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Transcriptomics has revealed the exquisite diversity of cortical inhibitory neurons1–7, but it is not known 
whether these fine molecular subtypes have correspondingly diverse activity patterns in the living brain. 
Here, we show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain 
state, but that this diversity is organized by a single factor: position along their main axis of transcriptomic 
variation. We combined in vivo 2-photon calcium imaging of mouse V1 with a novel transcriptomic method 
to identify mRNAs for 72 selected genes in ex vivo slices. We used transcriptomic clusters (t-types)4 to clas-
sify inhibitory neurons imaged in layers 1-3 using a three-level hierarchy of 5 Families, 11 Classes, and 35 t-
types. Visual responses differed significantly only across Families, but modulation by brain state differed 
at all three hierarchical levels. Nevertheless, this diversity could be predicted from the first transcriptomic 
principal component, which predicted a cell type’s brain state modulation and correlations with simultane-
ously recorded cells. Inhibitory t-types with narrower spikes, lower input resistance, weaker adaptation, and 
less axon in layer 1 as determined in vitro8 fired more in resting, oscillatory brain states. Transcriptomic 
types with the opposite properties fired more during arousal. The former cells had more inhibitory cholin-
ergic receptors, and the latter more excitatory receptors. Thus, despite the diversity of V1 inhibitory neurons, 
a simple principle determines how their joint activity shapes state-dependent cortical processing. 

The cerebral cortex contains a rich diversity of neu-
rons, particularly amongst inhibitory cells. While this 
diversity was visible to early anatomists9–11, the un-
derlying complexity of cortical inhibitory cell types 
has emerged only with the advent of transcriptomics1–

7. Single-cell RNA sequencing and Patch-seq analysis 
suggest that inhibitory neurons of primary visual cor-
tex (V1) are divided into five major Families, named 
Pvalb, Sst, Lamp5, Vip, and Sncg3,4,8. However much 
finer transcriptomic distinctions exist within these 
families, with cluster analysis defining 60 different 
fine inhibitory transcriptomic types (t-types). Moreo-
ver, this analysis may underestimate the diversity of 
cortical inhibitory neurons, which exhibit not only 
discrete classes but also variations along tran-
scriptomic continua2,12,13, which can predict intrinsic 
physiological properties2. 

A key open question is whether this fine molecular 
diversity of cortical inhibitory neurons is mirrored in 
vivo by diverse activity patterns, and whether there 
are simplifying principles that can help understand 
the relationship between gene expression and activity 
in these myriad cell types. Three main methods have 
been used to characterize the in vivo activity of molec-
ularly identified cells. The first is to record from them 

juxtacellularly and then apply post-hoc morphologi-
cal reconstruction and immunohistochemistry14. This 
method however has limited throughput, as juxtacel-
lular electrodes can only record one cell at a time. The 
second is to record from transgenic mice with electro-
physiology or 2-photon calcium imaging15–34. How-
ever, transgenic lines can only identify one molecular 
group of cells at a time, and the groups these mouse 
lines identify are broad, containing cells of multiple t-
types or even Families. The third and potentially most 
powerful method is to combine two-photon calcium 
imaging with ex-vivo molecular identification of the 
recorded neurons35–40. This method can record the ac-
tivity of large numbers of neurons from multiple cell 
types simultaneously, and its ability to assign cells to 
fine molecular types is limited only by the molecular 
methods used to subsequently identify the neurons. 

Here, we used two-photon microscopy to record from 
large populations of neurons in mouse primary visual 
cortex (V1), and applied in situ transcriptomics to the 
imaged tissue to localize mRNAs for 72 genes chosen 
to identify fine inhibitory t-types. While most differ-
ences in sensory tuning appeared at the level of main 
Families (Pvalb/Sst/Vip/Sncg/Lamp5), fine t-types 
showed significant differences in their modulation by 
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cortical state. These differences in state modulation 
could be explained in large part by a single genetic 
continuum, which also correlated with the intrinsic 
membrane properties and morphology of these t-
types as assessed in vitro8, and with their expression 
of excitatory and inhibitory cholinergic receptors. 

Identifying inhibitory t-types recorded in vivo 
We performed 2-photon calcium imaging in mice ex-
pressing mCherry in inhibitory neurons (Gad2-T2a-
NLS-mCherry), injected with a pan-neuronal 
GCaMP6m virus (AAV1-Syn-GCaMP6m-WPRE-
SV40), and then applied in situ transcriptomics to sag-
ittal slices of the imaged region. The expression of 
mCherry allowed these neurons to be localized in vivo 
and ex-vivo and thus to serve as fiducial markers for 
registration of the two imaging modalities. During 
imaging, mice were free to run on an air-suspended 
Styrofoam ball, and their behavioural state was mon-
itored through facial videography. Spontaneous ac-
tivity was recorded in front of a blank screen, and vis-
ual responses were elicited by presenting stimuli such 
as drifting gratings and natural images. Recordings 
typically spanned 0-250 μm below the brain surface, 
targeting cortical layers 1-3. At the end of each ses-
sion, we obtained a high-resolution 2-photon z-stack 
volume (Fig. 1a). After functional imaging was com-
plete, brains were removed and frozen unfixed, and 
the imaged volume was cut into 15 μm thick sections 
with a cryotome. 

To identify the locations of 72 pre-selected genes we 
developed a method termed coppaFISH (combinato-
rial padlock-probe-amplified fluorescence in situ hy-
bridization), which is a development of a previous ap-
proach of in situ sequencing41. This method amplifies 
selected transcripts in situ using barcoded padlock 
probes42–45 and reads out their barcodes combinatori-
ally through 7 rounds of 7-colour fluorescence imag-
ing (Methods; Extended Data Fig. 1). The method de-
tected 148±59 transcripts per cell (mean ± SD). The 
slices were aligned to the in vivo z-stacks with a point-
cloud registration algorithm, using inhibitory neu-
rons identified in vivo with mCherry and ex vivo 
through gene expression, as fiducial markers (Fig. 1b-
e; Extended Data Fig. 2). We applied this method to 
17 recording sessions from 4 mice, obtaining 89±30 
(mean ± SD) molecularly-identified inhibitory cells to-
gether with 393±173 pyramidal neurons per session, 
making a total of 1,028 unique molecularly identified 
inhibitory cells (some of which were recorded in mul-
tiple sessions; Supplementary Data File 1).  

We classified these inhibitory cells using a 3-level hi-
erarchy (Fig. 1f). The lowest hierarchical level (“t-
type”) comprised the fine transcriptomic clusters de-
fined by Tasic et al.4, and the top level (“Family”) was 
the Pvalb, Sst, Lamp5, Vip, and Sncg groupings de-
fined by these same authors. An intermediate level 
(“Class”) was suggested by UMAP analysis of 
scRNA-seq data (Extended Data Fig. 3), which re-
vealed collections of t-types that we could putatively 
associate to morphological cell types (see Methods for 
full explanation). We named these intermediate-level 
Classes Pvalb-Tac1 (putative Pvalb-basket cells), 
Pvalb-Vipr2 (chandelier cells), Sst-Reln (Martinotti 
cells); Sst-Tac1 (non-Martinotti Sst cells); Lamp5-Npy 
(neurogliaform cells); Lamp5-Tmem182 (canopy 
cells); Lamp5-Chrna7 (layer 1 alpha7 cells); Vip-Reln 
(layer 1 Vip cells); Vip-Cp (other Vip cells); Sncg-
Pdzn3 (Large Cck cells); and Sncg-Vip (Small Cck/Vip 
cells). UMAP analysis (Extended Data Fig. 3) sug-
gested that while Classes were usually discrete, their 
constituent t-types often merged continuously into 
each other, tiling dimensions of continuous variabil-
ity of inhibitory neurons. 

Cells functionally imaged in vivo were assigned to a t-
type (and thus also a Class and Family) using 
pciSeq41, a Bayesian algorithm that computes for each 
cell a probability distribution over cell types defined 
by previous scRNA-seq data. Expression levels were 
sufficient to assign cells with high probability to a sin-
gle t-type (Fig. 1g-i, Extended Data Fig. 4), and we 
therefore assigned each cell to a single t-type of max-
imum a posteriori probability. As expected from the re-
striction of 2-photon imaging to the superficial layers, 
the imaged cells were assigned to just 35 of the 60 total 
t-types defined by the original scRNA-seq study. The 
number of cells recorded varied across types (Fig. 1f), 
and t-types to which less than 3 cells were identified 
were excluded from further analysis (eight cells in to-
tal). The gene expression for the 72 genes in our panel 
showed consistent differences across the 35 t-types 
recorded (Fig. 1j). 

To verify the accuracy of our cell type assignments, 
we performed two analyses using independent data. 
First, we took advantage of the fact that different fine 
inhibitory t-types reside at different depths in V1, as 
revealed by a recent Patch-seq study8. We found that 
the depth distribution of the t-types assigned by our 
method closely matches that found by this independ-
ent study (Fig. 1k). Importantly, this did not only re-
flect depth differences between the main inhibitory 
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Families (p<0.001, ANCOVA controlling for Family) 
or even Classes (p<0.001, ANCOVA controlling for 
Class). For example, while Sst-expressing neurons are 
most often found in deep layers, specific t-types such 
as Sst-Calb2-Necab1 were localized in superficial lay-
ers by both our method and the independent Patch-
seq data. Second, we compared the functional record-
ings to 2-photon calcium imaging that identified cells 

with three transgenic lines (Sst, Pvalb, Vip)19. Analys-
ing our data after grouping together cells expected to 
be labelled in each of these lines, we found results 
consistent with previous work (Extended Data Fig. 5). 
We thus conclude that our methods accurately iden-
tify fine t-types, and that the functional correlates of 
these cells match those previously observed at the 
Family level with previous methods.  

  

Figure 1 | Post-hoc transcriptomic identification of recorded neurons. a, 3D representation of an example reference Z-Stack (white: 
GCaMP6m, expressed virally in all neurons, red: mCherry expressed transgenically in inhibitory neurons). Axis scale in µm. b, Digital 
sagittal section of this Z-Stack (maximum intensity projection of a 15 μm slice), same colours as in a. Scale bar: 100 µm. c, Portion of 
the ex vivo section aligned to the cut in b after 72-fold mRNA detection with coppaFISH. Individual dots represent detected mRNAs (see 
top of j for colour code). Scale bar: 100 µm. d, Expanded view of the dashed rectangle in b and c showing in vivo mCherry fluorescence 
(red) and ex-vivo Gad1 mRNA detections (blue). Scale bar: 20 µm. e, Expression of all 72 genes in this same region, plotted as in c. 
White lines indicate two functional imaging planes. Gray background: DAPI stain for cell nuclei. Scale bar: 20 µm. f, Hierarchical classi-
fication of recorded cell types into 5 Families, 11 Classes, and 35 t-types. Number of unique cells of each t-type given in parentheses. 
g, h, Higher magnification view of Cells 1 and 2 from e. Gene detections are indicated by coloured letters (code at top of j). Gray 
background: DAPI image. Insets: pie plots indicating the posterior probabilities of assignment to different t-types. Scale bar: 5 µm. i, 
Deconvolved calcium traces for the two example cells, shown together with running speed. j, Mean expression of the 72 detected genes 
(pseudocoloured as log(1+GeneCount)) for the 35 t-types ordered as in f (n=4 animals). k, Comparison between the mean cortical depth 
of each t-type found using coppaFISH (on N = 14 sections from a brain in which mRNAs were detected down to Layer 6), and the cortical 
depth found by an independent study using Patch-seq8. (r=0.91, p<0.001). Only t-types with at least 3 cells for each dataset were 
considered. The black line represents equality. 
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State modulation of inhibitory t-types 
We next asked to what extent fine transcriptomic 
types affect a neuron’s in vivo activity patterns. We 
generated raster plots showing the simultaneous ac-
tivity of V1 populations, with all inhibitory neurons 
identified to fine transcriptomic types (Fig. 2a). Exam-
ining these rasters during spontaneous activity re-
vealed complex patterns of correlated activity, which 
varied with ongoing behaviour as measured by two 
assays of arousal: locomotion and pupil diameter. It 
has been possible to plot such rasters before, but with-
out identifying the transcriptomic identity of the rec-
orded neurons. We therefore first asked how activity 
of the identified cell types depended on cortical state, 
a correlate of these assays of arousal21,29,32,33,46–48. 

We characterized cortical state using the activity of 
the excitatory population. As previously described49, 
some excitatory cells (positively weighted on the first 
principal component of population activity) were 
more active when the mouse was aroused (fast run-
ning, large pupil) while other excitatory cells (with 
negative weights) fired during inactive periods (no 
running, small pupil). Additionally, we found that be-
havioural inactivity was sometimes accompanied by 
low-frequency fluctuations in population activity, 
which strongly entrained the excitatory neurons as 
visible in the mean activity of the negatively weighted 
cells (Fig. 2a). The frequency of these fluctuations can-
not be determined from our data as our two-photon 
microscope’s 4.3 Hz sampling rate aliases frequencies 
above 2.15 Hz, but they likely correspond to the 3-6 
Hz oscillation that has been described in mouse visual 
cortex and hypothesized as a homolog of the primate 
alpha rhythm50–53. We thus distinguished three corti-
cal states corresponding to decreasing levels of 
arousal: periods when the mouse is running; periods 
when the mouse is stationary but the network desyn-
chronized; and stationary periods with synchronized, 
oscillatory population activity. To quantify a cell’s 
modulation by cortical state we compared the activity 
of each cell during the two extreme states: Running 
vs. Stationary Synchronized. 

Statistical analysis of differences between inhibitory 
cell types must avoid two potential confounds. First, 
the large number of t-types presents a potential mul-
tiple comparisons problem. Second, different record-
ings will by chance sample different proportions of 
each cell type, and thus recording-to-recording varia-
bility could be mistaken for variability between cell 

types. To avoid these confounds, we used a hierar-
chical permutation test (Methods), which tests for a 
main effect of Family, Class, or t-type on a variable of 
interest by shuffling the molecular labels of cells 
within an experiment, at each of the 3 hierarchical lev-
els. 

