
Going Beyond the Point Neuron: Active Dendrites
and Sparse Representations for Continual Learning

Karan Grewal, Jeremy Forest, Benjamin P. Cohen, Subutai Ahmad
Numenta, Inc.

Redwood City, CA, USA
{kgrewal, jforest, bcohen, sahmad}@numenta.com

Abstract: Biological neurons integrate their inputs on dendrites using a diverse
range of non-linear functions. However the majority of artificial neural networks
(ANNs) ignore biological neurons’ structural complexity and instead use simpli-
fied point neurons. Can dendritic properties add value to ANNs? In this paper
we investigate this question in the context of continual learning, an area where
ANNs suffer from catastrophic forgetting (i.e., ANNs are unable to learn new
information without erasing what they previously learned). We propose that den-
dritic properties can help neurons learn context-specific patterns and invoke highly
sparse context-specific subnetworks. Within a continual learning scenario, these
task-specific subnetworks interfere minimally with each other and, as a result,
the network remembers previous tasks significantly better than standard ANNs.
We then show that by combining dendritic networks with Synaptic Intelligence (a
biologically motivated method for complex weights) we can achieve significant
resilience to catastrophic forgetting, more than either technique can achieve on its
own. Our neuron model is directly inspired by the biophysics of sustained de-
polarization following dendritic NMDA spikes. Our research sheds light on how
biological properties of neurons can be used to solve scenarios that are typically
impossible for traditional ANNs to solve.

Keywords: Active Dendrites, Point Neuron, Continual Learning, Catastrophic
Forgetting

1 Introduction

The point neuron model has been the primary neuron model used in computational and theoretical
studies of neurons for over 100 years. Originally proposed by Louis Lapicque in 1907 (Lapique,
1907) the model assumes a simple linear integrate and fire mechanism. This continuous time mech-
anism formed the basis for Rosenblatt’s discrete Perceptron model (Rosenblatt, 1958), and continues
to form the basis for current deep learning systems and artificial neural networks (ANNs) (McClel-
land et al., 1986, LeCun et al., 2015). In standard ANNs each neuron computes a linear weighted
sum of its inputs, followed by a non-linearity (Figure 1 left). In contrast, pyramidal neurons, which
comprise most cells in the neocortex, are significantly more sophisticated than point neurons, and
demonstrate a wide range of complex non-linear dendrite-specific integrative properties (Spruston,
2008) (Figure 1, right). In this paper we focus on active dendritic properties where different den-
dritic branches on a single neuron act as independent pattern detectors (Antic et al., 2010, Major
et al., 2013).

Computational models have suggested that these active dendrites can be incorporated into neuron
models by treating each dendritic neuron as containing multiple layers of point neurons (Poirazi and
Papoutsi, 2020, Beniaguev et al., 2021). Although these studies show that such neurons have greater
complexity, computational power and capacity than single point neurons, full networks constructed
from these dendritic neurons are not fundamentally more powerful or capable than large multi-layer
networks constructed from point neurons. Because of this fact most ANNs continue to use the point
neuron model.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

Figure 1: Left: the point neuron prevalent in most ANNs today simply computes a linear weighted
sum of its inputs followed by a non-linearity. Right: a pyramidal neuron in the brain exhibits a
vastly more complex structure.

In this paper we show that dendrites impart fundamental computational benefits beyond a simple
increase in complexity or computational power. We incorporate several properties of biological
neural networks into an ANN: active dendrites, local inhibition and sparsity, and complex synapses.
We then explore the impact of each of these changes in continual learning scenarios. In these
scenarios the network is trained on a continuous sequence of tasks (McCloskey and Cohen, 1989,
van de Ven and Tolias, 2019). Standard ANNs perform extremely well in batch training but do
not perform well in continual learning. In particular they are unable to learn a new task without
erasing what they previously learned, a phenomenon known as catastrophic forgetting (McCloskey
and Cohen, 1989, French, 1999, Parisi et al., 2019). Continual learning is a core capability, central
to intelligent systems, and something that humans perform naturally.

Our work builds on the initial HTM neuron model used in Hawkins and Ahmad (2016), which in
turn models the depolarization effects of active dendrites (Antic et al., 2010, Major et al., 2013). The
HTM neuron contains two different dendritic zones and receives two sources of input: a bottom-up
feedforward input and a second context input. The sparse contextual input acting on a neuron acts
as a prediction which biases the neuron and makes it more likely to become active.

Our primary goal in this study is to show a proof-of-concept working system that illustrates how
these active dendritic concepts can be incorporated into a deep learning system. The main contribu-
tions are as follows:

• We summarize some of the existing experimental and theoretical work on active dendrites,
sparse representations, and continual learning.

• We propose a new deep learning architecture that incorporates dendrites and sparse repre-
sentations.

• We show experimental results on a standard continual learning benchmark, permutedM-
NIST. The results show that networks with active dendrites can retain a significant fraction
of past information.

• We analyze the results and suggest reasons why active dendrites and sparse representations
help with catastrophic forgetting.

2 Background

2.1 Active Dendrites

A prototypical pyramidal neuron has an extensive dendritic arbor containing thousands of synapses,
each receiving input from other neurons (Bentivoglio and Swanson (2001), Ziehen (1895), Kandel
(2012)). The point neuron model—used in most current deep learning networks—says that all these
synapses have a linear impact on the cell. The cell would fire if its total inputs exceed a threshold
and then resets. However the vast majority of the synapses are distal (far from the cell body) and
individually have minimal impact on the cell. Only proximal synapses (close to the cell body) have
a linear impact on the neuron. Distal dendritic segments instead process groups of synapses locally
in a non-linear fashion, and are known as active dendrites (Major et al., 2013). Empirical evidence

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

(Larkum et al. (1999), London and Häusser (2005), Branco and Häusser (2010), Antic et al. (2010),
Major et al. (2013)) suggests that each distal dendritic segment acts as a separate active subunit
performing its own local computation. When the number of active synapses within a small local
region reaches above a threshold, the segment initiates a dendritic spike, independent of activity
elsewhere.

Some modeling studies propose that active dendritic segments act as separate layers (Poirazi et al.
(2003), Poirazi and Papoutsi (2020), Jadi et al. (2014), Beniaguev et al. (2021)) and suggest that
each pyramidal neuron is equivalent to a multi-layer network of point neurons. Theoretical analysis
of these models show that individual neurons with active dendrites have greater capacity than point
neurons (Poirazi et al., 2003). Although this suggests that neurons are significantly more powerful
than originally thought, from a deep learning point of view, the model does not provide a compelling
justification to incorporate active dendrites. It is sufficient to simply implement a deeper ANN
composed of point neurons.

In our model we exploit an additional property of dendritic spikes. Dendritic spikes travel to the cell
body but are typically insufficient on their own to cause the cell to fire. Instead, a dendritic spike can
depolarize the neuron for an extended period of time, sometimes as long as half a second (Antic et al.,
2010, Major et al., 2013, Gao et al., 2021). During this time, the cell is significantly closer to its firing
threshold and any feedforward input is more likely to make the cell fire. This suggests that active
dendrites have an indirect modulatory impact on the cell’s response, with a very different role than
feedforward inputs. The sustained depolarized state has been called a “predicted state” (Hawkins
and Ahmad, 2016) or a “prepared state” (Antic et al., 2018). Active dendritic segments typically
receive contextual input that is a different input than received in proximal segments. These context
signals can arrive from other neurons in the same layer, neurons in other layers, or in the form of
top-down feedback. Recent experimental evidence has shown that the input on active segments can
drive context dependent activity (Takahashi et al., 2020). In the HTM model (Hawkins and Ahmad,
2016) we showed that contextual input on active dendrites can invoke context-specific activity and
lead to a powerful predictive sequence memory. In this paper we discuss how these notions can be
extended to context-dependent activity in deep learning networks.

2.2 Sparse Representations

Biological circuits and neocortical neurons exhibit sparsity in terms of both their 1) activations and
2) connectivity. In regards to activation sparsity, previous studies showed that in the neocortex rela-
tively few neurons spike in response to a sensory stimulus, and that this is consistent across multiple
sensory modalities, i.e., somatosensory, olfactory, visual and auditory (Attwell and Laughlin, 2001,
Barth and Poulet, 2012, Liang et al., 2019). While the mechanisms maintaining sparsity, and the
exact sparsity at the level of the individual neuron, remain to be answered fully, sparsity is a well-
documented cortical phenomenon. Sparsity is also present in neural connections: cortical pyramidal
neurons show sparse connectivity to each others and receive only few excitatory inputs from most
surrounding neurons (Holmgren et al., 2003).

