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Abstract 

The emergence of artificial neural networks (ANNs) that seem capable of emulating the 
remarkable human capacity for language has raised fundamental questions about complex 
cognition in humans and machines. This debate has taken place, however, in the context of limited 
empirical evidence about how the internal operations of ANNs relate to dynamic processes in the 
human brain as listeners understand language. Using Representational Similarity Analysis, we 
conducted a set of in-depth comparisons between these two types of systems, focusing on a core 
aspect of human language - the building of a structured and meaningful interpretation as each word 
in a sentence is heard in sequence. We extracted incremental structural measures of unfolding 
sentences from a deep language ANN and tested these against the spatiotemporally resolved brain 
activity recorded by electro/magnetoencephalography when human participants were listening to 
the same sentences. These uniquely neurocomputationally specific comparisons revealed strong 
behavioral and neural alignments between humans and ANNs in the use of multi-dimensional 
probabilistic constraints to build word-by-word structural interpretations, suggesting important 
commonalities in basic computational strategies for finding structure in time. 
 
(178 words) 
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Introduction 

Modern artificial neural networks (ANNs) have made great strides in achieving human-like levels 
of performance in tasks such as visual object recognition (1, 2) and speech recognition (3) as well 
as in more complex domains such as natural language processing (NLP) (4, 5) that reflect unique 
and foundational human cognitive capacities. But despite these growing parallels between the 
capacities of humans and ANNs in higher order task domains, it remains unclear what is the 
specific relationship between the computational principles and representations realised within the 
very different architectures of brains and ANNs (6, 7). This critical question also speaks to whether 
and how we can use ANNs to better understand and even reverse-engineer the neurocomputational 
mechanisms underpinning human cognition and intelligence (8-15). 
 
Recent studies have suggested potential commonalities between brains and ANNs in a wide array 
of cognitive functions (16-22), but largely do so by probing brain activity with generic measures, 
often the activations of all the units in one layer, extracted from ANNs performing the same task 
or processing the same information. These overall matches between brain activity and ANN hidden 
states are not adequate to fully reveal the underpinning computational principles guiding each type 
of system nor do they disentangle the specific contents of the critical computations involved. To 
investigate human-machine parallels in these algorithmic terms, we need to extract the specific 
contents represented and calculated in ANNs as they simulate a cognitive function, and then 
determine how these relate to the specific neurocomputational structure and dynamics of the 
human brain executing the same cognitive function.  
 
Language is an especially appropriate domain for such a comparison, not only because of its 
importance as a biologically unique human capacity, but also because language comprehension 
involves the dynamic interplay between multifaceted representations of various types of linguistic 
and nonlinguistic information in a specific context (23-25) – a property which seems to fit ANNs’ 
competence in flexibly combining different types of features embedded in their rich internal 
representations (26-28). Relevant to this, the breakthrough of recent language ANNs seems largely 
due to their deep contextualized representations of the input which are apparently able to capture 
the distributed underlying regularities that together determine the correct interpretation of a given 
input (29-31).  
 
In the research reported here, we seek to implement a set of in-depth comparisons to investigate 
the potential commonalities between brains and ANNs in the demanding task of building a 
structured interpretation of a spoken sentence as it unfolds word-by-word over time. The widely 
accepted constraint-based approach to sentence processing (32-34) claims that the human real-
time interpretation of an utterance is subject to multiple types of lexically-driven probabilistic 
constraints (e.g., syntax, semantics, world knowledge) emerging as the sentence is heard, and 
where it is the interpretative coherence of these constraints that is the basis for successful language 
comprehension. Working within this general framework, we use spatiotemporal searchlight 
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Representational Similarity Analysis (ssRSA) (35, 36) to investigate the degree of parallelism 
between brains and ANNs in terms of whether and how the internal operations that in each case 
build incremental structural interpretations reflect and integrate the multifaceted probabilistic 
constraints accumulating as a sentence is analyzed. The important advance here is that we can use 
the deep learning strengths of modern ANNs to construct rigorously quantified computational 
models of the broader constraint environment in which language comprehension is conducted, so 
that these models can be compared, dynamically, with more restricted models of the specific 
linguistic combinatorial constraints also relevant to successful structural interpretation. 
 