The hierarchical permutation test revealed significant 
differences in state modulation at all three levels: 
Family, Class, and t-type (Fig. 2b). Post-hoc tests re-
vealed large differences in activity across Classes in 
the Pvalb Family: Pvalb-Tac1 cells were strongly ac-
tive during oscillatory states and less active during 
running, while Pvalb-Vipr2 cells showed the opposite 
behaviour (consistent with previous results54). Like-
wise, in the Sst Family, Sst-Tac1 cells were most active 
during synchronized states while Sst-Reln cells were 
more active during running. Similar dichotomies 
were observed in the Lamp5 Family. Vip and Sncg 
cells were more active during running, except for Vip-
Reln cells, which showed the opposite behaviour. 
Post-hoc statistical tests at the t-type level revealed 
that the most prominent difference was within the 
Lamp5-Npy (putative neurogliaform) Class; a trend 
toward difference was also seen in Sst-Reln (putative 
Martinotti) cells (p<0.05, significant on its own but not 
after Benjamini-Hochberg correction). Analysis of the 
Stationary Desynchronized state revealed intermedi-
ate activity compared to the two extreme states (Ex-
tended Data Fig. 6a-b). The modulations between ei-
ther one of the extreme states and the intermediate 
state (Stationary Desynchronized) were strongly cor-
related, indicating a linear progression of neural ac-
tivity across the three states (Fig. 2b-c). A t-type’s state 
modulation was correlated with its degree of phase-
locking to the Synchronized state oscillation, with t-
types more active during Running less locked to the 
oscillation during the Stationary Synchronized peri-
ods (Fig. 2d). 

The dependence of state modulation on t-type was 
consistent with smooth variation along a continuum 
of genetic types, rather than a sharp difference be-
tween discrete groups. For example, amongst t-types 
of the Lamp5-Npy Class, Lamp5-Lsp1 cells were most 
active in the Synchronized state, while Lamp5-Plch2-
Dock5 cells fired more during Running. The division 
between these t-types however reflects a largely arbi-
trary dividing line along a continuous dimension of 
genetic variability (Extended Data Fig. 3). To test if 
their divergent state modulation followed a continu-
ous, rather than discrete transcriptomic variable, we 
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quantified each imaged cell’s position along the con-
tinuum by its ratio of posterior probabilities of assign-

ment to the two t-types. We observed a smooth de-
pendence of state modulation along this continuum, 
which ANCOVA analysis showed depended on this 

 

Figure 2 | State modulation of inhibitory t-types. a, Raster of spontaneous neuronal activity (blank screen). Each row represents 
a neuron. Top, excitatory cells (ECs; mCherry-negative), sorted by weight on the first principal component (PC) of their activity. 
Middle: inhibitory cells, grouped and coloured by t-type (symbol code in b). Bottom: running speed (cm/s), pupil size (pixels), and 
mean activity of the 10% of ECs with most negative PC weights. Three columns on right: expanded view of time windows marked 
in colour above main raster, illustrating three behavioural states. b, Left: pseudocolour representation of mean activity of each t-
type in each state. Right: distribution of state modulation (Running vs. Stationary Synchronized) for cells of each t-type (n=4 animals; 
17 sessions). Top p-values: Omnibus test for Family/Class/t-type effects. p-values on right: post-hoc tests for effect of Class within 
each Family; stars on right for effect of t-type within each Class (Benjamini-Hochberg corrected). Coloured/black arrows on left: 
significant state modulation for each Class/t-type (Benjamini-Hochberg corrected, number of arrowheads indicates significance). c, 
State modulation for Running vs. Stationary Desynchronized states, against modulation for Stationary Synchronized vs. Desynchro-
nized states. Each glyph shows median values for a t-type, symbols as in b (p<0.001, ANCOVA controlling for session). d, Modu-
lation for Running vs. Stationary Desynchronized states against locking to the synchronized-state oscillation. Each glyph shows 
median values for a t-type. (p<0.001, ANCOVA controlling for session). e, State modulation for cells in the Lamp5-Plch2-Dock5 and 
Lamp-Lsp1 t-types, against t-type probability index (log(pType1/pType2); left), or Ndnf (middle) and Cck (right) gene expression. 
These three variables correlated significantly with state modulation (p<0.001, Pearson correlation), even controlling for a common 
effect of t-type (p<0.05, ANCOVA). Dashed lines: linear fits. *, p<0.05, **, p<0.01, ***, p<0.001; 1, 2, or 3-headed arrows in b indicate 
the same significance levels, with direction indicating the sign of the modulation. 
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continuous genetic score better than on discrete t-type 
assignment (Fig. 2e). Similar continuous dependence 
was visible at the single-gene level, with state modu-

lation within Lamp5-Npy cells correlating with ex-
pression of Cck and Ndnf (Fig. 2e) even after control-
ling for t-type. Similar results were seen for Sst-Reln 
t-types (Extended Data Fig. 6c).  

 
Figure 3 | Sensory responses of inhibitory t-types. a, Pseudocolour rasters of trial-averaged activity around onset of drifting 
grating stimuli (duration 0.5s), for different stimulus sizes (5°, 15°, 60°) and locomotor states. Each row shows average activity 
of a t-type. Dashed grey lines: stimulus onset. b, Cross-validated direction tuning curves for each t-type, shown in pseudocolour 
as a function of grating direction. Tuning curves were averaged over odd trials, shifted and normalized according to the preferred 
direction on even trials, and averaged across cells of the same t-type. c, Hierarchical analysis of responsiveness to drifting 
gratings (measured at the stimulus size eliciting the largest negative or positive response), plotted as in Fig. 2b. d, Additional 
statistical analyses of visual stimulus responses. Top row, from left: fraction of cells of each Class significantly excited or sup-
pressed by grating stimuli; hierarchical analysis of differences between mean response to large and small gratings in stationary 
and running conditions, and modulation of visual response by running averaged over all sizes, plotted as in Fig. 2b but only 
showing the Class level. Bottom row: hierarchical analysis of orientation and direction selectivity indices, responsiveness and 
tuning to natural image stimuli. e, Size tuning curves for each Class. Dashed lines and triangular markers correspond to mean 
stimulus response during stationary periods. Solid lines and circular markers correspond to mean stimulus response during 
running epochs. Black dashed and solid lines indicate respectively the average activity during baseline for Running or Stationary 
(interstimulus periods).  
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Sensory responses of inhibitory t-types 
We next probed the responses of different inhibitory 
types to visual stimuli: drifting gratings of various 
sizes and orientations, and natural images. Unlike 
state modulation, visual responses showed signifi-
cant differences only at the level of Families, not Clas-
ses or t-types.  

Most inhibitory cell types contained neurons re-
sponding to grating stimuli (Fig. 3a-d; Extended Data 
Fig.7). Pvalb and Sst cells responding to gratings were 
almost exclusively excited by them, whereas Sncg 
cells, whose visual responses to our knowledge have 
not yet been studied, were almost exclusively inhib-
ited. Lamp5 and Vip cells contained a mixture of ex-
cited and inhibited cells, with Vip cells more often ex-
cited. Orientation and direction tuning was relatively 
low for most Families22,28,36,55–57, with a slight tendency 
for Sst and Vip cells to show stronger tuning. Most 
cells showed significant coding of natural image stim-
uli, which again differed significantly between Fami-
lies, being weakest for Sncg cells. 

The most striking difference in the grating responses 
of different inhibitory cell types was in their tuning to 
grating size and its modulation by cortical state (Fig. 
3e). Size tuning was significantly modulated at the 
Family level: as previously reported16,19, Sst cells 
showed little or no surround suppression, with strong 
responses to large stimuli. Sncg cells showed a strik-
ingly opposite pattern in which they were progres-
sively more suppressed by larger stimuli (Fig. 3e). 
Modulation of grating response by locomotion was 
significantly different between Families, with Sst, 
Pvalb, and Vip cells showing various degrees of in-
crease with locomotion and Sncg a decrease.  

In summary, sensory responses showed significant 
differences between Families, but not between Clas-
ses and t-types. The most striking differences between 
Families were in size tuning and its modulation by 
state. A lack of statistical significance of course does 
not exclude the possibility that t-types may differ in 
sensory tuning in ways too small for our methods to 
detect; but the fact that the same statistical tests found 
t-type differences in state modulation suggests that 
any such differences in sensory tuning are likely to be 
subtle.   

A single genetic axis predicts state modulation 
Although the number of inhibitory t-types is large 
and their state modulation is diverse, we found that a 
large portion of this diversity can be explained by a 

single genetic axis. This axis was defined inde-
pendently of the physiological data: we simply com-
puted the first principal component of the gene ex-
pression vectors measured in situ (genetic PC 1, or 
gPC1). A similar approach previously applied to 
scRNA-seq data from CA1 inhibitory neurons re-
vealed a continuum ranging from cells targeting ex-
citatory cell somas at one end, to cells targeting distal 
dendrites and inhibitory neurons at the other13. Ap-
plying genetic PCA to the in situ transcriptome of our 
cells revealed a similar continuum (Fig. 4a). The clas-
ses with the most negative gPC1 values were Pvalb-
Tac1 and Sst-Tac1 cells; those with the highest were 
Sncg, Vip, Lamp5-Chrna7 and Lamp5-Tmem182 cells; 
Sst-Reln and Lamp5-Npy Classes occupied the centre 
of the continuum. Genes negatively correlated with 
the continuum included Gad1 and Slc6a1 (Fig. 4a), 
which are involved in GABA synthesis and transport, 
consistent with previous analysis suggesting that cell 
types negatively weighted on this continuum exert 
stronger inhibition on their targets and have faster 
metabolic rates13. 

The state modulation of a t-type correlated with its 
position along the genetic continuum gPC1 (Fig. 4b). 
Cells with negative gPC1, such as Pvalb-Tpbg (puta-
tive basket cells) were most strongly active in Syn-
chronized states, while cells with positive gPC1 such 
as Sncg cells were most active during Desynchronized 
and Running states. State modulation was signifi-
cantly correlated with gPC1, (p<0.001, ANCOVA con-
trolling for session; Fig. 4b). For example, Sst-Tac1 
cells, which show a faster-spiking physiological pro-
file than Sst-Reln cells8, had the lowest gPC1 values 
and greatest preference for oscillatory states amongst 
the Sst population (Fig. 4b). These effects could be 
seen at a single-gene level, with a t-type’s state mod-
ulation negatively correlated with expression of 
Slc6a1 and Gad1 (p<0.001, ANCOVA controlling for 
session). Thus, different inhibitory t-types have di-
verse relationships to cortical state, but these relation-
ships can be at least partially predicted by a single ge-
netic axis, with the side of this axis associated with 
stronger GABA synthesis and release showing more 
activity in oscillatory states. 

The main gPC1 axis also largely predicted correla-
tions between the spontaneous activity of inhibitory 
Classes, with positive correlations between Classes of 
similar gPC1 values, and negative correlations be-
tween Classes of opposite gPC1 values (p<0.05, per-
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mutation test; Fig. 4d). This also held true when con-
sidering correlations computed within any of the 
three states independently (Extended Data Fig. 8). 

A cell type’s state modulation and position on the 
gPC1 axis also correlated with many aspects of its in-
trinsic physiology and morphology (Fig. 4e). To 
demonstrate this, we analysed data from an inde-
pendent Patch-seq study8. Transcriptomic types that 
were active during synchronized states (low arousal 
levels) had faster membrane time constants and spike 
repolarization speeds, more hyperpolarized resting 
potential, lower membrane resistance, larger rheo-
base (i.e. the amount of current required to drive spik-
ing), and less spike frequency adaptation (Fig. 4e; Ex-
tended Data Fig. 9a). Transcriptomics types active 

during running had the opposite properties. This 
Patch-seq data also revealed an intriguing correlate of 
gPC1 and axonal morphology. Within the Sst and 
Lamp5 Families, cells with larger values of gPC1 
(which thus would show more activity in alert states 
in vivo) had a greater fraction of their axon in layer 1, 
and a smaller fraction in layer 2/3 (p<.001, Pearson 
correlation with Benajamini-Hochberg correction; Ex-
tended Data Fig. 9b). This correlation was not seen for 
the other Families, for which axonal projections to 
layer 1 were rare.  

Finally, we hypothesized that variation in state mod-
ulation along the gPC1 axis might reflect variation in 
cholinergic receptor expression. Acetylcholine levels 
are higher in active states and contribute to cortical 

 

 Figure 4 | A single genetic axis explains state modulation. a, Left: violin plots showing distribution of the first genetic 
principal component (gPC1) for each t-type. Right: weighting of each gene in this principal component. b, Correlation between 
state modulation and gPC1. Each glyph represents median values for a t-type, symbols as in a (p<0.001, ANCOVA controlling 
for session). c, Correlation between state modulation and expression of Slc6a1 and Gad1 measured in situ. Each dot repre-
sents median values for a t-type, coded as in a. (Slc6a1: p<0.001, ANCOVA controlling for session; Gad1: p<0.001, ANCOVA 
controlling for session).  d, Matrix of pairwise correlations between simultaneously recorded Classes. The Classes are sorted 
by gPC1, showing a significant effect of gPC1 on the pairwise correlations (p=0.013, permutation test). e, Correlation between 
state modulation and electrophysiological properties measured by an independent Patch-seq study8. Each symbol represents 
median values for a t-type, coded as in a. Rheobase: r=0.39; Spike Adaptation: r=0.47; Spike Shape Index: r=0.23; log(τ): 
r=0.32. (Significance: Pearson correlation). f, Correlation between state modulation and Cholinergic receptor expression ob-
tained from an independent scRNA-seq study4. Each symbol represents median values for a given t-type, coded as before. 
Chrm4: r=0.24; Chrm3: r=0.38; Chrna4: r=0.23; Chrna5: r=0.12. Gq and Gi indicate metabotropic receptors coupled to a Gq 
(excitatory) and Gi (inhibitory) pathways, E indicates excitatory ionotropic receptor. Correlations of state modulation with excit-
atory cholinergic receptor expression were higher than with inhibitory receptor expression (including those not shown here; p 
= 0.01, ANOVA; only receptors with > 2 counts in at least 10 t-types were considered, making 10 in total). *, p<0.05, **, p<0.01, 
***, p<0.001; Dashed lines are linear regression fits. 
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desynchronization58–64. Moreover, acetylcholine dif-
ferentially affects inhibitory neuronal types by acting 
through different receptors, with nicotinic and Gq-
coupled muscarinic receptors exciting some inhibi-
tory types and Gi-coupled muscarinic receptors inhib-
iting others65–70. To test this hypothesis, we examined 
the correlation between state modulation and expres-
sion of each cholinergic receptor type across t-types. 
Consistent with the hypothesis, we found positive 
correlations between state modulation and the ex-
pression level of all nicotinic or Gq-coupled musca-
rinic receptors, and negative correlations between 
state modulation and expression levels of Gi-coupled 
muscarinic receptors (Fig. 4f; excitatory receptors sig-
nificantly more positively correlated than inhibitory 
receptors, p<0.05, ANOVA). This suggests that differ-
ential expression of cholinergic receptor subtypes 
may contribute to the smooth variation of state mod-
ulation along the main axis of genetic variation gPC1. 