In computational modeling, sparse neural activity in the brain is translated into sparse representa-
tions: vectors where most of the entries are off (i.e., equal to zero) (Olshausen and Field, 1997,
Cui et al., 2017). Just as in dense representations, individual entries can correspond to the presence
of certain features, such as an edge in a particular position in an input image, hence sparse repre-
sentations encode semantics. One advantage of sparsity in representations is that vectors for two
separate entities have low overlap, which means the set of features/entries that are non-zero in both
vectors is small. Previous studies with ANNs have found that sparse representations lead to more
noise robustness than do dense representations, and slight perturbations in the input are less likely
to hinder a trained pattern recognizer (Ahmad and Hawkins, 2016, Ahmad and Scheinkman, 2019).
The idea of low representation overlap among unrelated inputs is particularly useful when learning
in sequence. If the representations of two inputs from different “tasks” have near-zero overlap, it’s
easier for the learner to recognize which task a given input most likely corresponds to, by simply
responding to which entries are non-zero, and can make a prediction accordingly.

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

2.3 Continual Learning

Continual learning is the ability to acquire new knowledge over time. In contrast with biological
networks, typical deep learning networks perform poorly in this setting. We review previous work
in continual learning from two main categories: 1) regularization-based and 2) subnetwork-based
approaches. The former regulates plasticity levels throughout the network during the course of
training. In recent years, two of the most prominent examples of regularization are Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017) and Synaptic Intelligence (SI) (Zenke et al., 2017).
Both approaches (EWC and SI) estimate how relevant each parameter of the network is towards
solving each previously encountered task. Motivated by the complex synapse structures seen in
biology, SI uses two parameters per weight with internal dynamics that depend on the relevance of
each weight to each task.

Subnetwork-based approaches are concerned with identifying subpopulations of neurons that each
learn one of the many tasks in the sequence. Gated Linear Networks (Veness et al., 2021) and
Dendritic Gated Networks (Sezener et al., 2021) are examples of this type of approach and work
by applying a gating mechanism that selects subnetworks based on the input. In another example,
Wortsman et al. (2020) present Supermasks, in which each task is designated a subset of neurons
in the network. While Supermasks can learn hundreds of Omniglot (Lake et al., 2015) classes in
sequence, computing the appropriate subnetwork is largely decoupled from the inference procedure
and must be done on the side, a limitation of this approach. Context-dependent Gating (XdG)
(Masse et al. (2018)) selects predetermined subnetworks of neurons, but exact task information
must be provided during training and testing. Meta-learning can also be a useful tool to generate
subnetworks: both Javed and White (2019) and Beaulieu et al. (2020) employ meta-learning to learn
continually, and sparse subnetworks tend to emerge without explicit hard-coding. In Beaulieu et al.
(2020) the systems learn a modulation network that selects subpopulations of neurons, an algorithm
referred to as ANML. One limitation of this approach is that the only weights that change during
continual learning are the output weights; the vast majority of the networks stays fixed.

3 Model

In this section we describe our method for translating the above biological properties into a deep
learning architecture. We can summarize some of the key differences between pyramidal neurons
and the point neuron model as follows:

1. Pyramidal neurons integrate inputs at multiple dendritic segments, whereas a point neuron
has a single integration zone.

2. Proximal and distal dendritic inputs have different impacts on a neuron’s voltage and out-
put, but in a point neuron, all inputs are treated like proximal inputs. Distal inputs on active
dendrites can modulate a neuron’s response, making it more likely to fire.

3. Proximal and distal inputs may come from separate sources, whereas the point neuron
assumes there is a single source of synaptic inputs.

4. Neural activity is generally sparse, whereas the activity is dense in most standard ANNs.

In our model, we strive to narrow these differences in the context of a deep learning system. In the
rest of this section we describe our modified architecture where neural activity is dependent on both
proximal (feedforward) and distal (context) inputs. The system is differentiable such that the entire
network can be trained end-to-end using standard backpropagation. We later test our hypothesis that
these context-dependent responses are useful for continual learning. Our implementation is available
online1.

3.1 Active Dendrites Neuron

To turn these ideas into a formal computational model, we present the Active Dendrites Neuron
which goes beyond the point neuron in how it implements neural computation. Our Active Dendrites
Neuron (Figure 2) receives two sources of input, analogous to the proximal and distal inputs in

1GitHub Repository: https://github.com/numenta/htmpapers

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://github.com/numenta/htmpapers
https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

Figure 2: Illustration of a single Active Dendrites Neuron. Feedforward weights (green) receive
regular feedforward input while dendritic segments (blue) receive a context vector. A single activa-
tion is further chosen after all dendritic segments compute an activation value, which thus modifies
the linear weighted sum computed by feedforward weights.

pyramidal neurons. The feedforward inputs are processed just as in a point neuron, by computing
a linear weighted sum of inputs. In addition, a set of dendritic segments on each neuron process
a context (distal) input, and the subsequent dendritic output modulates the neuron’s response. The
end result is a neuron where the magnitude of the response to a given stimulus is highly context-
dependent.

Given a feedforward input vector x, our neuron computes t̂ = w>x + b where w and b are the
feedforward weights and bias of the neuron, respectively. Each dendritic segment j computes a
linear weighted sum of a context vector c, u>j c, where uj are the weights for that segment. We select
the segment with the strongest response to the context vector and compute the dendritic activation,
d, used to modulate the neuron: d = maxj u

>
j c. (The method we use to compute the context vector,

c, is described in Section 3.3.)

The output of a single Active Dendrites Neuron is:

ŷ = f
(
t̂, d
)

where f is a modulation function that modifies t̂ by the dendritic activation. In this paper we choose
f to perform sigmoidal gating: f(t̂, d) = t̂ × σ(d), where σ(·) is the sigmoid function which takes
a real number and squishes it into the range [0, 1]. Thus:

ŷ = f

(
w>x + b,max

j
u>j c

)
=
(
w>x + b

)
× σ

(
max

j
u>j c

)
Here, a strong positive dendrite response to the context vector will retain the feedforward activa-
tion since the sigmoid will be close to 1. Weak or negative responses to the context vector will
significantly reduce the activation since the sigmoid will be significantly lower than 1. There are
many variations of the above formulation that are possible. We found that the network worked best
when we selected the dendrite activation with the largest absolute value and retained the sign in d.
This allows a strong negative response to more easily turn the neuron off (see Appendix A for more
details).

3.2 Sparse Activations

We apply a k-Winner-Take-All (kWTA) function (Ahmad and Scheinkman, 2019) as our choice of
non-linear activation in each hidden layer:

kWTA(ŷi) =

{
ŷi, if ŷi is one of the top k activations over all i
0, otherwise

where i indexes neurons in the same layer.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

Figure 3: An illustration of the prototype method for computing context vectors. The blue circles
are training samples in input space for task A, while the orange circles are training samples for task
B. The blue cross is a vector that represents the prototype for task A, and the orange cross represents
the prototype for task B. At test time, we identify the closest prototype to each input vector and use
it as the context vector.

The effect of kWTA is to pick out the top k activation values and drop all others to zero. The
dendritic segments, by modulating the feedforward output, have a large impact on which neurons
actually win. The kWTA layer thus results in sparse activity patterns that are highly context de-
pendent. Note that in (Ahmad and Scheinkman, 2019) we also tested the impact of sparse weights.
In this paper we found that 50% weight sparsity worked well, but we have not yet performed an
exhaustive hyperparameter search to optimize weight sparsity.

3.3 Computing the Context Vector

In our model neural activity is modulated based on how well their dendritic segments detect a par-
ticular context vector, and the subsequent kWTA activation preferentially selects the up-modulated
neurons. In a continual learning scenario, the context vector can serve as a task identifier so that
neurons can be modulated for each task.

In order to apply our network to a continual learning dataset we need to compute an appropriate
context vector. There is a large space of possible context vectors that could be used, and the exact
choice can significantly impact overall network accuracy. In this paper we chose to use a simple
prototype method to infer the context vector (Rosch, 1975, Snell et al., 2017). In this scheme a single
vector is chosen to represent each task (see Figure 3). We implemented two different variations of
the prototype method.

Training method 1 (task information provided): In the first method we assume that the system
receives task information during training. During training, all training samples for a particular task
are assigned a single prototype context vector. We compute the prototype vector for task t by taking
the element-wise mean over all the training samples across all features:

pt =
1

|Vt|
∑
x∈Vt

x

where Vt gives the set of all data samples x that the model observes to train on task t. The di-
mensionality of the context vector is thus identical to the dimensionality of the input vectors. This
context vector is specific to each task and agnostic to the target label.

Training method 2 (task information not provided): In the second method we relax the constraint
that the identity of the task is given during training and implement prototypes that are automatically
inferred during training in an online manner. To achieve this we use a statistical clustering approach
that builds context prototypes on the fly. When the system receives a new batch of training samples
from a task, we use an unpaired multivariate t-test to compare the current samples to previously-
observed training samples. If the new batch of samples is similar to earlier training samples, they are
assigned to an existing prototype. If not, the new batch of samples is assumed to be a new task, and
a novel prototype is instantiated. In this case, there isn’t necessarily a one-to-one mapping between
tasks and prototype context vectors. More details on this method are described in Appendix B.