Specifically, we constructed sentences with varying structures and presented them to both human 
listeners and to BERT - a deep language ANN (4). For humans, we used source-localized electro-
/magnetoencephalography (EMEG) to measure their fleeting brain activity word-by-word while 
listening to these sentences and collected their structural interpretations at different positions in a 
sentence in separate behavioral tests. For BERT, we presented each sentence word-by-word, 
similarly to how it is received by a human listener. From BERT hidden states, we extracted 
representations of detailed incremental structure at various positions in a sentence (37), and 
visualized the dynamic structural interpretation as the structure unfolds via its trajectory in the 
model space of BERT. We then evaluated the detailed BERT structural measures in terms of the 
hypothesized constraint-based approach, i.e., the strategy adopted by humans to build the 
structural interpretation of a spoken sentence (33, 34).  
 
Critically, RSA allows us to compare directly the representational geometry of diverse BERT 
structural measures with those of spatiotemporally resolved brain activity. In doing so – and in line 
with previous cross-species comparisons using RSA (38) – we assume that significant fits indicate 
the existence of shared computational contents and principles between BERT and human listeners 
in building the interpretation of an unfolding sentence. Therefore, beyond general correlations 
between brain activity and ANN hidden states, this combination of methods provides the level of 
neurocomputational specificity required to elucidate the algorithmic parallels between the human 
brain and ANNs in terms of a fundamental aspect of incremental language comprehension. 
 
 
Results 

We constructed 60 sets of sentences with varying sentential structures (see Methods) and presented 
them as spoken sequences to human listeners and word-by-word to BERT. These natural spoken 
sentences, with their structural interpretations influenced by the multifaceted constraints 
accumulating as each specific word is heard, provide a realistic simulation of the environment of 
daily language use. This makes them an ecologically valid basis (39, 40) for evaluating the 
potential alignments between the human brain and ANNs as they compute the interpretative 
structure of natural language inputs. The sentences are constructed, in addition, to balance off 
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specifically linguistic constraints on interpretation against varying non-linguistic constraints as the 
sentence is sequentially analysed. 
 
In each stimulus set, there are two target sentences differing only in the properties of the first verb 
(Verb1) encountered [see (1) and (2) below and Fig. 1A]: 
 

(1) The dog found in the park was covered in mud 
(2) The dog walked in the park was covered in mud 

 
In the HiTrans sentences, Verb1 [e.g., “found” in (1)] has high transitivity and strongly prefers a 
direct object, while in the LoTrans sentences Verb1 [e.g., “walked” in (2)] has low transitivity. 
Critically, (a) the structural interpretation of these sentences is ambiguous at the point Verb1 is 
encountered and (b) the preferred human resolution of this ambiguity depends on the real-time 
integration of linguistic and non-linguistic probabilistic constraint as more of the sentence is heard. 
In the example sentences, the sequence “The dog found...” could initially have either an Active 
interpretation – where the dog has found something, or a Passive interpretation – where the dog is 
found by someone (Fig. 1B). Because find is primarily a transitive verb, the human listener will be 
biased towards an initial Active interpretation. Similarly, the sequence “The dog walked…”, where 
walk is primarily used as an intransitive verb (without a direct object), will also bias the listener to 
an Active interpretation, where the dog is doing the walking, rather than the less frequent Passive 
interpretation where someone is taking the dog for a walk (“walking the dog”).  
 