Discussion 
By genetically identifying the transcriptomic types of 
simultaneously recorded V1 neurons, we discovered 
fine functional differences across cellular t-types and 
a simple ordering along a main axis of genetic varia-
tion. These differences and this ordering were seen 
not in the sensory responses of the neurons – which 
differed primarily across high-level Families – but ra-
ther in the relation of their activity with cortical and 
behavioural state. State modulation can vary signifi-
cantly between fine t-types within a Class, but this ap-
pears to reflect continuous genetic variation rather 
than discrete t-types. Furthermore, a single, simple, 
axis of genetic variation across inhibitory cells – the 
first principal component of gene expression (gPC1) – 
largely explains differences in state modulation be-
tween t-types, and predicts their spontaneous corre-
lations. This genetic axis also correlates with a t-type’s 
membrane physiology, layer 1 axon content, and ex-
pression of excitatory and inhibitory cholinergic re-
ceptors. 

The diversity that we observed across t-types may ex-
plain why previous reports of state modulation of dif-
ferent interneuron types, based on transgenic lines, 
have at times given apparently conflicting results. 
Previous work has uniformly shown that the activity 
of Vip-Cre labelled neurons in V1 is enhanced by run-
ning19,21,29,33,71 and our data are fully consistent with 
this. Recent work has shown that most V1 cells la-
belled in Ndnf-Cre mice fire more in aroused states72. 

This is again consistent with our results: Ndnf is 
found in the Lamp5 family but not the Lamp5-Lsp1 t-
type, which was the only Lamp5 t-type we found to 
have significantly negative state modulation. Meas-
urements of running modulation in Pvalb-Cre mice 
(which will label mainly basket cells in V1) have 
shown mixed results19,21,29, which may be explained by 
an effect of cell depth on running modulation: cells 
above 300 μm show primarily suppression by run-
ning and cells below that depth primarily excitation19. 
Our data involved only cells above 300 μm depth and 
showed close to uniform negative state modulation in 
Pvalb-Tac1 (putative basket) cells but positive modu-
lation in Pvalb-Vipr2 (putative chandelier), consistent 
with recent data from Vipr2-Cre mice54. We speculate 
that the deeper-layer cells positively modulated in 
Pvalb-Cre mice correspond to additional Pvalb-Tac1 
t-types not recorded in this study. An additional fac-
tor that may explain differing results in previous 
work is light level. Work in Sst-Cre mice has shown 
that running suppresses activity in pitch darkness, 
but has mixed effects in light19,21,29,32,72; our data were 
conducted in light, and we speculate that the mixed 
effects seen in Sst-Cre mice might reflect a Class dif-
ference, with Sst-Tac1 cells suppressed but Sst-Reln 
cells activated.  

It is remarkable that a single transcriptomic dimen-
sion – derived from gene expression patterns without 
regard to physiological properties – correlates with 
state modulation that we measured in vivo, with in-
trinsic physiology measured in vitro8, and with the ex-
pression of cholinergic receptors with opposite signs 
for excitatory and inhibitory receptors4. The contin-
uum we observed is similar to one previously de-
scribed in scRNA-seq data from CA1 inhibitory neu-
rons13, but with one notable exception: in CA1, Sncg t-

 

Figure 5 | Model for how state-dependent modulation 
of inhibitory subtypes could bias cortex towards bot-
tom-up or top-down inputs.  
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types occupied multiple locations along the contin-
uum, rather than all being at the positive end as in V1. 
This might be related to the existence of fast-spiking 
CCK basket cell subtypes in CA173, and the fact that 
CA1 Sncg cells can be inhibited by locomotion20.   

Although we have focused here on one dimension of 
arousal/desynchronization, the space of cortical states 
is unlikely to be one dimensional, as multiple dimen-
sions of V1 excitatory cell activity correlate with on-
going behaviour49. Characterizing how the multidi-
mensional space of cortical states relates to multiple 
inhibitory classes and ongoing behaviours remains an 
important topic for future work, as does understand-
ing whether this relationship varies between different 
cortical regions. High-throughput application of the 
current methods will make this possible.  

The existence of these correlations with gPC1 sug-
gests that many observations, made on individual in-
hibitory types, could be consequences of a general 
principle applying to all interneurons. For example, 
acetylcholine has been shown to have diverse effects 
on different inhibitory types65,67–69, such as the classi-
cal “cholinergic switch”70 whereby fast spiking (puta-
tive Pvalb basket) cortical neurons are inhibited by 
muscarinic receptors but low-threshold spiking (pu-
tative Sst Martinotti) neurons are excited by nicotinic 
receptors. This result is consistent with the receptor 
expression profile of these Classes, and with our find-
ing that the Pvalb-Tac1 Class is inhibited, and the Sst-
Reln Class excited in Desynchronized and Running 
states. In fact, our data suggest that the behaviour of 
these two cell Classes is a manifestation of a more 
general principle: at least in superficial V1, inhibitory 
cells with lower gPC1 values exhibit physiological 
properties closer to Pvalb basket cells, lower levels of 
nicotinic and excitatory muscarinic receptors, more 
inhibitory muscarinic receptors, and negative state 
modulation, and the reverse is true for cells with 
larger gPC1 values. Differences in cholinergic recep-
tor expression likely contribute to differences in in 
vivo state modulation: acetylcholine levels are largest 
in locomotion and lowest in synchronized states, and 
state modulation of at least some interneuron classes 
depends on cell-type-specific nicotinic and musca-
rinic currents21,69. Direct cholinergic input is of course 
unlikely to be the only factor mediating state depend-
ence of an interneuron class: interneurons receive in-
put from pyramidal cells, and from each other in spe-
cific ways such as the well-known “disinhibitory cir-
cuit”21,25,69. Nevertheless, the correlation of cholinergic 

receptor expression and state modulation we ob-
served suggests that cell-type-specific cholinergic 
modulation may play a substantial role, at least in su-
perficial V1.  

What computational role might be served by this 
state-dependent switch in the activity of different in-
hibitory cell types? Our data are consistent with a 
long-standing view that alert states and cholinergic 
modulation biases cortex towards feedforward inputs 
from primary thalamus, and away from top-down in-
puts from elsewhere in cortex74–78 (Fig. 5). Indeed, the 
Classes most suppressed by alert states (putative 
Pvalb basket and Sst non-Martinotti) preferentially 
target thalamorecipient layers 4 and 5b, while the 
Sncg, Lamp5, Sst-Martinotti and Vip cells more ex-
cited in alert states preferentially target either inter-
neurons, or pyramidal cells in other layers79–81. Our 
data furthermore suggests that the degree of state 
modulation for Sst and Lamp5 neurons correlates 
with their axonal innervation of layer 1, which re-
ceives top-down input. Opposing cholinergic modu-
lation of these inhibitory classes might thus alter the 
balance between bottom-up and top-down inputs. 

In summary, while V1 inhibitory neurons are very ge-
netically diverse, we found that their sensory tuning 
is determined largely by their top-level tran-
scriptomic Family, and their state modulation can be 
predicted in large part from a single genetic axis that 
also correlates with their intrinsic physiology, mor-
phology, and cholinergic receptor expression. As 
emerging experimental techniques allow for ever-
greater amounts of information to be collected on the 
physiology, connectivity, and firing correlates of cor-
tical interneuron classes, these simple principles may 
help organize this information.  
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Methods 
All experimental procedures were conducted in accordance with the UK Animals (Scientific Procedures Act) 
1986. Experiments were performed at University College London under personal and project licences released 
by the Home Office following appropriate ethics review.  

Mice 

Experiments were performed on mice aged between 12 and 15 weeks maintained on a 12-h light/dark cycle, at 
20–24 °C and 45–65% humidity, in individually ventilated cages. For post-hoc identification of transcriptomic 
t-types, four (two males and two females) Gad2-T2a-NLS-mCherry transgenic mice (Stock No: 023140, The 
Jackson Laboratory), expressing the red fluorescent protein mCherry in the nuclei of Gad2 expressing cells, 
were used. For comparison to transgenic mouse lines (Extended Data Fig. 5), additional experiments were per-
formed as in Ref.19 using one male Pvalb<tm1(cre)Arbr> and 2 male, 1 female Sst<tm2.1(cre)Zjh> crossed with 
Gt(ROSA)26Sor<tm14(CAG-tdTomato)Hze>. 

Surgical procedures 

On the day of surgery, mice were anaesthetized with isoflurane (1–2% in oxygen), their body temperature was 
monitored and kept at 37–38 °C using a closed-loop heating pad, and the eyes were protected with ophthalmic 
gel (Viscotears Liquid Gel, Alcon). An analgesic (Rimadyl, 5 mg/kg) was administered subcutaneously before 
the procedure, and orally on subsequent days. Dexamethasone (0.5 mg/kg, IM) was administered intramuscu-
larly 30 min before the procedure to prevent brain oedema. The exposed brain was constantly perfused with 
artificial cerebrospinal fluid (150 mM NaCl, 2.5 mM KCl, 10 mM HEPES, 2 mM CaCl2, 1 mM MgCl2; pH 7.3 
adjusted with NaOH, 300 mOsm). During the surgery, we first implanted a head-plate over the right hemi-
sphere of the cranium for later head-fixation: a stainless-steel head plate with a 10-mm circular opening was 
secured over the skull using dental cement (Super-Bond C&B, 10 Sun Medical). We then made a circular crani-
otomy over V1 (3 mm diameter) using a biopsy punch. At this point 6-7 virus injections were made at different 
positions inside the craniotomy. Finally, the craniotomy was sealed with a glass cranial window, using cy-
anoacrylate adhesive (Vetbond, 3M) and dental cement.  

All mice were injected with an unconditional GCaMP6m virus, AAV1.Syn.GCaMP6m.WPRE.SV40 obtained 
from the University of Pennsylvania Viral Vector Core. The virus was injected with a bevelled micropipette 
using a Nanoject II injector (Drummond Scientific Company, Broomall, PA 1) attached to a stereotaxic microma-
nipulator. Six to seven boli of 100-200 nL virus (2.23x1012 GC/ml) were slowly (~20 nL/min) injected unilaterally 
into monocular V182, 2.1-3.3 mm laterally and 3.5-4.0mm posteriorly from Bregma and at a depth of L2/3 (200-
300 mm).  

After virus injection, a small bolus (10uL) of red fluorescent beads (FluoSpheres™ Carboxylate-Modified Mi-
crospheres, 2.0 μm, red fluorescent (580/605), 2% solids, ThermoFisher Scientific) was injected at the most rostral 
part of the craniotomy, to allow orientation of the ex-vivo slices but not interfere with V1 imaging in the caudal 
part. Following recovery, mice were habituated for handling and head-fixation for 3 days before carrying out 
recordings. 

Recording neuronal activity in V1 

Two-photon calcium imaging 

Each mouse was recorded for at least 3 sessions. In vivo recordings were performed 15-45 days after the virus 
injection. We used a commercial two-photon microscope with a resonant-galvo scanhead (B-scope, ThorLabs, 
Ely UK) controlled by ScanImage 4.283, with an acquisition frame rate of about 30 Hz (at 512 by 512 pixels, 
corresponding to a rate of about 4.3 Hz sampling rate). The field of view was 550-600 μm large. We imaged 7 
planes at 15-45 μm steps, starting at various positions below the brain surface (from 0 to -150 μm) to sample 
different cortical depths and therefore t-types recorded simultaneously during different sessions. Imaging cal-
cium activity was performed at a wavelength of 920nm or 980nm. Three computer screens spanning -135 to 
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+135 v° along the azimuth axis and -35 to +35 v° along the elevation axis were used to display visual stimuli. 
During the presentation of visual stimuli, we switched off the red gun of the monitors to prevent light from the 
monitors contaminating the red fluorescent channel.  

At the end of each recording session, reference Z-Stacks were acquired. Starting at the same position as the 
imaging planes, we acquired two Z-Stacks of about 400um depth, with a 1-micron step between planes. The 
first one, called GCaMP Z-Stack was acquired at the same wavelength as the calcium imaging (920 or 980nm). 
The second one, called reference Z-Stack, was acquired at 1040nm to image mCherry fluorescence. 

Before sacrificing each mouse, we acquired structural Z-stacks (ranging from the brain surface to 400um deep) 
at 1040nm to get an image of the mCherry cells across the whole craniotomy (including the position where the 
red fluorescent beads were injected). This structural Z-stack was used to select slices on which to perform tran-
scriptomic analysis, and to provide an initialization point for the registration algorithm. 

