Abstract
Vortex-like arrays of cytoskeletal filaments that drive cytoplasmic streaming and nucleus rotation have been identified in eukaryotes, but similar structures have not been described in prokaryotes. The only known example of a rotating intracellular body in prokaryotic cells occurs when nucleus-forming jumbo phages infect Pseudomonas. During infection, a bipolar spindle of PhuZ filaments drives intracellular rotation of the phage nucleus, a key aspect of the replication cycle. Here we show the E. coli jumbo phage Goslar assembles a phage nucleus surrounded by an array of PhuZ filaments resembling a vortex instead of a bipolar spindle. Expression of mutant PhuZ strongly reduces Goslar phage nucleus rotation, demonstrating that the PhuZ cytoskeletal vortex is necessary for rotating the phage nucleus. While vortex-like cytoskeletal arrays are important in eukaryotes, this work identifies the first known example of a coherent assembly of filaments into a vortex-like structure driving intracellular rotation within the prokaryotic cytoplasm.
Competing Interest Statement
The authors have declared no competing interest.