Testing (selecting prototypes during testing): For both of the above methods, at test time we do
not provide any task information to the system. Instead it must dynamically choose the correct
context vector and provide that to the network. We do this by selecting the closest prototype vector
to each test example (using Euclidean distance) as the context vector. That is, for a test example x′,

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

Figure 4: An overview of the base network structure used in our experiments. There are two layers
of hidden units, each with a k-winner-take-all activation function. A context vector is computed
from each input by locating the nearest prototype vector. The dendrites in each layer receive this
context vector as input.

the chosen prototype is:
arg min

pt

||x′ − pt||2

computed over all prototypes pt stored in memory.

3.4 Active Dendrites Network Architecture

Figure 4 shows the Active Dendrites Network that we used for our continual learning experiments.
In each hidden layer, all neurons are Active Dendrites Neurons, and the network is trained end-to-
end with standard backpropagation. We make two notes: first, only the neurons that were selected
by the kWTA function will have non-zero activations (and thus non-zero gradients). Therefore
during the backward pass only the weights corresponding to those winning neurons will be updated.
Second, for each of those winner neurons, only the dendritic segment j that was chosen by the
max operator is updated; all other segments uj′ for j′ 6= j remain untouched. Thus a very small
sparse subset of the full network is actually updated for each input. We hypothesize that a functional
specialization will emerge where different dendritic segments will each learn to identify specific
context vectors. This in turn will reduce interference during training between different tasks and
thereby limit catastrophic forgetting. Indeed, since most dendritic segments that don’t respond to
a specific context will not be updated, any context-dependent modulation of the neuron should be
preserved from task to task. This aspect makes our Active Dendrites Network a suitable contender
for learning continually.

4 Results

A typical scenario in continual learning consists of training an ANN on a number of discrete tasks
in sequence. Once the network has been trained on a particular task, it does not encounter that task
again. The goal is to learn the tasks in sequence without forgetting previously-learned tasks.

We apply our Active Dendrites Network to permutedMNIST (Goodfellow et al., 2013), a common
benchmark in continual learning, and discuss our findings in this section. In permutedMNIST, each
task requires classifying images of handwritten digits from 0–9 just as in regular MNIST, except each
task also applies a unique pixel-wise permutation to all images while maintaining the categories for
each image. Consequently, the data distribution of each task changes, and ANNs are generally not
permutation-invariant and thus forgetting occurs. Since the MNIST dataset contains 50, 000 training
images, there are 50, 000 training images for each task. When trained on T consecutive tasks, the

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

network is trained on a total of T × 50, 000 images. Once training has completed, the network
accuracy is calculated using a test set consisting of all T permutations applied to the MNIST test
dataset.

4.1 Results on permutedMNIST

We used the network structure shown in Figure 4. Our network is composed of two hidden layers
with 2,048 Active Dendrites Neurons each plus a final output layer with 10 neurons. We chose these
network layer sizes to be similar to previous studies that report results on this dataset (Kirkpatrick
et al., 2017, Zenke et al., 2017, Masse et al., 2018).

We train our model to learn up to 100 tasks in sequence. The network is tested at the end of training
by computing accuracy on the test set for all tasks. When attempting to learn T consecutive tasks,
the hidden neurons are equipped with T dendritic segments each to give it sufficient capacity to
recognize a unique context vector for each task. We report accuracy numbers by averaging over 8
independent runs each with a randomly-picked seed. (Appendix D contains the hyperparameters
used for each experiment.)

As shown in Figure 5 (left), we achieve accuracies of 94.6% and 81.4% on 10 and 100 consecutive
permutedMNIST tasks, respectively, when context is provided during training, and accuracies of
94.3% and 76.9% when context needs to be dynamically inferred during training. Since there are al-
ways 10 categories, chance accuracy is 10% independent of the number of tasks. This demonstrates
that the network is able to retain the majority of the knowledge from previous tasks. Note that a
standard feedforward network performs poorly on this benchmark (Kirkpatrick et al., 2017, Zenke
et al., 2017, van de Ven and Tolias, 2019) (see also Section 4.3 for more direct comparisons).

We also compare the results with SI (Zenke et al., 2017) (see Section 2.3). SI is motivated by the
complex structure of biological synapses and known to do well on this benchmark. SI operates
solely at the level of synapses: it maintains an additional parameter per weight that controls how
fast that weight adapts to specific tasks. Since our architecture operates at the neuron and network
levels, the two approaches are complementary techniques and can be combined. Figure 5 (right)
shows the benefits of this combination. The accuracy of Active Dendrites Networks combined
with SI improves to 97.2% and 91.6% accuracy on 10 and 100 consecutive tasks, respectively.
Combining the two leads to higher accuracy than either method on its own. This suggests that
biological mechanisms at the synapse, neuron, and network levels can operate together to handle
continual learning. Note that SI as described in Zenke et al. (2017) requires knowledge of the task
during training, as such we only combine it with our first prototype method. It may be possible to
remove this restriction, and is a direction for future research.

Figure 5: Left: The accuracy of our Active Dendrites Networks when learning 2, 5, 10, 25, 50,
and 100 permutedMNIST tasks in sequence. We show results using both prototype methods while
training: when the the model is provided with a prototype, and when it must infer the vector in an
online manner. Right: The accuracy of the Active Dendrites Network and SI. The accuracy when
combining SI + active dendrites is greater than either one on its own.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

Figure 6: The fraction of instances for which each of the first 64 hidden units in the final hidden
layer became active (after applying kWTA), when training an Active Dendrites Network on 10
permutedMNIST tasks. This figure separates instances by task, and uses 5,000 randomly-chosen
test examples across all tasks. Note that each hidden layer contains 2,048 hidden units, but we show
just 64 for ease of visualization.

4.2 Are Dendrites Invoking Subnetworks?

Our hypothesis behind incorporating active dendrites and kWTA is for the former to up- and down-
modulate individual neuron’s activations, and for the latter to use this modulation to activate subnet-
works that correspond to each task. We tested this hypothesis by analyzing the representations of
each layer of Active Dendrites Neurons for a network trained on 10 tasks. Figure 6 shows the aver-
age activation frequency per task for the first 64 neurons in the second hidden layer after applying
kWTA. Looking horizontally across the rows, each task appears to select a different sparse subset
of neurons. Looking vertically, each neuron appears to activate frequently only for a small fraction
of tasks.

To quantify this further we computed the mean cosine similarity of sparse activations for the en-
tire layer, across all pairwise tasks. A low cosine similarity between any two tasks implies that the
representations for the tasks are different and that the corresponding sub-networks are also differ-
ent. Figure 7 shows the matrix of cosine similarities plus the average within-task and across-task
similarities. According to this measure, it appears that the network has indeed learned to invoke
non-overlapping subnetworks for different tasks.

Figure 7: Mean pairwise cosine similarity values of hidden representations in the penultimate layer
of an Active Dendrites Network after training on 10 permutedMNIST tasks in sequence. This figure
uses 5,000 randomly-chosen test examples across all tasks. Left: Pairwise comparison between
tasks where cell i, j gives the mean pairwise cosine similarity values across all pairs from tasks i
and j. Right: Average across- and within-task cosine similarities (error bars omitted).

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

Even though subnetworks of neurons become active, what is the effect of the dendrites of a single
neuron? In Figure 8, we zoom in on a few Active Dendrites Neurons and their responses (i.e.,
dendrite activations) to different context vectors before and after learning 10 permutedMNIST tasks
in sequence. At the beginning of training the responses are random, with scattered positive, negative,
and near-zero responses. After training, most responses are weak and only a few are very positive.
We posit that with the kWTA layer selecting only the strongest neurons, dendrites don’t have much
incentive to down-modulate the neuron to induce near-zero activation value. The kWTA effectively
nullifies the activations of non-winners. The dendrites primarily need to up-modulate the neuron
when it needs to become active as part of a subnetwork. This is consistent with the depolarization
effect of dendritic spikes, which only up-modulate neurons. Across the neurons we have shown,
dendrites only have strong responses to a few contexts as different neurons participate in different
subnetworks.

Figure 8: The behavior of the dendritic segments of three separate neurons in the last hidden
layer of an Active Dendrites Network for 5,000 randomly-chosen test examples across all tasks,
before and after learning 10 permutedMNIST tasks. These charts show the activation computed by
each dendritic segment given the context vector corresponding to each task, before (top row) and
after (bottom row) training. Note that the dendritic segments for a particular neuron are completely
separate of the segments of another (e.g., Neuron A’s first segment is unrelated to Neuron B’s first
segment).

4.3 Are Networks With Dendrites Equivalent To A Network With More Layers?

Over the last couple of decades, multiple studies have suggested that computations performed by
pyramidal neurons can be approximated by ANNs that have one or more hidden layers. Through
experiments, Poirazi et al. (2003) showed a two-layer neural network (i.e., multi-layer perceptron
(MLP)) can well approximate the pre- and post-synaptic activites of a pyramidal neuron in the
hippocampus. Various follow-up studies have also made similar claims (Jadi et al., 2014, Beniaguev
et al., 2021). These models suggest that pyramidal neurons have greater capacity and power than
a single point neuron. From a computational and deep learning perspective, this is equivalent to
claiming that an ANN with dendrites can be substituted by a deeper ANN.