Initial retinotopic mapping 

All recordings were targeted to the V1 Monocular region (>60° azimuth). To find this region, during the first 
imaging session, we initially mapped the retinotopy of different candidate fields-of-view, using single plane 
imaging. Sparse noise stimuli were presented to the mouse, consisting in black or white squares of width 4.5° 
visual angle on a grey background at a frame rate of 5 Hz for 10 minutes. Squares appeared randomly at fixed 
positions in a 16 by 60 grid, spanning the retinotopic range of the computer screens. 1.5% of the squares were 
shown at any one time.  

Visual Stimulation 

Drifting gratings were centred on the mean receptive field of the microscope’s field of view. Gratings had a 
duration of 0.5 s, temporal frequency of 2 Hz and spatial frequency of 0.15 cycles/deg. The gratings drifted in 
12 different directions (from 0 to 330°, separated by 30°) and were of 3 different sizes (5°, 15° and 60° diameter). 

Natural scenes from the ImageNet database were contrast-normalized and presented as described in Ref.49. 
Each image was presented for 0.5 s with inter-stimulus interval uniformly distributed from 0.3 to 1.1 s. Five 
percent of the total presentations were blank stimuli. During each session we presented a given set of 1050 
different natural images twice (corresponding to a subset of the 2800 images originally used in Ref.49).  

On each recording session we presented the same random sparse noise stimuli used to map retinotopy (see 
above), for 30 minutes.  

Spontaneous activity was recorded in front of a blank screen, set to a steady cyan level equal to the background 
of all the stimuli presented for visual responses protocols. The duration of these blank screen presentations was 
typically between 15 and 20 minutes long. 

Eye-Tracking 

We used a collimated infrared LED (SLS-0208-B, lpeak = 850nm; controller: SLC-AA02-US; Mightex Systems,To-
ronto, Canada) to illuminate the eye contralateral to the recording site. Videos of eye position were captured at 
30 Hz with a monochromatic camera (DMK 21BU04.H, The Imaging Source, Bremen, Germany) equipped with 
a zoom lens (MVL7000; Navitar, Rochester, NY), and positioned at approximately 50 degrees azimuth and 50 
degrees elevation relative to the centre of the mouse’ field of view. Contamination light from the monitors and 
the imaging laser was rejected using an optical band-pass filter (700-900nm) positioned in front of the camera 
objective (long-pass 092/52x0.75, The Imaging Source, Bremen, Germany; short-pass FES0900, Thorlabs, Ely 
UK). 

Processing of calcium imaging  

Two photon calcium data was processed using Suite2P84. Neuropil contamination was corrected by subtracting 
from each ROI signal its surrounding neuropil signal multiplied by a constant factor of 0.7. Calcium traces were 
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deconvolved using non-negative spike deconvolution85 with a calcium indicator decay timescale of 1.5 s. ROIs 
were manually curated to make sure only cell bodies were considered for further analysis. 

coppaFISH: Combinatorial Padlock-Probe-Amplified Fluorescence in Situ Hybridization 

Many approaches to highly-multiplexed mRNA detection have been described42,43,86–102. The coppaFISH method 
is a development of the in situ sequencing method of Ref.41 (Extended Data Fig. 1). The method uses reverse 
transcription, padlock probes, and rolling-circle amplification to amplify mRNAs to DNA rolling circle prod-
ucts (RCPs) containing multiple copies of a 20 nucleotide (nt) barcode sequence, and then detects their location 
combinatorially in 7 rounds of 7-colour fluorescence imaging.  

Gene selection and DNA probe design 

A panel of 73 genes was selected to allow the identification of cortical cell types. This gene panel was essentially 
the same as the one used in Ref.41., except that some genes that were previously found not to help cell type 
identification were removed. One gene (Yjefn3) was detected in our experiments, but could not be used to assign 
cells to transcriptomic t-types, as it was not present in the reference scRNA-seq dataset4. In the main text we 
therefore refer to a 72-gene panel. 

Multiple padlock probes were designed for each gene, spanning the length of the cDNA (Supplementary Data 
File 2). The number of different padlock probes per gene was chosen based on the expression for each specific 
gene as determined by scRNA-seq. This means that fewer padlock probes were used for genes with low expres-
sion and vice versa (for example 4 padlock probes were designed for Sst but 10 were designed for Chodl). All 
padlock probes consisted of two 15-20nt recognition sites, a 20nt gene barcode (unique to each gene) and a 20nt 
anchor sequence (identical for all genes and padlock probes).  

Padlock probes were designed using the software of Ref.41. Briefly, this software finds suitable RNA target 
sequences by restricting the melting temperature of the binding sequence, and by aligning the candidate se-
quences to the mouse whole transcriptome (RefSeq database) using BLAST+ to check for specificity. Any can-
didate targets for which another transcript or non-coding RNA sequence matched the target with more than 
50% coverage, 80% homology, and coverage spanning the central 10nt of the target sequence were excluded. 
For each padlock probe we also designed a specific primer for reverse transcription, a 15nt long DNA oligonu-
cleotides which binds the region upstream to the mRNA sequences targeted by the padlock probes (Supple-
mentary Data File 3). The use of specific primers greatly improved the number of RCPs obtained per section 
compared to random primers (our unpublished observations).  

To determine the gene-specific DNA barcode sequences (and the anchor sequence), 240,000 orthogonal 25-mer 
oligonucleotide sequences103 were trimmed to 20nt from the 5’ end and screened for Tm (between 55 and 56 °C 
using SantaLucia method). They were further screened for orthogonality with mouse sequences using BLAST+ 
with the NCBI mouse genomic plus transcript (Mouse G +T) database. We used the following BLAST parame-
ters: "-reward", 1, "-penalty", -2, "-gapopen", 2, "-gapextend", 1, "-evalue", 10. Any matches in this blast search 
were removed from the pool. Next, we checked for potential cross reactivity of the remaining sequences to 
themselves using the same BLAST parameters, and any hits were removed, resulting in 6397 possible se-
quences. The barcode sequences were chosen from this pool. 

The combinatorial imaging strategy used two types of DNA Probes. Seven “Dye probes” were designed, each 
consisting of a 20nt long DNA oligo conjugated to one of the 7 following fluorophores: DY405, AF488, DY485xL, 
AF532, AF594, AF647 and AF750; the same dye probes were used on each imaging round (Supplementary Data 
File 4). Additionally, a set of 40nt “Bridge probes” were designed for each imaging round, linking each gene’s 
RCP barcode to one of the 7 Dye probes (Extended Data Fig. 1; Supplementary Data File 5). These bridge probes 
thus caused each gene to show up in a specific colour channel on each round. This two-part strategy of linking 
the 7 dye probes to the RCPs with bridge probes provides a substantial cost saving over making 𝑁 × 𝑁  
dye probes, as dye-coupled probes are much more expensive than simple DNA.  
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Each gene was assigned a sequence of dyes for the 7 imaging rounds using a Reed-Solomon coding scheme104 
(Supplementary Data File 6), which constructs sequences of minimum possible overlap. Specifically, the genes 
were numbered by integers 𝑔, and converted to a base 7 representation 𝑔 𝑔 𝑔 . The dye assigned to gene 𝑔 on 
round 𝑟 was 𝐷 = 𝑔 𝑟 + 𝑔 𝑟 + 𝑔 , 
where addition and multiplication are understood to happen modulo 7. Codes 0 to 6, which correspond to the 
same colour in each round, were not used as these codes could not be distinguished from fixed background 
fluorescence. 

All custom DNA oligos (Padlock probes, primers, Bridge probes and Dye probes) were obtained from Inte-
grated DNA Technologies (Leuven, Belgium). Padlock probes were ordered as 5’ phosphorylated 4 nmole Ul-
tramer™ DNA oligos, all other oligos were ordered as classical 25 nmole DNA oligos. The DNA sequence for 
all 556 primers and padlock probes, 511 bridge probes and 7 dye probes are provided in (Supplementary Data 
File 2-5). 

Tissue preparation 

After the in vivo recordings were finished, mice were anaesthetized with isoflurane and then injected with a 
lethal dose of sodium pentobarbital (0.01 ml/g). The fresh brains were then dissected out from the skull taking 
great care to preserve the integrity of the tissue and avoid warping. The brains were then placed in OCT (Sakura 
Finetek) and left to freeze on dry ice for 30min. The samples were then stored at -80°C until slicing. 15-μm thick 
sagittal sections were then obtained using a Leica Cryostat for each brain and mounted on gelatine-coated bo-
rosilicate glass coverslips (22x55mm). Gelatine coated coverslips allowed tissue section adhesion to the co-
verslip and RNA preservation throughout the protocol. To make them, coverslips mounted on a rack were 
dipped for 30 seconds in solution of a 2% w/v gelatine and 0.2 % w/v chromium potassium sulphate dodecahy-
drate in distilled water (https://www.rndsystems.com/resources/protocols/protocol-preparation-gelatine-
coated-slides-histological-tissue-sections). 2-3 brain sections were thaw-mounted on each coverslip and then 
frozen and stored at -80°C.  

In situ rolling circle product (RCP) production 

The RCPs were prepared as in Ref.41, with some modifications. First, coverslips were taken out of the freezer 
and then directly pre-fixed using 4% PFA for 5 minutes at room temperature. This pre-fixation was followed 
by a quick wash with nuclease-free PBS, and incubation in 0.1 M HCl for 5 minutes at room temperature. After 
one more PBS wash, the sections were incubated in 70% Ethanol for 1 minute and then in 100% Ethanol for 1 
minute at room temperature. The coverslips were then left to dry in air. To keep the reagents on the tissue 
sections, a barrier was drawn around each section using a hydrophobic barrier PAP pen (ImmEdge® Hydro-
phobic Barrier PAP Pen H-4000 - Vector Laboratories).  

The sections were then directly incubated in reverse transcription mix overnight at 37°C in a humidified cham-
ber (Slide staining system, StainTray™ M918, VWRTM). The mix contained 0.5 mM dNTP mix (Thermo), gene 
specific primers (10 μM each), 0.2 μg/μL BSA (NEB), 1 U/μL RIBOPROTECT RNase Inhibitor (Blirt) and 20 
U/μL TranscriptMe reverse transcriptase (Blirt) in 1x reverse transcription buffer (Blirt). The mix was removed 
and fresh 4% (w/v) paraformaldehyde in PBS was added to the sections without any wash in between. This 
post-fixation step aimed to cross-link newly synthesized cDNA to the cellular matrix and was carried out at 
room temperature for 30 minutes, followed by two washes in PBS. RNaseH digestion, padlock hybridization 
and ligation were then performed using a single reaction mix. The mix contained 0.05 M KCl (Sigma), 20% 
Ethylene Carbonate (EC) (Sigma), 10 nM of each padlock probe (557 probes), 0.2 μg/μL BSA, 0.3 U/μL Tth DNA 
Ligase (Blirt) and 0.4 U/μL RNase H (Blirt) in 1x Ampligase buffer (epicenter). The sections were first incubated 
at 37°C for 30 min for RNaseH digestion and moved to 45°C for 60 minutes for stringent hybridization and 
optimal DNA ligase activity. The sections were then washed twice in PBS. Finally, for rolling circle amplifica-
tion, the sections were incubated in a mix containing 5% glycerol (Sigma), 0.25 nM dNTP mix, 0.2 μg/μL BSA, 
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0.2 U/μL EquiPhi29 DNA Polymerase (Thermo Fisher Scientific) and 1x EquiPhi29 buffer (Thermo Fisher) over-
night at 30°C. 

RCP production was quickly verified prior to full barcode read-out by hybridizing a AF750-conjugated oligo-
nucleotide probe (IDT) to the anchor sequence present in all the RCPs. Sections were incubated for 15 minutes 
at room temperature in a hybridization mix containing 10 nM of the dye probe, 2xSSC, 20% EC and  H2O. They 
were then washed twice with 2xSSC. The SSC was then removed from the sections and the coverslips were 
mounted onto SuperFrost plus (VWR) glass slides using 10 μL SuperFrost gold antifade mountant (Life Tech-
nologies). Images of the region of interest (visual cortex) were then acquired to visualize the RCPs. 

Imaging of the in situ barcodes (read-out) 

All seven rounds of imaging occurred in a custom flow cell, using automated fluidics to wash appropriate 
bridge and dye probes prior to each round. The flow cell frame was designed using Blender and printed, using 
an Ultimaker S5 3D printer, in polylactic acid filament (PLA) with polyvinyl alcohol (PVA) support structures. 
The PVA support was removed after printing by placing the flow cells in water on a rocker overnight. To make 
the flow cell air-tight, two 22x55 mm glass coverslips (one with RCP containing sections and one bare) and two 
approx. 40 cm long EFTE tubes (Tubing Tefzel Nat 1/16 OD x .020 ID) were securely mounted using UV curing 
cement (Norland Optical Adhesive 81) and UV curing LED system with driver unit and handheld 365nm light 
source (ThorLabs, CS20K2). The coverslip with the sections was mounted so that the side with the sections faces 
the inside of the flow cell. 

The Imaging setup consisted of a Nikon Eclipse Ti2 microscope with a NIR-LDI laser panel and a zyla sCMOS 
4.2 camera (Andor). The fluidics setup consisted of a Minipuls 3 pump (Gilson) and two linked MVP multi-
valves (Hamilton), each with 8 ports. Nikon NIS elements software was used to acquire the images and com-
municate with a second computer controlling the fluidic pump and multivalves. The opening of the valves and 
the speed and the duration of the pump’s activity was managed by an edited version of Kilroy software 
(https://github.com/ZhuangLab/storm-control; edits available at https://github.com/acycliq/storm-control). The 
imaging and sequencing chemistry were coordinated by NIS elements software (ND sequence acquisition mod-
ule), which communicates with the computer running Kilroy by sending TTL pulses through a National Instru-
ments NI-USB 6008 board. 