This initial structural interpretation of Verb1 does not, however, just depend on linguistic 
knowledge such as Verb1 transitivity. It also depends on the broader “thematic role” properties of 
the subject noun – that is, how likely the subject is (or is not) to adopt the Active (agent) role to 
perform the specified action (41, 42). This likelihood, of the event structure implied by the different 
structural combinations of the subject noun and Verb1, will depend on wide ranging knowledge 
of the world, linked to the specific words being heard. So, regardless of Verb1 transitivity, the 
Active interpretation should be more strongly favored in “The king found/walked...” given the 
greater implausibility of a Passive interpretation involving a “king” relative to a “dog”. The word-
by-word interpretation of the sentential structure – and of the real-world event structure evoked by 
this interpretation – is determined by the constraints jointly placed by the subject noun and Verb1, 
which is manifested by the interpretative coherence between world knowledge and linguistic 
knowledge.  
 
As the sentence evolves, and the prepositional phrase “in the park” that follows Verb1 is 
incrementally processed, there is further modulation of the preferred interpretation, again 
reflecting both Verb1 transitivity and the plausibility of the event structure being constructed. Thus, 
for a HiTrans sentence, a Passive interpretation will become more preferred, since a highly 
transitive Verb1 tends to be interpreted as a passive verb (i.e., the head of a reduced relative clause) 
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when there is the absence of an expected direct object. Conversely, in the LoTrans sentence, the 
Active interpretation of Verb1 is strengthened by the incoming prepositional phrase, which is fully 
consistent with the verb’s intransitivity and with the event structure conjured up by the sequence 
of words so far. Hence, these two sentence types are expected to differ in the structural 
interpretation preferred by the end of the prepositional phrase. However, with the appearance of 
the actual main verb (“was covered” in the example sentences), the preferred Active interpretation 
of Verb1 as the main verb (as in the LoTrans example) will be rejected, instantiating a Passive 
interpretation for the LoTrans sentences and confirming existing preferences for the Passive 
interpretation in the HiTrans sentences. 
 
Human incremental structural interpretations  
As the first step in this research, and to quantify how the chosen stimulus set exemplified a 
constraint-based account of the evolution of structural interpretations over time, we conducted two 
pre-tests where participants listened to sentence fragments, starting from sentence onset and 
continuing either until the end of Verb1 or to the end of the prepositional phrase, and produced a 
continuation at each gating point to complete the sentence (see Methods). The listeners’ 
incremental structural interpretations at each gating point can be inferred from the continuations 
they provide. For example, the more often a main verb is given in the continuations following the 
prepositional phrase (e.g., after “... in the park”), the stronger the preference for a Passive 
interpretation at this point of the sentence. We found that Passive and Active interpretations were 
generally not all-or-none, varying in plausibility in both HiTrans and LoTrans sentences before 
the actual main verb is presented (Fig. S1). These variations reflect the probabilistic constraints 
jointly placed by the specific combination of subject noun, Verb1, and the prepositional phrase in 
each sentence.  
 
To relate these preferences to the broader landscape of distributional language data, we developed 
corpus-based measures of subject noun thematic role preference and Verb1 transitivity for each 
sentence, from which we derived a Passive index and an Active index. These indices capture the 
interpretative coherence between these two types of lexical properties as they affected Passive and 
Active interpretations separately (see Methods). Both high subject noun agenthood and high Verb1 
intransitivity coherently prefer an Active interpretation as the prepositional phrase is heard (i.e., 
high Active index), and vice versa for the Passive interpretation (i.e., high Passive index). Based 
on the pre-test results, we found that human incremental interpretations for the two types of 
sentences were significantly correlated with these quantitative measures of multifaceted 
constraints (Fig. S1), consistent with the constraint-based approach to speech comprehension.  
 