However, we argue that when looking at more realistic dynamic scenarios, such as continual learn-
ing, a pyramidal neuron’s activity cannot be approximated by a neural network with multiple layers.
Classical deep networks are incapable of performing well in continual learning settings regardless of
depth. They are subject to catastrophic forgetting even with more layers. On the contrary, our active
dendrites implementation can not only compete with more classical networks in non-continual learn-
ing settings, but also perform on-par with state of the art networks on continual learning benchmarks.
Figure 9 shows the final accuracy of a network with active dendrites on 10 and 100 permutedMNIST

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

tasks against feedforward networks that have a) the same number of layers but no dendrites, and b)
many more layers and roughly the same number of learnable parameters (for 10 tasks).

We also tested other control configurations not shown in Figure 9. First, we tested a 3-layer MLP
where either the task ID or context vector was provided as part of the feedforward input. This model
performed better than a standard 3-layer MLP but still significantly worse than the Active Dendrites
Network. Second, we tested a network with a constant number of learnable parameters independent
of the number of tasks (see Appendix C).

Our results suggest that in the realm of continual learning, standard ANNs with multiple layers
are prone to catastrophic forgetting while active dendrites can help retain knowledge from previous
tasks. Therefore, our Active Dendrites Network is not equivalent a standard feedforward network
with more layers.

Figure 9: Continual learning overall accuracy for an Active Dendrites Network compared to regular
feedforward networks with more layers. Our Active Dendrites Network has three layers. The two
hidden layers contain neurons with dendrites.

4.4 Comparison With Context Dependent Gating

The idea of leveraging sparse representations and subnetworks within an ANN to combat catas-
trophic forgetting is not entirely novel. The implementation closest to ours is XdG (Masse et al.,
2018) where they hard-coded a distinct subnetwork for each task. When training on a task, they in-
voked the task-specific subset of the hidden layer of their ANN; other neurons were forced to have an
activation value of zero. Their system was provided with a task ID which determined exactly which
neurons to turn on or off. Training Active Dendrites Networks in a continual learning scenario
also yields subnetworks and sparse representations, however we emphasize two major distinctions
between our model and XdG:

1. Task information is inferred in our system (via prototyping) whereas XdG provides the
system with a task ID during training and testing. As such, our system is solving a problem
that is known to be significantly more challenging (van de Ven and Tolias, 2019).

2. Subnetworks automatically emerge via the use of dendritic segments for each new task
whereas XdG pre-allocates a different subnetwork for each task.

We compare Active Dendrites Networks to XdG in Figure 10. Just as we augment Active Dendrites
Networks with SI, so too does XdG. Our results with a large number of tasks are significantly better
than XdG, and slightly worse than XdG combined with SI, but without their limitations.

Learning is more challenging in our system as dendritic segments must learn the mapping between
context vectors and different subnetworks. In effect, sparse representations and minimally overlap-
ping subnetworks emerge naturally in our model. We note that perhaps this makes learning more
interesting as dendritic segments can choose subnetworks that overlap more for tasks that are more
semantically related, thus requiring less network capacity.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

Figure 10: Left: Final accuracy of the Active Dendrites Network in comparison to XdG when
learning 2, 5, 10, 25, 50, and 100 permutedMNIST tasks. Right: Final accuracy of each method
when augmented with SI, and SI itself. XdG numbers are taken from Zenke et al. (2017).

4.5 Impact of Sparsity Level and the Number of Dendrites

We have shown that an Active Dendrites Network is competitive with benchmark methods in con-
tinual learning. However, to what extent are active dendrites and sparse representations both con-
tributing factors towards alleviating catastrophic forgetting? As it turns out, both 1) active dendrites
without sparse representations and 2) sparse representations with standard point neurons are better
than chance in a continual learning scenario. However, it is the combination of active dendrites with
sparse representations that yield much better results than incorporating just one of these biologically-
inspired modeling aspects. Indeed, the accuracy of both methods evaluated independently and com-
bined on up to 100 permutedMNIST tasks clearly demonstrates the importance of having both active
dendrites and sparse representations; see Figure 11.

Figure 11: Continual learning mean accuracy on permutedMNIST using active dendrites and dense
representations (green), regular ANNs with sparse representations (orange), and Active Dendrites
Networks (blue) which use both active dendrites and sparse representations. We average results
over 8 independent runs each with a randomly-initialized seed and omit standard error bars as they
highlight a very small range.

Furthermore, we also test the effects of varying the number of dendritic segments per hidden neuron
(while fixing the level of sparsity in representations), and the result is a small monotonic increase
in accuracy. Likewise, decreasing the sparsity level in hidden representations (i.e., increasing k in
kWTA) while keeping the number of dendritic segments constant translates into a sharp drop in
accuracy, which highlights the importance of sparse representations. Figure 12 shows results from
these experiments when training an Active Dendrites Network on 10 and 50 permutedMNIST tasks
in sequence.

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

Figure 12: Left column: Final accuracy on test examples across all tasks when varying the number
of dendritic segments per neuron and keeping activation sparsity constant when learning 10 (top)
and 50 (bottom) permutedMNIST tasks. Right column: Final accuracy on test examples across all
tasks for a fixed number of dendritic segments per neuron and varying activation density level on 10
(top) and 50 (bottom) permutedMNIST tasks.

4.6 Understanding Parameters in the Model

One interesting issue relates to the size of the Active Dendrites Network and the total number of
parameters. In addition to feedforward weights, our neurons have weights associated with each
dendritic segment. In most of our experiments the number of dendritic segments is set to T , the
number of tasks (See Appendix C for results with a fixed number of dendritic segments). We can
calculate the number of weights in each hidden layer l of the network as follows. Let p be the
size of the prototype vector, nl be the number of units in layer l, sF be the weight sparsity for the
feedforward weights and sD the weight sparsity for dendritic weights. The total number of weights
in layer l is then:

Wl =
((

1− sF
)
nl + 1

)
nl−1︸ ︷︷ ︸

Feedforward weights & biases

+
(
1− sD

)
pTnl︸ ︷︷ ︸

Dendritic segments

The first term represents the total number of weights in the feedforward portion (including a bias).
The second term represents the number of weights in the dendritic segments. In our implementation,
sF = 0.5, and sD = 0 (i.e., dendritic weights are fully dense).

In addition to these weights we also store T prototypes, each of which has the same size as the
input vector. Although these are not learned through backpropagation, they are determined from the
training data and should be included in the parameter count. In permutedMNIST the input vector
size is n0 = 784, leading to a total of T × 784 additional values for the prototypes.

The number of dendritic weights quickly dominates all other parameters as the number of tasks in-
creases (Table 1, middle column). At first glance, the implication is that the number of parameters
in our 100-task network is far greater than the number of parameters in the comparison networks.
However notice that the dendritic segments do not receive the input. The dendritic segments deter-
mine a context-dependent scale factor per neuron, based only on one of 100 possible context vectors.
This scale factor is learned during training but then is static during testing.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

Network Tasks Parameters Effective Parameters

Active Dendrites Network 10 35,034,794 2,963,114
Active Dendrites Network 100 324,119,114 3,402,314
3-layer MLP 10 or 100 5,824,512 5,824,512
10-layer MLP 10 or 100 35,198,976 35,198,976
XdG 10 or 100 5,592,010 5,592,010

Table 1: The total and effective number of parameters for Active Dendrites Networks as compared
to some of the other networks. Note: that XdG requires a mapping from task ID to sub-networks
that is not incorporated in the table.

Since there is a small fixed pool of T prototype vectors, a simple post-processing step can replace
the weights with a smaller identical system. From Section 3.1, the output of a neuron is:

ŷ =
(
w>x + b

)
× σ

(
max

j
u>j c

)
During testing σ

(
maxj u

>
j c
)

is constant for each vector ci. The equation can be re-written as:

ŷ =
(
w>x + b

)
di

where di = σ
(
maxj u

>
j ci
)
, 0 < i ≤ T . For any given test input, we can select the nearest

prototype vector i and use the appropriate scale factor di. The total number of effective parameters
in layer l is thus reduced to:

W ′l =
((

1− sF
)
nl + 1

)
nl−1 + Tnl

Note that in the experiments reported here, with a small fixed number of context vectors, it is actually
possible to learn di directly via backpropagation. In this case the number of parameters would be
identical to the number of effective parameters, even during training. We did not implement this as
it would also limit the flexibility of the overall architecture and disallow future scenarios where the
context vector changes dynamically per input. In Table 1 we list the total and effective number of
parameters for the Active Dendrites Network in comparison to some of the other networks. Note
that the Active Dendrites Network has substantially fewer effective parameters than any of the other
networks.

In our previous work (Hawkins and Ahmad, 2016) we used extremely sparse dendritic weights
(> 99% sparsity). These weights were dynamically determined during the learning process by
sampling from components of the context vector. Consistent with the biology of active dendrites,
the number of weights per segment was limited to a small constant (such as 30). Implementing
sparse dendritic weights in the context of deep learning systems is an important future research area
for Active Dendrites Networks.