Before sequencing, 15 mL falcon tubes containing bridge probe mixtures for each of the seven imaging rounds, 
as well as one each for dye probe mixture, anchor probe mixture, imaging buffer, distilled water, 2xSSC, and 
100% formamide were attached to the multivalves via EFTE tubing and flangeless fittings (1/16 inch Red Delrin, 
IDEx Health and Science LLC). The mixtures for bridge, dye, and anchor probes contained the appropriate 
oligonucleotides diluted to 10nM each in 2xSSC, 20%EC, and H2O. The bridge probe mix for the final anchor 
round contained the Cy7-conjugated anchor probe as well as the Gad1 bridge probe (10nM) that binds to the 
AF532 dye probe (Gad1_r6 - 10nM) and DAPI to stain the cell nuclei. A fresh formamide (S4117 Millipore) 
aliquot was used for every experiment (stored at 4 °C). The flow cell was then mounted onto the multi-slide 
stage and connected to the pump and multivalves via EFTE tubing. The speed of the pump was adjusted to 
approximately 0.4 mL/sec. To fill the flow cell, each solution was flushed through the fluidics system for 4 
minutes (the flow cell volume is approximately 1 mL).  

In total, eight rounds of imaging were done for each imaging experiment: 7 rounds to decode the barcodes and 
one final anchor round to detect the position of every RCP that was used for later image alignment. In each 
round, sections were first incubated in 100% formamide for 15min to strip the RCPs from any previous labelling. 
The formamide was then flushed from the flow cell with water for 4 minutes and then with 2xSSC for 4 minutes. 
The sections were next incubated in that round’s bridge probe mix for 15 minutes and washed with 2xSSC. 
After this, the sections were incubated in the dye probe mix for 15 minutes, and again washed with 2xSSC. The 
flow cell was filled up with an imaging buffer consisting of glucose oxidase and catalase containing oxygen 
scavenging system105 to protect the fluorophores from photobleaching during imaging.  
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After each round of sequencing chemistry, 16-bit images were acquired using wide-field epifluorescence exci-
tation, and a 40X magnification air-objective (CFI Plan Apochromat Lambda 40XC - NA 0.95). Images consisted 
of Z-stacks (z-step: 0.5um) in 7 different colour channels corresponding to the 7 fluorophores (Fluorophore – 
excitation wavelength, emission filters: Dy405 - ex405, 460/50m; AF488 - ex470, 525/36m; Dy485xl - ex470, 
632/60m; AF532 - ex520, 560/40m; AF594 - ex555, 632/60m; AF647 - ex640, 700/75m; AF750 - ex730, 811/80m). 
Each tile was 2048x2048 pixels (pixel size: 0.1625 micron). The imaging parameters were adjusted to cover only 
the region of interest (V1) and usually consisted of 10-15 tiles with 10% overlap. The Nikon perfect focus system 
was used to make sure that the focus stayed relatively constant across imaging rounds. Image files were saved 
in Nikon’s native ND2 format.  

In situ data analysis 

The in situ data was analysed with a suite of custom software for image processing, gene calling, and cell calling. 
All code was written in MATLAB, and is freely available at https://github.com/jduffield65/iss. This software 
was developed from that described in Ref.41, but has been greatly modified, so is described in full here. 

The in situ data consist of 8 rounds of multispectral imaging (7 combinatorial rounds, and one reference round 
in which all RCPs are labelled via the anchor sequence, together with an additional stain for Gad1 RCPs and a 
DAPI stain). Because the tissue sample is too large for a single camera image, imaging occurs in overlapping 
tiles. In each tile, a focus stack of widefield images were taken for each colour, and flattened into 2D using an 
extended depth of focus algorithm106. The data therefore consists of a set of images 𝐼 , , 𝐱  

Here 𝐼 gives the pixel intensity for sequencing round 𝑅, colour channel 𝐶, tile 𝑇, and pixel coordinates 𝐱 within 
this tile. The processing pipeline to identify detected genes comprises several steps: initial registration; RCP 
spot detection and fine registration; crosstalk compensation; and gene calling. These analyses proceed without 
ever “stitching” all the tiles into a single large image; this approach allows processing of very large datasets on 
computers with limited memory, and also easily allows non-rigid alignments. Prior to the pipeline, all RCP 
images are linearly filtered by convolving with a difference of Hannings: a Hanning of radius 0.5 μm minus a 
Hanning of radius of 1 μm, both normalized to have sum 1. The DAPI background images are filtered with a 
disk-shaped top-hat filter with radius of 8 μm. 

Initial registration 

The initial registration step finds offsets between all image tiles using the anchor images taken on round 8 
(which we refer to as “reference images”). We use this to define a global coordinate system for the entire tissue 
sample. 

Because we use a square tiling strategy, each tile may have up to four “neighbours”: other tiles with which it 
has a region of substantial overlap. We denote the set of neighbouring tile pairs as 𝔑. 

Spots first are detected in each tile’s reference images, as local maxima of the filtered image exceeding a fixed 
detection threshold. To align the reference images, we loop over all pairs of neighbouring tiles, and compute 
an offset to register the overlapping regions of the filtered reference images of these two tiles. The offset between 
two tiles 𝑇  and 𝑇  is found by exhaustive search over all 2d shifts in a range around to the shift expected from 
the microscope’s position sensor. For each shift, we find for each spot 𝑠 on 𝑇  the pixel distance 𝐷  to the nearest 
spot on 𝑇  after the shift has been applied. A score is computed as ∑ 𝑒 / , and the final shift vector 𝚫 ,  is 
taken as the one maximizing this score i.e. the one with the most near neighbours.  

We define a single global coordinate system by finding the coordinate origin 𝐗  for each tile 𝑇. Note however 
that this problem is overdetermined as there are more neighbour pairs than there are tiles. We therefore com-
pute the offsets by minimizing the loss function 𝐿 =  𝐗 −  𝐗 − 𝚫 ,, ∈ℜ  
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Differentiating this loss function with respect to 𝐗  yields a set of simultaneous linear equations, whose solution 
yields the origins of each tile on the reference round. The results of this step suffice to define a global coordinate 
system, but do not provide pixel-level alignment of images from multiple colour channels on multiple rounds, 
due to the occurrence of chromatic aberration and small rotational or non-rigid shifts. The latter will be dealt 
with in the next step, through point-cloud registration. 

Spot detection and fine registration 

The second processing step detects spots in all images of the 7 sequencing rounds, performs fine alignment of 
colour channels and sequencing rounds, and computes for each spot a position in global coordinates and an 
intensity vector summarizing that spot’s detected fluorescence in each round and channel. 

The most intricate part of this step is fine image registration. Even though the same tile layout is used for all 
sequencing rounds, the precise positions of the tiles may differ due to slight shifts in the placement and rotation 
of the sample. Thus, a single spot might be found on different tiles in different sequencing rounds. Furthermore, 
due to chromatic aberration a spot may be in slightly different positions (although not different tiles) in different 
colour channels. Because most spots are only a few pixels in size, even a one-pixel registration error can com-
promise accurate RNA reads. 

A global coordinate is defined for each of the spots detected in the reference images using the initial registration 
described above. In regions where tiles overlap, duplicate spots are rejected by keeping only spots which are 
closer in global coordinates to the centre of their original tile than to any other. 

Next, spot positions are detected in images from all sequencing rounds and colour channels. These are used to 
align each round and colour channel to the corresponding tile’s reference image, using point-cloud registration. 
Specifically, we fit an affine transformation from each reference image to the images of the corresponding tile 
for all rounds and colour channels, using the iterative-closest point (ICP) algorithm with matches further than 
3 pixels away excluded. These affine transformations can include shifts, scalings, rotations and shears, but we 
did not find it necessary to introduce nonlinear warping transformations within tiles (nonlinear transformations 
can still occur globally by variation of the affine transformation across tiles). As the ICP algorithm is highly 
sensitive to local maxima, it is initialized from a shift transformation computed by the same method used to 
find the overlap between reference images, i.e. the shift that maximizes the number of near neighbours as meas-
ured by ∑ 𝑒 / . When spots are located on neighbouring tiles on different rounds, the corresponding images 
are again registered with ICP. 

Finally, a 7-dimensional intensity vector 𝐯 ,  is computed for each spot 𝑠 in each round 𝑟, by reading the inten-
sity from the aligned coordinate of each filtered image.  

Crosstalk compensation 

The last step associating spots to genes consists of transforming the intensity vectors to gene identities. 

An important consideration in this stage is that crosstalk can occur between colour channels. Some crosstalk 
may occur due to optical bleedthrough; additional crosstalk can occur due to chemical cross-reactivity of 
probes. With the current hybridization chemistry (unlike previous sequencing-by-ligation chemistry), the de-
gree of crosstalk tends to be constant within a round, so we learn a single 7x7 crosstalk matrix and apply it to 
all rounds. 

To estimate the crosstalk present, we first collect a set of seven 7-dimensional vectors 𝐯 ,  containing the inten-
sity in each colour channel of all well-isolated spots 𝑠 in all rounds 𝑟. Only well-isolated spots are used to ensure 
that crosstalk estimation is not affected by spatial overlap of spots corresponding to different genes; a spot is 
defined as well-isolated if the reference image intensity averaged over an annular region (4-14 pixel radius) 
around the spot is less than a threshold value. Crosstalk is then estimated by running a scaled k-means algo-
rithm 107 on these vectors, which finds a set of seven vectors 𝐜  (𝑑 refers to one of the seven dyes), such that the 
error function: 
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min, , , 𝐯 , − 𝜆 , 𝐜 ,,  

is minimized; in other words, it finds the seven intensity vectors 𝐱  such that each well isolated spot on round 𝑟 is close to a scaled version of one of them. 

The crosstalk matrix is used to predict the colour profile expected for an RCP of each gene 𝑔, for each colour 
channel and round. If gene 𝑔 is assigned the dye 𝑑 ,  in round 𝑟, the predicted 49-dimensional intensity vector 
is obtained by concatenating the corresponding crosstalk vectors  

Gene calling 

Improvements in tissue processing and in situ chemistry mean that our current methods produce substantially 
more RCPs than the previous in situ sequencing method41. Consequently, the fluorescence of neighbouring 
RCPs often overlaps, which would render the previous detection method unable to find them. To allow resolu-
tion of overlapping spots, we therefore developed a new gene calling algorithm, based on orthogonal matching 
pursuit (OMP)107. This algorithm also allows for subtraction of background autofluorescence. Essentially, OMP 
repeatedly tests whether the 49-dimensional fluorescence vector of a pixel overlaps with the predicted fluores-
cence vector of each gene; if so, a gene is detected at that location, its code is projected out from the fluorescence 
vector, and the process repeats.  

The OMP algorithm fits a 49-dimensional image (one dimension for each combination of round and colour 
channel) as a sum of 49-dimensional code vectors. There is one code vector 𝐚  for each gene, and one “back-
ground” code 𝐚  for each colour channel, which has equal intensity for all rounds in one colour channel only. 
These background codes account for tissue autofluorescence, which will affect all imaging rounds equally. 

The gene codes 𝐚  are derived from the using knowledge of the Reed-Solomon assigned dyes 𝑑 ,  for each gene 
in each round and the crosstalk matrix columns 𝐜 . These codes take into account the fact that different genes 
can have consistently different intensities in different rounds, which may arise from non-uniformity in the syn-
thesized concentrations of the bridge probes. To account for this non-uniformity, we learn a scale factor 𝜀 , , 
and predict the 49-dimensional gene code for gene 𝑔 as a concatenation: 𝐚 = 𝜀 , 𝐜 , ; 𝜀 , 𝐜 , ; 𝜀 , 𝐜 , ; 𝜀 , 𝐜 , ; 𝜀 , 𝐜 , ; 𝜀 , 𝐜 , ; 𝜀 , 𝐜 ,  

We will describe the general algorithm before specifying how 𝜀 ,  is chosen. 

The OMP algorithm expresses the 49-dimensional fluorescence vectors 𝐯  for each pixel 𝑝 as a weighted sum of 
code vectors: 𝐯 = ∑ 𝛼 , 𝐚 + ∑ 𝛽 𝐚 . Each step of the algorithm can add a code to the set of code vectors 𝑔 , : 𝑖 = 1 …𝑛  used to approximate pixel 𝐯 ; the 7 background codes are always included. The gene set is 
initialized to be empty, and to choose which gene code, if any, should be added on each step the algorithm 
computes how much the residual 𝐯 − 𝐯 𝟐 would decrease for each possible addition to the set, and picks the 
gene giving maximum decrease, provided this decrease is above a threshold  of 0.0612 multiplied by the second 
largest absolute value of  𝐯  (clamped by a minimum threshold of 0.01 and a maximum threshold of 3.0), up to 
a total of 6 genes per pixel. After this iterative process has terminated for all pixels, an image is made for each 
gene, containing the gene's weight for each pixel or zero if that gene is not in the pixel’s gene set. RNA detections 
are found as local maxima of this image, subject to a thresholding criterion; the criterion takes into account 
several factors and is best understood by examining the source code (https://github.com/jduffield65/iss).  

To choose the scale factors 𝜀 , , a single iteration of the OMP algorithm is run with all 𝜀 , = 1. Local maxima 
detected as just described, but with a more stringent threshold (see source code for details) to ensure only un-
ambiguous gene detections are used. We then compute a 7-dimensional mean intensity vector 𝐯 ,  of all detected 
spots for each gene in each round. We then find the scale factors 𝜀 ,  for each round and gene as the least-squares 
solutions of 𝐯 , ≈ 𝜀 , 𝐜 ,  
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Cell calling 

The DAPI image was used to segment the cells. This was performed by detection of the local maxima in each 
cell followed by watershed segmentation. The segmentation of matched cells and their close neighbours was 
manually curated. 

To assign cells to transcriptomic t-types, we used the pciSeq algorithm of Ref.41, a Bayesian method which as-
signs each in situ cell a posterior probability of belonging to each of a set of cell classes defined by prior scRNA-
seq. The cortical t-types and their mean gene expression were obtained from Ref.4 using only V1 data. The read 
counts of this scRNA-seq data were divided by 100 to predict the expected in situ RNA count; a further gene-
dependent efficiency factor was estimated by the algorithm. The pciSeq algorithm produces a probability for 
each cell to belong to each class, which we converted to a “hard” classification by assigning each cell to the t-
type of maximum a posteriori probability; cells for which this maximal probability was less than 0.5 were not 
analysed further (~1% of matched cells). 

