWRs
with an accuracy of 96.1%, confirming it improves splice
junction detection from biological data.

Similar to the synthetic data analysis, the improvement
in splice junction identification with NanoSplicer increased
as junction alignment quality (JAQ) decreased (Fig. 2B).
NanoSplicer improved upon the initial mapping when JAQ
≤ 0.95 and was particularly pronounced below a JAQ of
0.8. For a JAQ ≤ 0.8, NanoSplicer increases the accuracy
by 12.6% and halved the proportion of incorrect JWRs.

As the accuracy of NanoSplicer is evaluated on a smaller
set of JWRs (1,902,248) than the initial mapping, we again
investigated the contributions of SIQ, strongest assignment
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probability and NanoSplicer correction to the increased ac-
curacy. Supplementary section 2.7 revealed results consis-
tent with the synthetic data analysis: all factors contribute to
the increased accuracy; NanoSplicer correction is beneficial
when JAQ ≤ 0.95 and SIQ filtering has a relatively larger
contribution when JAQ ≤ 0.8.

4.2 Example of splice junction correction with NanoS-
plicer
Fig. 3 B1 & B2 shows an example JWR from the biological
dataset. In Fig. 3B1 there are two “GT” 5’ splice motifs only
3-bases apart at the 5’ splice site, leading to two candidate
splice junctions. One of the candidate splice junctions is sup-
ported by the short read data and is assumed to be the true
one. However, the nanopore read in Fig. 3B1 was mapped
to the other candidate splice junction due to basecalling er-
rors at the 5’ splice site (the “GTG” bases preceding the true
splice junction were basecalled as only “G” in the nanopore
read). We compared the junction squiggle of this JWR to
the squiggles obtained from both candidate splice junctions.
Fig. 3B2 shows the alignments between the junction squig-
gle and the two candidate squiggles respectively. The shape
of the squiggle for the true candidate is clearly a better match
for the junction squiggle, while the initial mapping candidate
misses clear signal changes indicative of additional bases.
NanoSplicer quantified this squiggle similarity, leading to an
assignment probability of 0.997 to the true candidate for this
JWR. See Supplementary section 2.10 for more examples.

4.3 Identification of non-canonical junctions
A small proportion of splice junctions do not use the canon-
ical GT-AG motif and are challenging to identify from er-
ror prone reads. Comparing the JWRs from the NCI-H1975
long-reads to the short-read data revealed 10488 (0.47%)
had a non-canonical truth. Minimap2 correctly identified
3993 of these (38.1%), while NanoSplicer identified 3572
of 8626 (41.4%) after SIQ and assignment probability fil-
tering. Using the default option NanoSplicer can only con-
sider non-canonical junctions as candidates if they are the
mapped splice junctions, meaning it cannot correct the 6495
JWRs where minimap2 was incorrect. NanoSplicer also al-
lows user supplied lists of candidate splice junctions as in-
puts. We added human non-canonical splice junctions from
RefSeq (O’Leary et al., 2016) and re-performed the NanoS-
plicer analysis. NanoSplicer now correctly identified 9344
of 9625 (97.1%) of the JWRs with a non-canonical truth that
passed filtering. These results demonstrate the flexible inputs
Nanosplicer can utilise and how Nanosplicer performance for
non-canonical splice junction identification can benefit from
their use.

5 Conclusion
We have developed a novel method, NanoSplicer, to accu-
rately identify splice junctions using nanopore sequencing.
The method, adapting the “squiggle matching” idea, exploits
the information in squiggles to improve identification. This
enables NanoSplicer to identify splice junctions solely from

the nanopore data without requiring annotations or matched
short reads. It also enables its performance to be independent
of other reads or read depth, having the potential to better
identify rare splice junctions (Supplementary section 2.13).
Using both synthetic and real data, we show that NanoSplicer
improves upon the initial mapping, particularly when the
basecalling error rate near splice junctions is high, demon-
strating the contribution of squiggle information to splice
junction identification.

To our knowledge, this is the first method that exploits squig-
gle information for splice junction identification. There-
fore, there are many opportunities for potential improve-
ments. First, the NanoSplicer model treats the summary
values of junction squiggles as observed data and ignores
their uncertainty, possibly leading to a decreased accuracy.
One potential way to incorporate the uncertainty is to ex-
ploit the likelihood approximation as described in Shim et al.
(2021), yielding likelihoods expressed by the estimates of
model parameters and their standard errors. Second, very
short or long dwell times (i.e., the duration of a translocation
event) may not reflect typical translocation events (Díaz Car-
ral et al., 2021), potentially causing misleading results. Here,
we partly address this issue by filtering out summary values
based on a very small or large number of measurements, but
a more principled approach, such as modelling dwell time,
could potentially improve performance. Third, here we pre-
dict expected squiggles from junction motifs using the “ex-
pected current level model” in Tombo (Stoiber et al., 2016),
but this can be achieved by using other models that are ap-
propriate for the chemistry in use. Indeed, the optimal choice
of models may be one learned from the data at hand. Finally,
NanoSplicer has been comprehensively tested only for analy-
sis of Nanopore cDNA data and the R9 pore but will be tested
on direct RNA sequencing and the R10 pore in the future.

NanoSplicer identifies splice junctions only among candi-
dates, potentially leading to false detection when the true
junctions are not included. We are not alone in having this
limitation; for example, other tools restrict their correction
to junctions from annotations or matched short reads (Tang
et al., 2020; Wyman and Mortazavi, 2019), and/or to junc-
tions supported by mapped reads (Kovaka et al., 2019; Kuo
et al., 2020; Parker et al., 2021). However, NanoSplicer pro-
vides flexible options for candidate selection (sections 2.2
and 4.3), enabling users to use context-dependent candidates.
Moreover, our empirical analysis in Supplementary section
2.8 shows that SIQ and assignment probability help filter out
JWRs without true junctions as candidates, reducing false
identifications.

NanoSplicer has been designed and tested for accurate iden-
tification of splice junctions. The identified junctions could
be leveraged in different types of downstream analyses. For
some analyses, however, NanoSplicer’s outputs should be
used with care as it identifies splice junctions only for JWRs
whose squiggles are informative. For example, if the out-
puts are used for splice junction quantification, excluding
JWRs without identified outputs or correcting them using
splice junctions from other reads may lead to less accurate
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quantification because they are not a random subset of all
JWRs (Fig. S15). Additionally, utilising mapped junctions
from these JWRs to supplement NanoSplicer outputs would
decrease overall accuracy as such JWRs tend to have lower
JAQs (Fig. S16). We are currently investigating to what ex-
tent these ad hoc approaches can provide good performance
in splice junction or isoform quantification.
Our analysis shows that NanoSplicer improvement is greatest
when junction alignment quality (JAQ) is low, while initial
mapping results tend to be correct for JWRs with high JAQs
because their sequences align almost perfectly. In practice,
the first step in our software is calculation of JAQs for JWRs,
which provides useful and quickly accessible information on
long-read junction quality for an experiment or read of inter-
est. Thus, our software offers an option to output JAQs with-
out running the identification step. Additionally, NanoSplicer
provides an option to run it on JWRs below a user-specified
JAQ threshold (default 0.95) to reduce its run time and focus
on the JWRs it is most likely to correct. Nanopore sequenc-
ing accuracy is increasing over time, however even as median
read accuracy has increased, Nanopore read accuracy distri-
butions still exhibit a long tail of reads with lower accuracy.
Therefore, there remains a significant proportion of reads for
which splice junction identification (and subsequent isoform
identification) can be enabled by NanoSplicer.
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