5 Discussion

Ever since Rosenblatt (Rosenblatt, 1958), AI visionaries have attempted to build intelligent systems
by taking ideas from neuroscience and turning them into algorithms. They looked to neurons in
the brain as a single computational unit and constructed ANNs by organizing multiple such units
in a hierarchy. The exact mechanistic details of how a biological neuron converts incoming signals
into action potentials (i.e., spikes) have always been unclear. Implementations of biological neurons
in silico have favored a single linear weighted sum (the point neuron) as a tractable abstraction.
This idea continues to serve as the prevalent paradigm in machine learning today for the individual
computational unit.

One shortcoming is that standard ANNs with point neurons overwrite most of their connections for
each learning iteration, and thus quickly lose previously-acquired knowledge (French, 1999, Parisi

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

Figure 13: A cartoon illustration of subnetworks within an Active Dendrites Network. By receiving
different context vectors as input, dendritic segments can invoke different subnetworks for a fixed
feedforward input. The subnetworks are distributed, i.e., they may share some of the same neurons.

et al., 2019). In this paper we have shown that augmenting point neurons with biological proper-
ties such as active dendrites, complex synapses, and sparse representations significantly improves a
network’s ability to learn continually. In particular, we have shown that a 3-layer Active Dendrites
Network with SI can achieve greater than 90% accuracy when learning 100 permutedMNIST tasks
in sequence. In the following subsections we discuss some intuitions for why dendrites help with
catastrophic forgetting, and some relationships to other papers.

5.1 Dendrites Invoke Subnetworks

In this section we attempt to shed light on why active dendrites help in continual learning. In our
model dendritic segments in each neuron identify specific contexts and then modulate neuronal
activity based on this identification. Due to the subsequent k-Winner-Take-All function, the modu-
lation can have an impact on whether the neuron will become active. We propose that the impact of
this behavior is to invoke sparse context-specific subsets of the network. This in turn causes learning
to be highly localized and task-specific, and helps reduce forgetting effects.

Figure 13 visually illustrates these subnetworks. Two different context vectors can lead to different
winners and different sparse activation patterns. As suggested by the figure, it is even possible for
the exact same feedforward input to activate completely different neurons for different contexts.
Note that the subnetworks are distributed; two different subnetworks may have neurons in common.

In Section 4.2 we showed that task-specific representations do indeed emerge (Figure 6), and that the
representations from these subnetworks have minimal overlap (Figure 7). Our analysis also showed
that once learning is complete, individual segments within a neuron respond strongly to different
context vectors (Figure 8).

What is remarkable is that even though dendritic segments receive a particular context vector only
when training on the corresponding task, they can still retain that information much later in the
process, and correctly activate the appropriate subnetwork. We believe the reason for this is that
the kWTA function prevents the majority of the neurons from activating, thus error will only be
backpropagated through the active subnetwork. In addition the max(·) operator causes errors to be
backpropagated only to the winning dendritic segment. Thus, only the active neurons will update
their feedforward weights. Only the winning segment within those active neurons will update their
dendritic weights. We suspect that this highly selective weight update helps mitigate the effect of
catastrophic forgetting. Interestingly, there is experimental support that this type of highly localized
learning occurs in pyramidal neurons (Losonczy et al., 2008, Limbacher and Legenstein, 2020).

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

5.2 Comparing a Neuron With Active Dendrites to ANNs

Previous studies have proposed that a single pyramidal neuron with active dendrites is computa-
tionally equivalent to an ANN with multiple layers (Mel, 1992, Poirazi et al., 2003, Poirazi and
Papoutsi, 2020, Jones and Kording, 2021). They suggest that the non-linear integrative properties in
dendritic segments add depth and increase capacity, thereby allowing a neuron to implement more
complex input-output functions than a single point neuron. Interestingly, from a practical machine
learning perspective this implies that active dendrites are not fundamentally different. It is sufficient
to simply substitute dendritic neurons with a deeper network of point neurons. In part due to this
result, dendrites have not become popular in deep learning.

In this paper we propose that active dendrites can in fact add value, particularly in more realistic dy-
namic settings. In particular, the equivalence to deeper networks does not hold in continual learning.
We showed in Section 4.3 that Active Dendrites Networks significantly outperform regular ANNs
with more hidden layers when learning multiple tasks in sequence. It Section and 4.6 we showed that
this is true even when the effective capacity of the Active Dendrites Network is significantly smaller
than a standard ANN. Solving the catastrophic forgetting problem requires added functionality that
is independent from increasing capacity. We suggest that the subnetwork functionality described
above goes beyond simply adding layers and parameters. Instead they may play a critical role in the
brain in handling complex dynamic scenarios.

5.3 Related ANN Architectures

Another way to think about neural networks with Active Dendrites Neurons is that they dynami-
cally decide on a representation for the feedforward inputs based on context. When the modulation
function f involves multiplication, dendritic networks fall under the umbrella of multiplicative net-
works. Jayakumar et al. (2020) demonstrated that multiplicative networks can excel in multitask
learning by leveraging dynamic representations in a task-specific manner. Two prominent examples
of dynamic networks include FiLM layers (Perez et al., 2018) and Transformers (Vaswani et al.,
2017). This framing also suggests further investigating the overlap between multitask learners that
receives side information about the task at hand and multimodal learners that fuse multiple streams
of input from different sensory modalities. Conversely, the dendritic networks explored here could
be explored in the context of multimodal learning, or other topic areas where dynamic networks
have been successful.

A related technique which has also been widely used in continual learning is gating. Many works
in this vein draw on the mixture of experts framing (Jacobs et al., 1991). Gated Linear Networks
(Veness et al., 2021) and Dendritic Gated Networks (Sezener et al., 2021) are noteworthy examples
of networks that use context-specific gating as these models are not trained through standard back-
propagation. Our architecture is related in that the dendritic ouput gates the activation of a neuron.
One notable difference is that the neuronal activations are sparse in our model.

In our case, dendritic networks create input representations composed of entirely different subnet-
works of neurons. These sparse representations are a special type of dynamic representation. Super-
masks and XdG also explicitly utilize sparse subnetworks per task. XdG hard-codes subnetworks
for each task, and this extra supervision step forgoes the need to dynamically gate activations and
makes training/testing slightly easier. Supermasks also maintains an explicit list of masks to use
outside the network. By contrast, our model invokes sparse subnetworks automatically and without
an explicit.

5.4 Future Work

Although we have shown an initial proof of concept that active dendrites and sparse representations
can help in continual learning, there is still significant work to be done. First, we only test our model
empirically on permutedMNIST. Despite being a benchmark continual learning dataset, it is far from
the types of inputs a robust learner should be able to perform well on, such as real world images.
Second, our prototype method for computing a context signal is simple and works well in practice,
but may not scale to more challenging problems. We suspect that the simplicity of permutedMNIST
images provides good task separation and this leads to the prototype method being successful in
the scenarios we trained in, but a more principled approach towards constructing context vectors
for a broad range of datasets remains to be investigated. Finally, we discussed the role of sparse

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

representations throughout this paper, but have not explored sparse weights in depth (Ahmad and
Scheinkman, 2019). In our experiments, feedforward weights were 50% sparse, however dendritic
segments were entirely dense. In future work, we would like to address how to create sparse dendritic
segments.

References
S. Ahmad and J. Hawkins. How do neurons operate on sparse distributed representations? A math-

ematical theory of sparsity, neurons and active dendrites. ArXiv preprint, 2016.

S. Ahmad and L. Scheinkman. How can we be so dense? The benefits of using highly sparse
representations. ArXiv preprint, 2019.

S. D. Antic, W.-L. Zhou, A. R. Moore, S. M. Short, and K. D. Ikonomu. The decade of the dendritic
NMDA spike. Journal of Neuroscience Research, 88:2991–3001, 2010.

S. D. Antic, M. Hines, and W. W. Lytton. Embedded ensemble encoding hypothesis: The role of the
“Prepared” cell, sep 2018. ISSN 10974547.

D. Attwell and S. B. Laughlin. An energy budget for signaling in the grey matter of the brain, oct
2001. ISSN 0271678X.

A. L. Barth and J. F. a. Poulet. Experimental evidence for sparse firing in the neocortex. Trends in
Neurosciences, 35(6):345–355, 2012. ISSN 01662236. doi:10.1016/j.tins.2012.03.008.

S. Beaulieu, L. Frati, T. Miconi, J. Lehman, K. O. Stanley, J. Clune, and N. Cheney. Learning
to continually learn. In Proceedings of the 24th European Conference on Artificial Intelligence,
2020.

D. Beniaguev, I. Segev, and M. London. Single cortical neurons as deep artificial neural networks.
Neuron, 109(17):2727–2739, 2021.

M. Bentivoglio and L. W. Swanson. On the fine structure of the pes Hippocampi major (with
plates XIII-XXIII). Brain Research Bulletin, 54(5):461–483, Mar. 2001. ISSN 0361-9230.
doi:10.1016/S0361-9230(01)00430-0. URL https://www.sciencedirect.com/science/
article/pii/S0361923001004300.

T. Branco and M. Häusser. The single dendritic branch as a fundamental functional unit in the
nervous system. Current Opinion in Neurobiology, 20(4):494–502, Aug. 2010. ISSN 0959-
4388. doi:10.1016/j.conb.2010.07.009. URL https://www.sciencedirect.com/science/
article/pii/S0959438810001170.