Registration of the in vivo and ex vivo cells 

We used inhibitory cells, labelled in vivo by mCherry (Gad2-mCherry mice), as landmarks to perform the reg-
istration between the in vivo Gad-mCherry volume and the ex vivo brain sections (Extended Data Fig. 2). This 
alignment made use of two high-resolution reference Z-stacks taken for each subject following each imaging 
session. The “GCaMP Z-stack” was taken using the same wavelength as functional imaging (920 or 980nm), 
covering the same volume but at higher resolution. The “mCherry Z-stack” was acquired in the same volume 
with 1040nm excitation wavelength to detect inhibitory neurons in Gad2-mCherry mice, but also provided 
some GCaMP signal in the green channel (although this signal was much lower than for the GCaMP Z-stack 
taken at 920nm). The different excitation wavelength of these two Z-stacks led to a small chromatic aberration, 
which was only significant in depth. To correct this aberration, we used the green channel found in both imaged 
volumes, registering planes of the GCaMP Z-stack to the mCherry Z-stack using FFT convolution. This was 
achieved by finding the best matching plane from the later Z-stack for each GCaMP Z-stack planes as the Z 
position which gave the highest FFT cross-correlation. Additionally, a “global Z-stack” was made following the 
final functional imaging session, covering the entire region under the craniotomy, used for coarse initial regis-
tration of the in situ slices.  

Aligning Calcium ROIs to the mCherry Z-Stack 

To align the imaging planes of one functional 2p session to the GCaMP Z-stack, we first obtained their theoret-
ical position using the measured position of the objective for each line scanned (for both the functional imaging 
planes and the GCaMP Z-Stack). We then estimated the Z-drift during the recording session: the position of the 
calcium imaging planes over time in comparison to this GCaMP Z-Stack. To do so, a mean image of each func-
tional imaging plane was obtained for 1 minute every 7 minutes of the recording. These mean images were then 
aligned to the Z-stack using FFT (Fast Fourier Transform) convolution. We then took the median of this Z-drift 
over time and used it to correct the theoretical imaging plane position. We then performed FFT based registra-
tion to correct for a small shift in X and Y between the actual mean image and the reconstructed image. We thus 
found the position of the imaging planes (and therefore of each functional ROI) in the GCaMP Z-Stack. These 
were then aligned to the mCherry Z-Stack using the transformation described above (chromatic aberration in 
depth). 

Aligning brain slices to the mCherry Z-Stack 

To register the positions of the in situ detected inhibitory neurons to the 3D mCherry Z-stack, we used a custom 
point cloud registration method, using inhibitory neurons as landmark points. MATLAB code and an example 
pipeline script can be found at https://github.com/ha-ha-ha-han/NeuromicsCellDetection/. 

During slicing, the latero-medial order of the sagittal brain sections was carefully recorded. To find the sections 
corresponding to the imaged region, we first screened them by generating RCPs for every 20th section, and 
staining with the Gad1 bridge probe and its corresponding dye probe to label inhibitory neurons. The position 
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of the fluorescent bead injection was usually visible on one of the sections, allowing us to infer the approximate 
position of every slice (based on the known order and thickness of slicing). 

Fine registration of screened sections to the in vivo reference Z-stack started with cell detection in vivo and ex 
vivo. To detect cells in the in vivo mCherry Z-stack, each plane was contrast normalized to correct for the loss of 
brightness with depth using the following MATLAB GUI https://github.com/nadavyayon/Inten-
sify3D/blob/master/User_GUI_Intensify3D.m, which performs background and signal estimation based on user 
defined thresholds), and the Z-stack was then filtered using a 3D median filter of radius 2 μm to reduce back-
ground noise. The mCherry positive cells were automatically detected on these images using a 3D difference-
of-Gaussians filter followed by watershed segmentation. Manual curation was performed to correct for missed 
or false positive detections. To detect inhibitory cells in the ex vivo slices, we used the in situ expression of Gad1 
in the reference round, since native mCherry fluorescence was not preserved in the fresh-frozen sections. Gad1 
detections formed clusters on GABAergic cells (Extended Data Fig. 2), which were detected by Gaussian 
smoothing of the Gad1 RCP images and applying a difference of gaussian filters and watershed segmentation 
to detect individual clusters. Finally, we manually curated these detections using the full in situ 72 gene expres-
sion to determine putative interneurons based on the main inhibitory cell markers such as Vip, Sst, Pvalb etc.  

The slices were first coarsely registered using brain structures (hippocampus, brain surface etc.) visualized us-
ing the anchor and nuclear staining. Next, they were finely registered using an algorithm to register a 2D point 
cloud corresponding to inhibitory neurons in the ex vivo slice into a 3D point cloud corresponding to inhibitory 
neurons in the in vivo volume. To align these clouds, we used rigid registration with 6 degrees of freedom (𝛼,𝛽, 𝛾, 𝑥,𝑦, 𝑧), where 𝛼, 𝛽, 𝛾 are the rotation angles, and  𝑥,𝑦, 𝑧 are translational shifts. (Non-rigid point cloud 
registration is possible, but we found it to be unnecessary.) The registration algorithm searched for the param-
eters (𝛼 ,𝛽 , 𝛾 , 𝑥 ,𝑦 , 𝑧 ) that maximize the match of the 2D slice to the corresponding section of 
the 3D volume.  

Because this registration problem has a large number of local maxima, we performed an exhaustive grid-search 
over these 6 parameters. Because Fourier convolution of 3d arrays is fast, but rotation of them is not, we used a 
hybrid point/Fourier method. An outer loop searches over all combinations of rotation angles (𝛼,𝛽, 𝛾), with an 
initial step size of 1°, refined to 0.5° for finer alignment, and rotates the 3d point cloud accordingly. A 3d volu-
metric image is then synthesized from these rotated points by adding a Gaussian peak at the location of each 
point. Each plane 𝑧 of this image is Fourier convolved with a fixed 2d array synthesized similarly for the 2d 
cloud, and the resulting 3d correlation map is stored, to accumulate a correlation score function c(𝛼,𝛽, 𝛾, 𝑥,𝑦, 𝑧). 
The top local maxima of this 6d array are found and ranked using both the intensity of the cross-correlogram 
peaks and the percentage of cells matched within a tolerance of 15 microns (to account for small non-rigid 
deformations). Finally, the match validity for each section was assessed manually by looking at the overlay 
between the interpolated cut from the reference Z-Stack and the Gad1 RCP image. The rotation and translation 
parameters were manually adjusted to provide the best overlay between the two datasets. Typical rotation an-
gles were found between -10 and 10 degrees of the coarse manual registration, enabling us to save computation 
time by searching only this range. 

Aligning individual neurons  

Finally, a custom MATLAB GUI was used to curate the match between inhibitory cells in the in vivo recordings 
and the ex vivo sections. The GUI allowed us to visualize the in vivo mCherry image of each cell (obtained from 
the reference Z-Stack), the position of the ROIs on the reference Z-Stack and the overlap between the reference 
Z-Stack cross-sections and the in situ gene expression for the different genes. For each slice, we displayed all 
mCherry positive ROIs which were less than 20 μm away from the found position of the slice in the reference 
Z-Stack. Each assignment of in vivo and ex-vivo Gad positive cells was curated manually based on this data. At 
this stage the boundaries initially found using automatic segmentation of the DAPI image were also manually 
adjusted for the matched cells and their neighbours, to correct for errors in DAPI segmentation that could im-
pact the gene and cell type assignment. This correction was based both on the DAPI image and on the in situ 
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gene expression, which provided information that could indicate under-splitting in the DAPI segmentation of 
adjacent cells. 

Class and Cell selection 

We recorded a total of 3469 (204±42 per session) inhibitory cells and together with 6684 (393±173 per session) 
excitatory cells. Of these inhibitory cells, we managed to match with good confidence and assign a t-type to 
1515 (89±30 per session) cells (see Supplementary Data File 1). Some ex-vivo identified cells were recorded in 
multiple imaging sessions. In all figures a unique session was picked for each matched cell (except Fig. 2 where 
we show all cells in a single session). The session assigned was chosen based on the percentage of time the 
mouse spent running during this session, to maximize variability of behaviour while the cell was recorded. 
After removing these duplicates, we obtained 1028 unique cells. Finally, 8 cells which were assigned to t-types 
with less than 3 cells total were discarded. The final population of 1020 cells belonged to 35 transcriptomic t-
types.  

For hierarchical analysis, the 35 t-types were grouped into 11 Classes corresponding to putative anatomi-
cal/physiological cell types based on the previous literature. For Pvalb neurons, the grouping was unambigu-
ous: the Pvalb-Vipr2 t-type is genetically very different to all other Pvalb t-types, and several studies have iden-
tified molecular markers of this t-type with chandelier cells4,6,8,108. For Sst cells, UMAP analysis (Extended Data 
Fig. 3) suggests that the two Sst-Tac1 t-types bridge a continuum between the two Sst-Calb2 t-types (identified 
as superficial-layer Martinotti cells8,109,110) and the Pvalb-Tpbg t-type (identified as superficial-layer Pvalb bas-
ket cells8). Patch-seq analysis confirms that Sst-Tac1 cells have less axon in L1 and faster-spiking phenotypes 
than classical Martinotti cells8. We therefore identify the two Sst-Tac1 t-types as non-Martinotti Sst cells, ac-
knowledging that these two Sst Classes likely tile a continuum, rather than truly being discrete cell types. For 
Lamp5 cells, we grouped t-types based on the results of Ref.111 (see also Ref.112). The three t-types comprising 
the Lamp5-Npy group were identified as neurogliaform cells based on their strong expression of Npy. The 
Lamp5-Fam19a1-Tmem182 t-type was identified as Canopy cells due to expression of Ndnf but not Npy; the 
two remaining t-types were identified as α7 cells due to their strong expression of Chrna7 and weak expression 
of Ndnf and Npy. For Vip cells, we divided t-types by transcriptomic methods: UMAP analysis suggested a 
clear discrete distinction between two Vip t-types characterized by expression of Reln as well as weaker expres-
sion of Vip itself. We are not aware of any specific study on these Vip-Reln cells, however based on their weak 
Vip expression, the fact that Reln is a usually L1 marker, we provisionally identify this Class with the layer 1 
VIP cells described by Ref.111. Serpinf1 t-types were included with the Vip category as we do not see strong 
evidence for this as a discrete Family. Finally, Sncg t-types were divided into two classes according to Vip 
expression, with Sncg-Vip and Sncg-Pdzrn3 identified as small and large Cck cells, respectively113,114.  

Data analysis 

Modulation Index 

When comparing activity in two conditions (e.g. visual stimulus vs. blank; large vs. small grating; running vs. 
Stationary synchronized), we used a modulation index computed as  𝑀𝑜𝑑 𝐼𝑛𝑑𝑒𝑥 = 𝑅 − 𝐵𝑅 + 𝐵, 
where R the mean activity during the response time window and B the mean activity during the baseline time 
window:  

Cell depth comparison to Patch-Seq study 

For the analysis validating coppaFISH t-type calling using cell depth (Fig. 1k), we used cells of all layers, not 
just the in vivo imaged cells of L1-3. We used 14 sections for which gene expression was obtained from layer 1 
to layer 6 (all taken from the same animal). DAPI segmentation was manually curated (see above) in all layers, 
and cell calling was performed on these sections using the standard method. This provided the cortical depth 
for about 47000 cells among which 2130 were assigned to a GABAergic t-type. We normalized the measured 
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cortical depth by the maximum cortical depth in these sections (750 microns) and computed the median cortical 
depth for each t-type with at least 4 cells (46 such t-types were found). We then did the same thing for the Patch-
seq data of Gouwens et al.8, which gave 42 t-types with more than 4 cells. We then compared the cortical depth 
of the t-types with at least 4 cells in both datasets (33 t-types in total; Fig. 1k).  

Determining behavioural states 

To distinguish the 3 main behavioural states during spontaneous behaviour, we used the running speed of the 
animal as well as the strength of cortical oscillations. Running speed was measured by optical sensors facing 
the air-suspended ball115, and was smoothed with a 2 s moving average filter. We considered the mouse sta-
tionary if this smoothed speed was less than 0.3 cm/s, and running otherwise. To distinguish between the syn-
chronized and desynchronized stationary states, we first computed the first principal component of excitatory 
cells’ activity using PCA, which revealed cells more active in passive or alert states, as previously described49. 
The activity of the 10% of cells with highest weight on this PC was averaged, which provided a clear summary 
of the oscillation that appeared in some stationary periods (Fig. 2a). Periods of synchronized activity were seg-
mented manually based on the periods where this average was clearly oscillating. To measure the oscillatory 
coupling of each inhibitory neuron, we then computed the correlation between each cell’s z-scored activity and 
the average of this excitatory subpopulation during the synchronized periods. 

Comparison to transgenic mouse line data 

To validate our cell type assignment, we compared results obtained with post-hoc transcriptomic with record-
ings performed using transgenic mouse lines (Extended Data Fig. 5). We analysed recordings from 18 transgenic 
mice (5 for Pvalb, 8 for Sst, and 5 for Vip; 14 mice were reanalysed from Ref. 19 and 4 new mice were added) 
and 23 sessions (6 for Pvalb, 9 for Sst, and 8 for Vip) for a total of 2,589 identified cells (1023 Pvalb, 572 Sst and 
994 Vip cells). 