Y. Cui, S. Ahmad, and J. Hawkins. The HTM Spatial Pooler – a neocortical algorithm for online
sparse distributed coding. Frontiers in Computational Neuroscience, 11:111, 2017. ISSN 1662-
5188. doi:10.3389/FNCOM.2017.00111. URL https://www.frontiersin.org/articles/
10.3389/fncom.2017.00111/abstract.

R. M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3
(4):128–135, apr 1999. ISSN 1364-6613. doi:10.1016/S1364-6613(99)01294-2. URL https:
//www.sciencedirect.com/science/article/abs/pii/S1364661399012942.

P. P. Gao, J. W. Graham, W. L. Zhou, J. Jang, S. Angulo, S. Dura-Bernal, M. Hines, W. W. Lytton,
and S. D. Antic. Local glutamate-mediated dendritic plateau potentials change the state of the
cortical pyramidal neuron. Journal of Neurophysiology, 125(1):23–42, jan 2021. ISSN 15221598.
doi:10.1152/JN.00734.2019.

I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An Empirical Investigation of
Catastrophic Forgetting in Gradient-Based Neural Networks. dec 2013. URL http://arxiv.
org/abs/1312.6211.

J. Hawkins and S. Ahmad. Why neurons have thousands of synapses, a theory of sequence memory
in neocortex. Frontiers in Neural Circuits, 10(23):1–13, 2016.

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

http://dx.doi.org/10.1016/j.tins.2012.03.008
http://dx.doi.org/10.1016/S0361-9230(01)00430-0
https://www.sciencedirect.com/science/article/pii/S0361923001004300
https://www.sciencedirect.com/science/article/pii/S0361923001004300
http://dx.doi.org/10.1016/j.conb.2010.07.009
https://www.sciencedirect.com/science/article/pii/S0959438810001170
https://www.sciencedirect.com/science/article/pii/S0959438810001170
http://dx.doi.org/10.3389/FNCOM.2017.00111
https://www.frontiersin.org/articles/10.3389/fncom.2017.00111/abstract
https://www.frontiersin.org/articles/10.3389/fncom.2017.00111/abstract
http://dx.doi.org/10.1016/S1364-6613(99)01294-2
https://www.sciencedirect.com/science/article/abs/pii/S1364661399012942
https://www.sciencedirect.com/science/article/abs/pii/S1364661399012942
http://dx.doi.org/10.1152/JN.00734.2019
http://arxiv.org/abs/1312.6211
http://arxiv.org/abs/1312.6211
https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

C. Holmgren, T. Harkany, B. Svennenfors, and Y. Zilberter. Pyramidal cell communication within
local networks in layer 2/3 of rat neocortex. The Journal of Physiology, 551(1):139–153, aug
2003. ISSN 0022-3751. doi:10.1113/jphysiol.2003.044784.

H. Hotelling. The generalization of Student’s ratio. Annals of Mathematical Statistics, 2(3):360–
378, 1931.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.
Neural Computation, 3(1):79–87, 1991. doi:10.1162/neco.1991.3.1.79.

M. P. Jadi, B. F. Behabadi, A. Poleg-Polsky, J. Schiller, and B. W. Mel. An augmented two-layer
model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites. Pro-
ceedings of the IEEE, (Special issue on Computational Neuroscience), 102(5):782–798, May
2014. ISSN 0018-9219. doi:10.1109/JPROC.2014.2312671. URL https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4279447/.

K. Javed and M. White. Meta-learning representations for continual learning. In Advances in Neural
Information Processing Systems, 2019.

S. M. Jayakumar, W. M. Czarnecki, J. Menick, J. Schwarz, J. Rae, S. Osindero, Y. W. Teh,
T. Harley, and R. Pascanu. Multiplicative interactions and where to find them. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=
rylnK6VtDH.

I. S. Jones and K. P. Kording. Might a Single Neuron Solve Interesting Machine Learning Problems
Through Successive Computations on Its Dendritic Tree? Neural Computation, 33(6):1554–
1571, May 2021. ISSN 0899-7667. doi:10.1162/neco a 01390. URL https://doi.org/10.
1162/neco_a_01390.

E. Kandel. Principles of Neural Science. page 1229, 2012.

D. P. Kingma and J. L. Ba. Adam: a method for stochastic optimization. In Proceedings of the 3rd
International Conference on Learning Representations, 2015.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan,
T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell. Over-
coming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sci-
ences, 114(13), 2017.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 350(6266):1332–1338, 2015.

L. Lapique. Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polari-
sation. Journal of Physiology and Pathololgy, 9:620–635, 1907.

M. E. Larkum, J. J. Zhu, and B. Sakmann. A new cellular mechanism for coupling inputs arriving
at different cortical layers. Nature, 398(6725):338–341, Mar. 1999. ISSN 1476-4687. URL
https://www.nature.com/articles/18686. Number: 6725 Publisher: Nature Publishing
Group.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553), May 2015. ISSN 1476-
4687. doi:10.1038/nature14539. URL https://www.nature.com/articles/nature14539.

F. Liang, H. Li, X.-l. Chou, M. Zhou, N. K. Zhang, Z. Xiao, K. K. Zhang, H. W. Tao, and L. I. Zhang.
Sparse Representation in Awake Auditory Cortex: Cell-type Dependence, Synaptic Mechanisms,
Developmental Emergence, and Modulation. Cerebral Cortex, 29(9):3796–3812, Aug. 2019.
ISSN 1047-3211. doi:10.1093/cercor/bhy260. URL https://doi.org/10.1093/cercor/
bhy260.

T. Limbacher and R. Legenstein. Emergence of Stable Synaptic Clusters on Dendrites Through
Synaptic Rewiring. Frontiers in Computational Neuroscience, 14:57, 2020. ISSN 1662-5188.
doi:10.3389/fncom.2020.00057. URL https://www.frontiersin.org/article/10.3389/
fncom.2020.00057.

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

http://dx.doi.org/10.1113/jphysiol.2003.044784
http://dx.doi.org/10.1162/neco.1991.3.1.79
http://dx.doi.org/10.1109/JPROC.2014.2312671
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279447/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279447/
https://openreview.net/forum?id=rylnK6VtDH
https://openreview.net/forum?id=rylnK6VtDH
http://dx.doi.org/10.1162/neco_a_01390
https://doi.org/10.1162/neco_a_01390
https://doi.org/10.1162/neco_a_01390
https://www.nature.com/articles/18686
http://dx.doi.org/10.1038/nature14539
https://www.nature.com/articles/nature14539
http://dx.doi.org/10.1093/cercor/bhy260
https://doi.org/10.1093/cercor/bhy260
https://doi.org/10.1093/cercor/bhy260
http://dx.doi.org/10.3389/fncom.2020.00057
https://www.frontiersin.org/article/10.3389/fncom.2020.00057
https://www.frontiersin.org/article/10.3389/fncom.2020.00057
https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

M. London and M. Häusser. Dendritic Computation. Annual Review of Neuroscience, 28(1):503–
532, 2005. doi:10.1146/annurev.neuro.28.061604.135703.

A. Losonczy, J. K. Makara, and J. C. Magee. Compartmentalized dendritic plasticity and input
feature storage in neurons. Nature, 452(7186):436–41, mar 2008. ISSN 1476-4687. doi:10.1038/
nature06725.

G. Major, M. E. Larkum, and J. Schiller. Active properties of neocortical pyramidal neuron den-
drites. Annual Review of Neuroscience, 36:1–24, 2013.

N. Y. Masse, G. D. Grant, and D. J. Freedman. Alleviating catastrophic forgetting using context-
dependent gating and synaptic stabilization. Proceedings of the National Academy of Sciences,
115(44), 2018.

J. L. McClelland, D. E. Rumelhart, and the PDP Research Group. Parallel distributed processing,
volume 2. MIT press Cambridge, MA, 1986.

M. McCloskey and N. J. Cohen. Catastrophic Interference in Connectionist Networks: The Se-
quential Learning Problem. Psychology of Learning and Motivation - Advances in Research and
Theory, 24(C):109–165, jan 1989. ISSN 0079-7421. doi:10.1016/S0079-7421(08)60536-8.

B. W. Mel. NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron. Neural Computa-
tion, 4:502–517, 1992. doi:10.1162/neco.1992.4.4.502.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed
by V1? Vision Research, 37:3311–3325, 1997. ISSN 00426989. doi:10.1016/S0042-6989(97)
00169-7.

G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning
with neural networks: A review. Neural Networks, 113:54–71, May 2019. ISSN 0893-
6080. doi:10.1016/j.neunet.2019.01.012. URL https://www.sciencedirect.com/science/
article/pii/S0893608019300231.

E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville. FiLM: visual reasoning with a
general conditioning layer. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence,
2018.

P. Poirazi and A. Papoutsi. Illuminating dendritic function with computational models. Nature
Reviews Neuroscience, 21:303–321, 2020.

P. Poirazi, T. Brannon, and B. W. Mel. Pyramidal Neuron as Two-Layer Neural Network. Neuron, 37
(6):989–999, Mar. 2003. ISSN 0896-6273. doi:10.1016/S0896-6273(03)00149-1. URL https:
//www.sciencedirect.com/science/article/pii/S0896627303001491.

E. Rosch. Cognitive representations of semantic categories. Journal of Experimental Psychology:
General, 104:192–233, 1975.

F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the
brain. Psychological review, 65(6):386, 1958.

E. Sezener, A. Grabska-Barwińska, D. Kostadinov, M. Beau, S. Krishnagopal, D. Budden, M. Hut-
ter, J. Veness, M. Botvinick, C. Clopath, M. Häusser, and P. E. Latham. A rapid and efficient
learning rule for biological neural circuits. BioRxiv preprint, 2021.

J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. In Advances in
Neural Information Processing Systems, 2017.

N. Spruston. Pyramidal neurons: dendritic structure and synaptic integration. Nature reviews.
Neuroscience, 9:206–221, 2008. ISSN 1471-003X. doi:10.1038/nrn2286.

N. Takahashi, C. Ebner, J. Sigl-Glöckner, S. Moberg, S. Nierwetberg, and M. E. Larkum. Active
dendritic currents gate descending cortical outputs in perception. Nature Neuroscience, pages 1–
9, aug 2020. ISSN 1097-6256. doi:10.1038/s41593-020-0677-8. URL http://www.nature.
com/articles/s41593-020-0677-8.

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

http://dx.doi.org/10.1146/annurev.neuro.28.061604.135703
http://dx.doi.org/10.1038/nature06725
http://dx.doi.org/10.1038/nature06725
http://dx.doi.org/10.1016/S0079-7421(08)60536-8
http://dx.doi.org/10.1162/neco.1992.4.4.502
http://dx.doi.org/10.1016/S0042-6989(97)00169-7
http://dx.doi.org/10.1016/S0042-6989(97)00169-7
http://dx.doi.org/10.1016/j.neunet.2019.01.012
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://www.sciencedirect.com/science/article/pii/S0893608019300231
http://dx.doi.org/10.1016/S0896-6273(03)00149-1
https://www.sciencedirect.com/science/article/pii/S0896627303001491
https://www.sciencedirect.com/science/article/pii/S0896627303001491
http://dx.doi.org/10.1038/nrn2286
http://dx.doi.org/10.1038/s41593-020-0677-8
http://www.nature.com/articles/s41593-020-0677-8
http://www.nature.com/articles/s41593-020-0677-8
https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

G. M. van de Ven and A. S. Tolias. Three scenarios for continual learning. arXiv:1904.07734 [cs,
stat], Apr. 2019. URL http://arxiv.org/abs/1904.07734. 00014 arXiv: 1904.07734.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Proceedings of the 31st Conference on Neural Information
Processing Systems, 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

J. Veness, T. Lattimore, D. Budden, A. Bhoopchand, C. Mattern, A. Grabska-Barwinska, E. Sezener,
J. Wang, P. Toth, S. Schmitt, and M. Hutter. Gated linear networks. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence, 2021.

M. Wortsman, V. Ramanujan, R. Liu, A. Kembhavi, M. Rastegari, J. Yosinski, and A. Farhadi.
Supermasks in superposition. In Advances in Neural Information Processing Systems, 2020.

F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In Proceedings
of the 34th International Conference on Machine Learning, 2017.

Ziehen. Ramón y Cajal: Neue Darstellung vom histologischen Bau des Centralnervensystems. His-
Braunes Arch. 1893. H. 5 u. 6. S. 319-428. -, Ziehen: Ramón y Cajal: Neue Darstellung vom
histologischen Bau des Centralnervensystems. His-Braunes Arch. 1893. H. 5 u. 6. S. 319-428, -: -
-., 8, 1895. URL https://digitalesammlungen.uni-weimar.de/viewer/toc/lit29516/
1/.

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

http://arxiv.org/abs/1904.07734
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://digitalesammlungen.uni-weimar.de/viewer/toc/lit29516/1/
https://digitalesammlungen.uni-weimar.de/viewer/toc/lit29516/1/
https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

A Absolute Max Gating

Here, we briefly outline how we implement gating in Active Dendrites Networks. In section 3, we
originally present gating as modifying the value of the weighted linear sum computed by the point
neuron based on the maximum activation, i.e., σ(maxj u

>c). However, one clear problem with
this formulation is that it becomes difficult to turn a neuron off (i.e., force it’s activation value to
be zero) due to the max operator. That is, if dendritic segment j learns to turn off the unit, then
based on sigmoidal gating, we should expect that u>j c is a small number with large absolute value
(very negative). However, there’s a very good chance that for some segment j′ (where j 6= j′),
u>j′c > 0 > u>j c which not entirely turn the neuron off and increase the chance it becomes selected
by the kWTA process.

This motives absolute max gating in which the activation with the largest magnitude is selected and
its sign is kept. More formally, a point neuron augmented with absolute max gating comptutes its
output as

j∗ = arg max
j

∣∣u>j c∣∣ ,
ŷ =

(
w>x + b

)
σ
(
u>j∗c

)
.

B Inferring Prototypes during Training

When task information is not given during training nor testing, the task corresponding to each input
example must be inferred. Section 3.3 describes how this was done at test time, and this section
describes an online method to estimate task information during training. One inductive bias in
our procedure is that all training examples in a batch correspond to the same task, since continual
learning scenarios usually only observe examples from a single task within a given batch.

B.1 Clustering Approach

Formally, let X = {x(1), . . . ,x(n)} be a batch of n training examples (in the case of permutedM-
NIST, each x(i) is a 784-dimensional vector for 1 ≤ i ≤ n). Suppose M individual prototypes have
been designated thus far: p1, . . . ,pM . For each pj (where 1 ≤ j ≤ M), the individual examples
used to construct that prototype are also stored in memory: Yj = {y(1), . . . ,y(mj)}, where mj

gives the number of examples for cluster j. These previous training examples were observed by the
learner during previous batches of learning and have been stored in memory. We want to identify if
the new batchX is similar enough to any cluster of training examples Yj such that the corresponding
prototype pj should be used as the context signal. If a cluster j is found such that X is “similar”
to Yj , then Yj is expanded to include X . Subsequently, pj is updated to incorporate samples from
X . Otherwise, if X is deemed significantly different from Yj for all j, then a new cluster is formed:
YM+1 ← X and its prototype is is the element-wise mean of all x ∈ X . Algorithm 1 describes the
procedure for clustering during training when task information is not provided.

Algorithm 1 Clustering algorithm by which a new batch of inputs X either gets assigned to 1 of M
existing clusters or initiates cluster M + 1. This procedure is greedy since it assigns X to the first
cluster j that it suitably matches.

1: procedure CLUSTER(X , Y)
2: M ← 0 . Number of existing clusters
3: while not done learning do
4: X ← new batch
5: assigned← False
6: for j = 1 to M do
7: if ¬ assigned and IS MATCH(X , Yj) then
8: assigned← True
9: Yj ← Yj ∪X

10: update pj to include each x ∈ X

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

B.2 Multivariate t-Test

In the above pseudocode, how do we determine when X is similar enough to some Yj? If we had
univariate data (i.e., if each x ∈ X and y ∈ Yj was a scalar quantity), we could use an unpaired
t-test do this. Instead, we use a generalized version of an unpaired t-test that applies to multivariate
data.

In our hypothesis testing setup, the null hypothesis is that for any given j, the same underlying pro-
cess generates samples from both X and Yj . When we accept the null hypothesis, we assume each
x ∈ X and each y ∈ Yj are training examples from the same permutedMNIST task—and therefore
pj can be used as the context signal when training an Active Dendrites Network on examples in X
(albeit pj is first updated to account for X).

Hotelling (1931) proposed Hotelling’s t-squared statistic (t2) as a generalization of the t-statistic
used to perform single-variable t-tests; it is computed as

t2 =
|X||Yj |
|X|+ |Yj |

(x̄− ȳ)
>
Σ−1 (x̄− ȳ)

where x̄ and ȳ are simply the element-wise means of all x ∈ X and y ∈ Yj , respectively, and Σ
is the pooled, sample-adjusted covariance matrix of samples in X and Yj . The test statistic t2 can
be compared to a chosen p-value to accept or reject the null hypothesis by first transforming it to a
value drawn from an F -distribution (whose cumulative density function is more well-studied than
that of the t-squared distribution) as follows:

f =
|X|+ |Yj | − d− 1

d (|X|+ |Yj | − 2)
t2

where d is the dimensionality of the samples.

We fix a p-value and derive a value for f based on t2 as give above. If f > p, then we reject
the null hypothesis since the probability that the same generative process explains both X and Yj
is extremely low, and thus create a new cluster. Since we perform pairwise multivariate t-tests
between X and Yj for all existing prototypes j, a new cluster and prototype emerge if and only if
we reject the null hypothesis for all M t-tests. Algorithm 2 describes the procedure for performing
the multivariate t-test via the t-squared statistic given two sets of multivariate samples.