For this analysis (Extended Data Fig. 5), we first deconvolved the calcium traces to inferred firing rates 𝑓 (𝑡) for 
each neuron 𝑖 at time t84. We considered two measures of neural activity for each cell 𝑖 and trial 𝑛: the average 
neural activity 𝑟 (𝑛) = 〈𝑓 (𝑡)〉 , ∆  during stimulus presentation from the trial onset time 𝑡  to time 𝑡 +∆𝑇, and the average neural response 𝑑 (𝑛) = 𝑟 (𝑛) − 𝑏 (𝑛), obtained after subtracting the pre-stimulus baseline 
activity 𝑏 (𝑛) = 〈𝑓 (𝑡)〉 ∆ , . The time window parameter ∆𝑇 took the value 1 s for the data from Ref.19 and 
0.5 s for the new transgenic data and the post-hoc transcriptomic data, corresponding to the whole duration of 
the stimulus. We then computed the average activity and response for a given stimulus 𝑠 and locomotion con-
dition 𝑣 (𝑣 = 0: stationary, 𝑣 = 1: running): �̅� (𝑠, 𝑣) = 〈𝑟 (𝑡)〉 ,  and �̅� (𝑠, 𝑣) = 〈𝑑 (𝑡)〉 , .. We estimated the 
responsiveness of each neuron 𝑖 to visual stimuli by computing the p-value 𝑝  of a paired t-test comparing 𝑟 (𝑛) 
with 𝑏 (𝑛) for all trials 𝑛 (pooling all different stimulus types to obtain one p-value per cell). For all subsequent 
analysis we selected only cells with p-values < 0.05. We plotted the average modulation of visual responses by 
running (computed as in Ref.19) vs. the Pearson correlation coefficient of spontaneous activity and running 
speed 𝜌  (Extended Fig. 5a). Prior to computing the Pearson correlation coefficient, we smoothed the activity 𝑓𝑖(𝑡) and running speed 𝑣(𝑡) with a time average of 5 s. For this analysis, we selected only cells whose cortical 
depth was > −300 𝜇𝑚. 

For estimating size tuning curves (Extended Data Fig. 5b), we z-scored the activity of each neuron as follows 𝑧̅ (𝑠, 𝑣) = �̅� (𝑠, 𝑣) − 〈�̅� (𝑠, 𝑣)〉 , 𝜎 , �̅� (𝑠, 𝑣)  prior to averaging over cells of a given type. 

To evaluate consistency between the physiological features identified with transgenic and transcriptomic cell 
type identification, we trained a classifier to predict cell type from physiological features of each cell in the 
transgenic lines, and asked if it generalized to the transcriptomic data (Extended Data Fig. 5c). We trained the 
classifier using 1,230 training cells (410 examples per cell type for the three cell types). The prediction was based 
on 14 features, which included normalized values of neural activity during different stimulus size and running 
condition 𝑧̅ (𝑠, 𝑣) (features #1-8); skewness of the calcium trace computed across the whole recording session 
(feature #9); the correlation of spontaneous activity with running speed 𝜌  (feature #10); the ROI diameter (fea-
ture #11); the cortical depth (feature #12); two different measures of the difference in modulation by running 
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𝑀 , °( ) −𝑀 , °( )  between large and small stimuli, where 𝑀 ,( ) = �̅� (𝑠, 𝑣 = 1) − �̅� (𝑠, 𝑣 = 0) 𝜎 , �̅� (𝑠, 𝑣)  and 𝑀 , °( ) −𝑀 , °( ) , where 𝑀 ,( ) = �̅� (𝑠, 𝑣 = 1) − �̅� (𝑠,𝑣 = 0) 〈�̅� (𝑠, 𝑣)〉 ,  (features #13 and #14). We normalized 
features #9-14 by z-scoring them using the mean and standard deviation for each neuron of the transgenic mice, 
while features #1-8 were already normalized as in Extended Data Fig. 5b. We used cell types: 𝑦 = 𝑃𝑉, 𝑆𝑂𝑀,𝑉𝐼𝑃  
as training labels. Using the 10 different randomized splits of training and test transgenic data, we applied three 
different linear classifiers: Linear Discriminant Analysis, Logistic Regression (regularization parameter C = 10) 
and Linear Support Vector Classification (regularization parameters C = 0.1). The regularization parameters 
were chosen after a 4-fold cross-validation over the different randomized training sets scanning over 𝐶 =10 , 10 ,⋯ , 10 . Applying the classifier to transcriptomic data gave equivalent performance to test-set 
transgenic data, indicating that the two methods are consistent. 

Response to drifting gratings 

Responsive cells (either Activated or Suppressed) were defined using a repeated measures ANOVA model 
(fitrm in Matlab) with the stimulus direction (12 levels) and size (3 levels) as between subjects factors, and the 
presence of stimulus as a within subject factor. A cell was defined as responsive if there was a significant effect 
of stimulus presence after performing a repeated measures analysis of variance (ranova in Matlab). Significant 
cells were classified as Activated if mean activity in the response window was above baseline, or Suppressed 
otherwise.  

Orientation selectivity Index (OSI) was computed using a cross-validation method. Each cell's preferred orien-
tation was computed from even trials, selectivity was computed as: 𝑂𝑆𝐼 =  (𝑅  −  𝑅 )(𝑅  +  𝑅 ) 

Where Rpref is the mean response on the odd trials to the preferred orientation and Rortho is the mean response 
on the odd trials to the orthogonal orientation (Rpref + 90°). This cross-validation was used because non-cross-
validated selectivity indices can show large values for sparse neural activity, even if the cells are untuned. The 
cross-validated measure can take negative values, which indicate inconsistent responses, and will have an ex-
pected value of 0 for untuned cells.  

Direction selectivity Index (DSI) was obtained similarly. Each cell's preferred direction was computed from 
even trials, selectivity was computed as: 

𝐷𝑆𝐼 = 𝑅  – 𝑅𝑅  +  𝑅  

Where Rpref is the mean response on the odd trials to the preferred direction and Ranti is the mean response on 
the odd trials to the direction opposite to the preferred (Rpref + 180°).   

Size tuning curves and their state modulation (Fig. 3e) were computed using the methods of Ref.19. Analysis 
was restricted to cells whose receptive field locations were close to the centre of the grating stimuli (<20°). Size 
tuning curves were obtained for running and stationary states by averaging the z-scored activity of all centred 
cells of that class (z-scoring was computed relative to the entire recording session). Baseline activity (shown as 
response to size 0 stimuli) was estimated as the average of the z-scored activity during the interstimulus inter-
vals. For both the stimulus response and the baseline, we determined if the mouse was running or stationary 
by taking the average running speed during the stimulus presentation. If this speed exceeded 1cm/s we consid-
ered the mouse as running, and stationary otherwise.  

Cross-validated direction tuning curves (Fig. 3b) were computed for all cells using the average across all sizes. 
A cell’s preferred direction was estimated as the direction providing the largest response on even trials. Direc-
tion tuning curves were computed by averaging the z-scored activity of each cell on odd trials, for each direction 
relative to this preferred direction. The curve was normalized by dividing by the mean response to the preferred 
direction (on the even trials). These normalized curves were then averaged over all cells in a t-type (Fig. 3b). 
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Pairwise correlations between Classes 

To compute spontaneous correlations between the mean activity of Class (Fig. 4d), we first normalized each 
cell’s deconvolved activity by dividing it by its maximum. For each experiment, we then averaged the normal-
ized activity of each cell within a Class during blank-screen periods, smoothed with a 1s boxcar window, and 
decimated the sampling rate to 1 Hz. We computed the Pearson correlation between each Class’s mean activity 
and averaged over experiments. For the intra-Class correlations, we randomly split the cells of each Class in 
two halves and applied the same method, to avoid trivially obtaining a correlation of 1. When the number of 
cells in a Class was less than 4, the correlation was not computed for that experiment.  

Response to Natural Images 

We summarized a cell’s response to natural image stimuli with two numbers (Fig. 3d). Responsiveness was 
defined as a modulation index between activity during the stimulus presentation period and the activity just 
before stimulus onset. Signal correlation was defined by correlating the responses to the first repeat of the 1050 
images with the responses to the second repeat of these same images. This metric characterizes a cell’s selectiv-
ity to these image stimuli116.  

Genetic PCA 

To compute the first genetic principal component, we averaged the in situ gene expression of the 72 genes for 
each of the 35 t-types. We then performed PCA on this 72 by 35 matrix, and took the score of the first component 
to get gPC1 for each t-type. To obtain gPC1 values for cells in Patch-seq (Extended Data Fig. 9), the same weight 
vector was used and read counts were transformed by log(1+x). 

UMAP on Tasic et al scRNA-seq data 

We performed a UMAP analysis on the Tasic et al scRNA-seq dataset4, separately for CGE (Vip, Sncg and 
Lamp5) and MGE (Pvalb and Sst) derived inhibitory Families from V1 only (Extended Data Fig. 3).  

To do so, we employed methods previously described for CA113. First, a set of 150 genes was found using the 
ProMMT clustering algorithm. 150-dimensional expression vectors were made for each cell, applying a log(2+x) 
transform to the scRNA-seq expression levels of these genes. UMAP analysis was performed using Meehan et 
al’s Matlab toolbox117, initialized by placing the classes around a unit circle in order of similarity.  

The genes automatically selected to perform the UMAP analysis were: Vip, Tac2, Sst, Pdyn, Lamp5, Tac1, Crh, 
Calb1, Penk, Calb2, Th, Cxcl14, Ndnf, Spp1, Htr3a, Cplx3, Pvalb, Crhbp, Npy, Npy2r, Chodl, Crispld2, Prss23, 
Nov, Cbln2, Cartpt, Akr1c18, Atp6ap1l, Cadps2, Ppapdc1a, Sncg, Tnfaip8l3, Unc13c, Pdlim3, Scgn, Pcp4, Tcap, 
Lgals1, Serpine2, Moxd1, Pthlh, Cd34, Cck, Sostdc1, Spon1, LOC105243425, Mia, Slc5a7, Pde1a, Adarb2, 
Mybpc1, Car4, Cbln4, Gabrg1, Fmo1, Slc18a3, Grpr, Lypd6, Pde11a, Rxfp1, Tnnt1, Nxph2, Lpl, Cryab, Cp, 
Npy1r, Id3, Myl1, Id2, Kit, Serpinf1, Bcar3, Aqp5, Scrg1, Gpd1, Rxfp3, Prox1, Col25a1, Chat, Vwc2l, Amigo2, 
Myh8, Synpr, Grm8, Igfbp5, Gpx3, Rgs12, Lypd1, Cd24a, Reln, Hapln1, Sln, Chrm2, Ostn, Igfbp7, 
LOC102632463, Atf3, Lect1, Gpc3, Ptprk, Teddm3, Il1rapl2, Col6a1, Nek7, Crispld1, Wif1, Wnt5a, Bmp3, Thrsp, 
Syt2, Pcdh20, Sfrp2, Myh13, Efemp1, Rprm, Cacna2d1, Lypd6b, Meis2, Lhx6, Angpt1, Rspo1, Sema3c, Itih5, 
Nfix, Sema3a, Stk32a, Ecel1, Jam2, Igfbp6, Sox6, Nfib, Sall1, Sema5b, Shisa8, Tacr3, Chst7, Frmd7, Gm31465, 
Rspo4, Chrna2, Lmo1, C1qtnf7, Ndst4, Ccdc109b, Npas1, Egfr, S100a10, Gpr6, Slit2, Lsp1.  

Correlation with electrophysiological and morphological properties 

We examined electrophysiological and morphological correlates of our results by relating them to a previously 
published Patch-seq dataset8, which provided electrophysiological, morphological, and gene expression data 
from a set of V1 inhibitory cells analysed in vitro. These cells had been genetically assigned to the same tran-
scriptomic clusters we used4, which allowed us to correlate electrophysiological and morphological properties 
to the state modulation measured in our own dataset. Valid electrophysiological recordings were available for 
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4391 cells and included long and short pulses of current injection as well as current ramps. We used the elec-
trophysiological parameters calculated by the original authors using the ipfx software, renaming “up/down 
ratio” (the absolute ratio of the slopes of the upward and downward components of the action potential) as 
“spike shape index”. Adaptation index was the rate at which spiking changed during a long depolarizing 
square stimulus. During a hyperpolarizing square current, the membrane time constant tau is the rate of ap-
proach of steady state, and sag is the downward deflection before steady state is reached. Capacitance was 
calculated as the ratio between measured tau and resistance. 

We quantified the ratio of axon in each layer using morphological reconstructions obtained following Patch-
seq. To enable comparison to our 2-photon data, we only examined reconstructed cells with somas in layers 1-
3 that belonged to one of the 35 t-types we recorded from, for a total of 163 cells. Morphology was represented 
as an acyclic undirected graph with a position and radius associated with each node. A pair of adjacent nodes 
(a segment) fell within a layer if both nodes had cortical depths within the layer boundary. Segments which fell 
on a layer boundary (less than 4% of segments for each cell) were not classified into a layer, and segments 
entering the white matter or pia were excluded. The surface area of all within-layer segments was computed 
using the distance between nodes and their radii. The within-layer surface area ratio is the sum of the surface 
area of segments within a layer divided by the total surface area of all segments. 

gPC1 was computed for each Patch-seq cell using the same 72 genes and weightings found from our coppaFISH 
data, with gene expression transformed as log(1+x).  

Processing of eye video (pupil detection) 

Eye videos were processed using facemap (https://github.com/MouseLand/facemap). An ROI was drawn man-
ually around the pupil of the animal. The pupil area was defined as the area of a Gaussian fit on thresholded 
pupil frames, where pixels outside the pupil were set to zero.  

Statistical analyses 

Statistical analysis of differences between cell types faces two potential confounds. First, different experiments 
will by chance record different proportions of each cell type, and may also by chance show other experiment-
to-experiment differences such as overall alertness levels. Second, the large number of t-types presents a poten-
tial multiple comparisons problem.  