Algorithm 2 Unpaired multivariate t-test using Hotelling’s t-squared statistic. Here, we use a slight
abuse of notation when computing covariance matrices by assuming sets of d-dimensional vectors
can also be treated as matrices whose rows correspond to their d-dimensional elements. We assume
a p-value is fixed a priori.

1: procedure IS MATCH(X , Y)
2: x̄← 1

|X|
∑

x∈X x . Compute X mean
3: ȳ ← 1

|Y |
∑

y∈Y y . Compute Y mean
4: ΣX ← 1

|X|−1 (X − x̄)(X − x̄)> . Compute X covariance
5: ΣY ← 1

|Y |−1 (X − ȳ)(Y − ȳ)> . Compute Y covariance

6: Σ← (|X|−1)ΣX+(|Y |−1)ΣY

|X|+|Y |−2 . Compute pooled covariance

7: t2 ← |X||Yj |
|X|+|Yj | (x̄− ȳ)

>
Σ−1 (x̄− ȳ) . Compute t2

8: f =
|X|+|Yj |−d−1
d(|X|+|Yj |−2) t

2 . Convert t2 to f
9: if f > p then:

10: return False . Reject null hypothesis
11: else
12: return True . Accept null hypothesis

We remark that in our implementation, we replace all standard matrix inversions with the Moore-
Penrose pseudo-inversion.

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

B.3 Number of Clusters Formed

When employing Algorithms 1 and 2 to infer the context vector while training, we used a signif-
icance threshold of p = 0.9. We chose this value arbitrarily, and can further improve our results
by incorporating p as a model hyperparameter. Assuming that the prototype vector for each per-
mutedMNIST task is sufficiently different, we found that our method arrives at a “sensible” number
of prototypes (i.e., not too few nor too many clusters/prototypes as compared with the number of
tasks). Figure 14 shows the average number of clusters formed as a function of the number of
permutedMNIST tasks we trained an Active Dendrites Network on.

Figure 14: The average number of clusters found by the clustering procedure (described by Algo-
rithms 1 and 2) as a function of the number of permutedMNIST tasks. All results are averaged over
8 independent trials.

C Active Dendrites Network with a Fixed Number of Parameters

In our experiments we mentioned that for any given number of permutedMNIST tasks, a single
Active Dendrites Neuron has the same number of dendritic segments as tasks. The total number
of learnable parameters in that scenario grows linearly with the number of tasks. (Table 1 lists
each model’s parameter count.) Although the number of effective parameters is far smaller than the
actual parameter count (see Section 4.6), we also tested learning 100 tasks in sequence with a fixed
10 dendritic segments per neuron. This network maintains a constant 35 million parameters (same
as a 10-layer MLP) independent of the number of tasks. As Figure 15 shows, our modified network
achieves 78.5% accuracy on 100 tasks, close to the network with 100 dendritic segments.

Why does an Active Dendrites Network not suffer from a severe drop in accuracy with significantly
fewer dendritic segments for a large number of tasks? We hypothesize that since the dendritic
segments are dense and prototype context vectors are sparse (as most pixels in an MNIST image
are black), a single segment can learn to identify multiple context vectors, and thus there can be far
fewer dendritic segments than unique context vectors.

D Hyperparameters

D.1 Active Dendrites Networks

In this section, we provide hyperparameters that we use to train Active Dendrites Networks. When
employing the prototype method to infer a context signal at test time only, we train a three-layer
network with 2,048 units in each of the two hidden layers, and 10 units in the output layer. The con-
text signal was a 784-dimensional vector, and each training batch consists of 256 examples. After
each of the two hidden layers, we apply kWTA as our choice of non-linear function with k = 102.
It’s worth noting that despite the number of permutedMNIST tasks to learn in sequence, we use a
single output head and do not freeze any weights, as is done frequently in many continual learning

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

Figure 15: Continual learning accuracy on permutedMNIST: an Active Dendrites Network with the
same number of dendritic segments per neuron as the number of tasks (blue), and one with exactly
10 dendritic segments per neuron (red). We also included 3- and 10-layer MLPs on 10 and 100
tasks. All results are averaged over 8 independent trials.

scenarios. Feedforward weights were 50% sparse (i.e., only half were non-zero) and dendritic seg-
ments were entirely dense. The number of dendritic segments per hidden unit was set equal to the
number of tasks to learn in sequence. We use the Adam optimizer (Kingma and Ba, 2015) and the
table below provides the learning rate and number of training epochs per task.

Num. Tasks 2 5 10 25 50 100

Learning Rate 5× 10−4 5× 10−4 5× 10−4 3× 10−4 3× 10−4 10−4

Num. Epochs 1 1 3 5 3 3

In Appendix C we present results with Active Dendrites Networks that use exactly 10 dendritic
segments per neuron, and this next table gives the corresponding hyperparameters.

Num. Tasks 2 5 10 25 50 100

Learning Rate 10−3 7× 10−4 5× 10−4 3× 10−4 7× 10−5 7× 10−5

Num. Epochs 5 5 3 5 5 3

When task information is not provided during training nor test time and we employ the clustering
procedure from Appendix B to construct prototypes during training, we again use the same archi-
tecture, optimizer, and batch size as before but with the learning rates and training epochs per task
listed in the table below. Also, we decrease the the number of context dimensions to 256 by ran-
domly sampling features from the original 784-dimensional input. The reason for this decrease is
that when converting a t2 value to an F -distributed variable as in Algorithm 2, the context dimension
must be less than the the sum of sizes of two sets (512 in our case).

Num. Tasks 2 5 10 25 50 100

Learning Rate 10−3 10−3 10−3 3× 10−4 10−4 10−4

Num. Epochs 5 5 3 1 3 3

To combine Active Dendrites Network with SI, we reduce the number of units in each hidden layer
from 2,048 to 2,000 as to exactly match the architectures (with the exception of dendritic segments)
of the network used in the SI and XdG experiments. In addition, the SI-and-Active-Dendrites net-
work was trained for 20 epochs per task instead of just 3 (with Active Dendrites Networks) as this
significantly improved results. We fix the learning rate to be 5× 10−4 for all numbers of tasks, and
we use SI regularization strength c = 0.1 and damping coefficient ξ = 0.1. Both a) training for 20
epochs per task and b) the c, ξ values that we use here align with the training setups of Zenke et al.
(2017) and Masse et al. (2018).

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

D.2 MLPs

Section 4.3 describes comparing continual learning results of a network with active dendrites vs one
with more layers. In these experiments, we train a MLPs with 3 layers and one with 10 layers, each
with 2,048 hidden units in each hidden layer and 10 units in the output layer. These MLPs had
fully dense weights (unlike Active Dendrites Networks) and and used a ReLU non-linear activation
function in each hidden layer. To find a suitable choice of hyperparameters to train these MLPs,
we perform a 2D grid search over the number of training epochs per task (up to 25 epochs) and the
learning rate (in the range [10−7, 10−3]). Just as with Active Dendrites Networks, we train MLPs
with Adam, and the following table lists the learning rate and number of training epochs per task
used to obtain accuracy in Figure 9.

Num. Tasks 10 100

3-Layer MLP Learning Rate 3× 10−6 10−6

Num. Epochs 5 3

10-Layer MLP Learning Rate 3× 10−6 3× 10−7

Num. Epochs 3 3

D.3 Ablation Studies

Figure 11 shows results from an ablation study in which we compare Active Dendrites Networks to
both a network that has uses active dendrites for gating but no sparse representations (AD) and a reg-
ular feedforward network that uses only sparse representations (SR). When training these networks
in the same continual learning scenario as the Active Dendrites Network, we use the same network
architecture as before, with the exception that the SR model had no dendritic segments. The table
below gives learning rates and number of training epochs per task for SR and AD models.

Num. Tasks 2 5 10 25 50 100

Learning Rate AD 5× 10−4 10−3 5× 10−6 5× 10−6 10−5 5× 10−6

SR 10−3 5× 10−5 10−4 10−5 10−5 10−5

Num. Epochs AD 5 10 5 5 5 5
SR 3 10 5 10 10 5

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465651doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.25.465651
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Background
	Active Dendrites
	Sparse Representations
	Continual Learning

	Model
	Active Dendrites Neuron
	Sparse Activations
	Computing the Context Vector
	Active Dendrites Network Architecture

	Results
	Results on permutedMNIST
	Are Dendrites Invoking Subnetworks?
	Are Networks With Dendrites Equivalent To A Network With More Layers?
	Comparison With Context Dependent Gating
	Impact of Sparsity Level and the Number of Dendrites
	Understanding Parameters in the Model

	Discussion
	Dendrites Invoke Subnetworks
	Comparing a Neuron With Active Dendrites to ANNs
	Related ANN Architectures
	Future Work

	Absolute Max Gating
	Inferring Prototypes during Training
	Clustering Approach
	Multivariate t-Test
	Number of Clusters Formed

	Active Dendrites Network with a Fixed Number of Parameters
	Hyperparameters
	Active Dendrites Networks
	MLPs
	Ablation Studies