To solve these problems, we used a hierarchical permutation test. First, an Omnibus test asks whether Family, 
Class, and t-type have a significant main effect on our quantity of interest 𝑦; there is no multiple-comparisons 
problem for this Omnibus test, and all shuffling occurs within an experiment to avoid conflating experiment-
to-experiment variability with differences between cell types. The Omnibus test is conducted at each of the 3 
levels in a nested manner: the first asks if there is a main effect of Family; the second if there is a main effect of 
Class beyond that predicted by Family; and the third if there is a main effect t-type beyond that predicted by 
Class. Following the Omnibus test, post-hoc tests are used to ask if significant differences between Classes exist 
within each individual Family, and if significant differences between t-types exist within each individual Class. 
Additional post-hoc tests are used to ask whether the quantity is significantly different to zero for each Class 
and t-type. All post-hoc tests are corrected for multiple comparisons using the Benjamini-Hochberg procedure. 

To test for a main effect of Family on a quantity 𝑦, the Omnibus test computes its mean value of 𝑦  for each 
family 𝑓, and uses as test statistic the variance of 𝑦  across families. To obtain a p-value, this test statistic is 
compared to a null ensemble obtained after 10,000 random shufflings of the Family label of each cell, separately 
within each experiment. To test for a main effect of Class, we compute the mean 𝑦  of 𝑦 for each Class 𝑐, and  
use as test static the variance of this mean across Classes. A null distribution is obtained by 10,000 shufflings of 
Class labels separately within each experiment and Family. To test for a main effect of t-type, we use as test 
statistic the variance of 𝑦  over t-types 𝑠. A null distribution is obtained by recomputing this statistic after shuf-
fling t-type labels 10,000 times, separately within each Class and experiment.  
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To perform the post-hoc test for significant differences between the Classes within a specific Family (indicated 
by p values on the far right of Fig. 2b and similar), or for significant differences between t-types within a specific 
Class (indicated by stars second to right in Fig. 2b), we performed the same shuffle test inside individual Fam-
ilies and Classes. For example, to obtain the p-value for significant differences of t-types within the Pvalb-Tac1 
Class, we used as test statistic the variance of 𝑦  across the 5 t-types inside this Class, and compared it to 10,000 
shufflings of the t-type labels inside this same Class. These post-hoc p-values were then corrected using the 
Benjamini-Hochberg procedure. For post-hoc tests of whether a Class or t-type is significantly different to zero, 
we used Benjamini-Hochberg corrected t-tests.  

For linear correlations (Fig. 1k, Fig. 2e, Fig. 4e-f Extended Data Fig. 6c, Extended Data Fig. 9a-b), we show the 
p-value for the Pearson correlation coefficient. To exclude the possibility of conflating experiment-to-experi-
ment variability with differences between cell types, we used ANCOVA controlling for a discrete effect of re-
cording session; (Fig. 2c-e, Fig. 4b-c, Extended Data Fig. 6c,) quoting the significance of a main effect of the 
continuous variable. For Fig. 2c-d and Fig. 4b-c, we performed the ANCOVA after averaging the relevant values 
of all cells for a given recording session and t-type. ANCOVA was also used to test whether a continuous genetic 
variable assigned to each cell correlated significantly with state modulation even after controlling for t-type and 
recording session (Fig. 2e, Extended Data Fig. 6f), and if cortical depths of each t-type measured by coppaFISH 
and Patch-seq were correlated even within a Family or Class (Fig. 1k). 

To test for the effect of gPC1 on pairwise correlations (Fig. 4d), we sorted Classes by gPC1 and computed their 
pairwise correlation matrix as described above. We used a permutation test to ask if values close to the diagonal 
were larger than values far from the diagonal. As test statistic we used the difference between the mean corre-
lation values one or two steps away from the diagonal, and the mean of all other class pairs (Extended Data Fig. 
9d). We constructed a null distribution by recomputing this statistic after permuting the order of the Classes 
10,000 times.  
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Extended Data Figures 
 

 
Extended Data Figure 1 | Detection of 72 genes using coppaFISH. a, Sagittal 15 µm brain sections are cut using a cryostat. 
Local mRNAs are retro-transcribed to cDNA, and the mRNAs digested to free the cDNAs for hybridization with padlock probes. 
Padlock probes have two 15-20 nucleotide (nt) arms complementary to the target site, a 20nt anchor sequence (identical for all 
probes) and a 20nt barcode sequence (unique for each gene). After hybridization to the target site, a DNA ligase enzyme circular-
izes the padlock probe, but only when it matches the target perfectly. Next, a DNA polymerase enzyme amplifies the circularized 
padlock probes, producing rolling circle products (RCPs), which contain many repeats of the padlock sequence including the bar-
code. b, The genes are detected by 7 rounds of 7-colour fluorescence imaging. On each round, RCPs are hybridized with custom 
designed bridge probes, which in turn hybridize to specific dye probes (conjugated to one of 7 fluorophores). The sections are then 
imaged in 7 colour channels, then all DNA is removed with formamide treatment, and the next round begins. Different sets of bridge 
probes on each round result in each barcode showing up in a different colour channel using a Reed-Solomon code for minimum 
overlap. After the 7 combinatorial rounds, a final round images the anchor probe (used for image alignment) and DAPI to visualize 
cell nuclei. c, Example raw data for one cell imaged with the 7 fluorophores and 7 rounds. Each fluorescent spot is an RCP, and 
the sequence of colours across 7 rounds allows gene identity to be determined. Bottom: magnification of 2 RCPs (top right corner 
of main images) which corresponded to Cplx2 barcode (6135024). Scale bars: 5 µm. 
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 Extended Data Figure 2 | Experimental pipeline. Neural activity was recorded in vivo over multiple sessions from each subject 
(Gad2-mCherry mice with viral GCaMP expression in all neurons). At the end of each session, a high-resolution reference Z-Stack 
was acquired and used to detect interneurons in the Z-stack volume using mCherry fluorescence, and cells recorded during calcium 
imaging were registered to this Z-Stack. After all imaging sessions, the brain was extracted from the skull without fixation and frozen 
in OCT. A block from under the imaging window was sliced into 15 μm sagittal sections, which were thaw-mounted on gelatine-
coated coverslips. Each section was then processed using coppaFISH: RCPs were produced in situ for the selected genes, and 
their barcodes were read using 7 rounds of imaging (+ 1 anchor round). The resulting images were then registered across rounds, 
colour channels, and image tiles and individual spots detected. Gene identity for each RCP was decoded from the 49-dimensional 
images, and pciSeq41 was used to determine the t-type identity for each cell. To align the images, interneurons detected in vivo and 
ex vivo were used as fiducial markers for point cloud registration, which finds the best alignment of the 2D ex vivo slice in the 3D 
volume. Finally, individual cell matches were manually curated, and a t-type assigned to the recorded cells. 
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Extended Data Figure 3 | UMAP analysis of scRNA-seq data. Each dot represents a V1 inhibitory cell, from the Tasic et al.4 
data, with glyph representing its assigned t-type. UMAP analysis was performed separately for MGE and CGE derived interneuron 
t-types, using 150 log-transformed genes selected by the ProMMT algorithm13. This analysis reveals both highly discrete t-types 
such as Pvalb-Vipr2 (putative chandelier cells) and smoothly varying continua where boundaries between t-types appear arbitrary, 
such as Lamp5-Ntn-Npy2r, Lamp5-Plch2-Dock5, and Lamp5-Lsp1 (putative neurogliaform t-types). Also note the smooth transition 
between Sst-Calb2 (a putative Martinotti subtype), Sst-Tac1 (putative Sst non-Martinotti), and Pvalb-Tpbg (putative superficial bas-
ket) cell t-types.   

 
Extended Data Figure 4 | Example Cells. a, Nine example cells which were recorded during the same session. Pie plots indicate 
the posterior probability of each cell’s t-type assignment. Grey background images show DAPI-stained nuclei. Each gene detection 
is represented by coloured letters (key to the left). Scale bars: 2 µm. b, Activity of these 9 cells during spontaneous behaviour, 
together with the running speed of the animal. The traces are colour coded according to the assigned t-type for each cell (pie plots 
in a).   
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Extended Data Figure 5 | Comparison to results in transgenic mice. a, Top row: modulation of visual responses by running vs. 
correlation to running speed during spontaneous behaviour, for Pvalb, Sst, and Vip interneurons identified in transgenic mouse 
lines. Data re-analysed from Ref.19 and including 4 new animals. Bottom row: same analysis using interneurons identified by post-
hoc transcriptomic analysis (data from this study; the Vip group included Vip-positive Sncg cells which are likely to be labelled in 
the Vip-Cre transgenic line). In both datasets, running suppressed the spontaneous activity of Pvalb cells, but enhanced their visual 
response. In both datasets, Sst cells showed weakly positive spontaneous correlation to running and stronger positive modulation 
of visual responses. In both datasets, Vip cells showed stronger modulation by running during spontaneous behaviour than during 
visual stimulation. b, Size tuning curves of Vip, Pvalb and Sst cells for both datasets. Top row: responses measured in transgenic 
mice for centred stimuli (0-10° offset from receptive field centre); second row: response to off-centre stimuli (10-20° offset from 
receptive field) in transgenic mice; bottom two rows, same from post-hoc transcriptomics. Orange curves: responses during running; 
blue curves, responses during stationary epochs. Note that in both cases, Vip cells responded more to small than large stimuli; Sst 
cells showed little surround suppression by large stimuli and responded weakly to small stimuli; and Pvalb cells showed an inter-
action of stimulus size and behaviour, with larger running modulation for larger stimuli. c, Classification of cell type from physiolog-
ical features was identical for the two cell typing methods. Each cell was assigned to either Sst, Pvalb or Vip based on 14 physio-
logical features (such as correlation to running speed, size tuning curves, skewness), using one of 3 different linear classifiers 
trained on a training set randomly selected from the transgenic recording sessions. Left: training-set classifier accuracy averaged 
over multiple random selections of the training set. Centre: accuracy of the classifiers on the held-out transgenic sessions, averaged 
over randomized splits into training and test sessions. Right: out-of-sample accuracy of the linear models on data with interneurons 
identified by post-hoc transcriptomics. Note the similar performance on transgenic and transcriptomic test sets. Error bars: s.d. over 
divisions into training and test set. 
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Extended Data Figure 6 | Further analyses of state modulation in spontaneous behaviour. a, Hierarchical analysis of modu-
lation between Running state and Stationary Desynchronized state, plotted as in Fig. 2b. b, Hierarchical analysis of modulation 
between Stationary Desynchronized and Stationary Synchronized states, plotted as in Fig. 2b. c, State modulation vs. t-type prob-
ability index for Sst-Calb2-Necab1 and Sst-Calb2-Pdlim5 cells (p<0.01, Pearson correlation; p=0.013, ANCOVA accounting for 
effects of session and t-type). 

 

 

Extended Data Figure 7 | Further analyses of visual responses. Each panel shows a hierarchical analysis for the visual variables 
analysed in Fig. 3d, but showing all t-types. All panels plotted as in Fig. 2b.  
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Extended Data Figure 8 | Analysis of pairwise correlations within states. a, b, c, Pairwise correlations between simultaneously 
recorded Classes, plotted as in Fig. 4d, but separately for periods within each of the three states (Running, Stationary Desynchro-
nized, and Stationary Synchronized). The Classes are sorted by gPC1; Classes with similar gPC1 values have significantly higher 
correlations (permutation test, p=0.018, p=0.037, p=0.0008 respectively). d, The test statistic for the permutation test was the 
difference between the average of correlation coefficients close to the diagonal (left), and the average of all other off-diagonal 
coefficients; intra-class correlations were not used. This test statistic was compared to a null ensemble obtained after shuffling 
gPC1 values 10,000 times.  
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Extended Data Figure 9 | Additional analyses of Patch-seq data. a, Additional electrophysiological properties vs. State modu-
lation plotted as in Fig. 4e. Vrest: r=0.25, Sag: r=0.03, τ: r=0.24, F-I curve slope: r=0.28, Vm for Sag: r=0.29, Latency: r=0.09, Avg. 
isi (inter-spike interval): r=0.20, Resistance: r=0.34, Capacitance: r=0.01, log(Capacitance) : r=0.01, log(Sag) : r=0.03 and log(La-
tency): r=0. Stars show significance assessed by Pearson correlation. Dashed lines are linear fits. b, Fraction of axonal arborization 
(measured by surface area) in layer 1 (left) and layer 2-3 (right) vs. gPC1 computed for each Patch-seq neuron. Each symbol 
represents a cell. Pearson correlation was computed individually within each Family, and p-values were adjusted with Benjamini-
Hochberg correction (Layer 1 Lamp5: r=0.40; Layer 1 Sst: r=0.17; Layer 2-3 Lamp5: r=0.34; Layer 2-3 Sst: r=0.19). Coloured lines 
show linear fit for each Family with significant Pearson correlation. *, p<0.05, **, p<0.01, ***, p<0.001.   
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Supplementary Data File 1. Percentage of interneurons assigned to a t-type. Number of interneurons recorded 
per session and per animal, and percentage of interneurons that were assigned to a t-type at the end of the 
experimental pipeline. In total, about 44% of recorded interneurons were characterized transcriptomically 

Supplementary Data File 2. Padlock probe sequences. Name and sequence of the 556 padlock probes (73 to 
80nt) targeting the cDNA sequences produced by reverse transcription. Each probe contains the same 20nt an-
chor sequence, a 20nt gene specific DNA barcode, and two arms complementary to the cDNA sequence.  

Supplementary Data File 3. Primer sequences. Name and sequence of the 556 primers used for reverse tran-
scription of the mRNAs.  

Supplementary Data File 4. Dye probe sequences. Name and sequence of the 7 dye probes used for combina-
torial imaging. Each 20nt DNA oligo was conjugated to a given dye. All dyes were conjugated at the 5’ end 
only, except from dp0 and dp6 which were conjugated at both ends. 

Supplementary Data File 5. Bridge probe sequences. Name and sequence of the 511 bridge probes used for 
combinatorial imaging, 1 for each gene and imaging round.  

Supplementary Data File 6. Reed-Solomon codes. Dye code for each gene, consisting of 7 numbers between 0 
and 6, listing the dye probe that gene is assigned on each round. 
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