BERT incremental structural interpretations  
The key first step in bridging the empirical gap between human and BERT incremental analyses 
is to extract detailed structural measures of each unfolding sentence from the hidden states of 
BERT. Typically, the structure of a sentence can be represented by a dependency parse tree (43) 
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(Fig. 1B) in which words are situated at different depths given the structural dependency between 
them. Each edge links two structurally proximate words as being the head and the dependent 
separately (e.g., a verb and its direct object). However, such a parse tree is context-free, that is, it 
captures the syntactic dependency relation between each pair of words and abstracts away from 
the idiosyncratic contents in a sentence that constrain its online structural interpretation. The parse 
depth is always the same integer for words at the same position in sentences with the same 
structural interpretation (e.g., “found” and “walked” in either of the two parse trees in Fig. 1B).  
 
 

 
 
Fig. 1. Incremental interpretation of sentential structure by BERT. (A) An example set of target 
sentences differing in the transitivity of Verb1 (V1), HiTrans: high V1 transitivity, LoTrans: low V1 
transitivity. Lightness of dot encodes different positions in the sentence. Det: determiner, SN: subject noun, 
PP1-PP3: prepositional phrase, MV: main verb, END: the last word in the sentence. (B) Context-free 
dependency parse trees of two plausible structural interpretations. Left: Passive interpretation where V1 is 
the head of a reduced relative clause. Right: Active interpretation where V1 is the main verb. (C) 
Incremental interpretations of the dependency between SN and V1 in the model space consisting of the 
parse depth of Det, SN and V1. Upper: Each colored small circle represents the parse depth vector up to 
V1 derived at a certain position in the sentence [with the same color scheme as in (A)]. The triangle and 
circle represent the context-free dependency parse vectors for Passive and Active interpretations in (B). 
Lower: incremental interpretations of the two types of target sentences represented by the trajectories of 
median parse depth. (D) Distance from Passive and Active landmarks in the model space as the sentence 
unfolds [between each colored circle and the two landmarks in the upper panel of (C)] (two-tailed two-
sample t-test, *: P < 0.05, **: P < 0.001, error bars represent SEM). 
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Human online structural interpretation, as argued above, involves additional probabilistic 
constraints reflecting broader knowledge of the world evoked by the specific contents of the 
sentence. To investigate how far BERT also incorporated these broader constraints, we adopted a 
structural probing approach (37). This aims to reconstruct a sentence’s structure by estimating each 
word’s parse depth based on their contextualized representations generated by BERT, which 
explicitly considers the specific sentential contents (see Methods). Note that BERT is a multi-layer 
language ANN (24 layers in the version used in this study) which may distribute different aspects 
of its computational solutions over multiple layers. We trained a structural probing model for each 
layer, and selected the one with the most accurate structural representation while also including its 
neighboring layers to cover potentially relevant upstream and downstream information. Following 
this strategy, we used the structural measures obtained from layers 12-16 with layer 14 showing 
the best performance (see Fig. S2 and Methods).  
 
We input each sentence word-by-word to the trained BERT structural probing model, focusing on 
the incremental structural representation being computed as it progressed from Verb1 to the main 
verb (see the sequence in Fig. 1A). For these sentences, we defined the first word after the 
prepositional phrase as the main verb since its appearance is sufficient to resolve the intended 
structure where Verb1 is a passive verb (i.e., Passive interpretation). For each type of target 
sentence, the BERT parse depth of words at the same position formed a distribution ranging around 
the corresponding context-free parse depths in either Passive or Active interpretations (Fig. S3), 
providing a word-specific rather than position-specific structural representation. Moreover, the 
BERT parse depth of earlier words in the sentence was updated with each incoming later word, 
capturing the incrementality of speech comprehension.  
 
These distributed BERT parse depths may indicate the probabilistic structural interpretation since 
they are assumed to incorporate the specific contents in each sentence. For example, according to 
the context-free dependency parse tree (Fig. 1B), Verb1 in the Passive interpretation is a passive 
verb with a parse depth of 2, while in the Active interpretation Verb1 is the main verb with a parse 
depth of 0. Therefore, a BERT parse depth that puts Verb1 closer to 2 suggests that a Passive 
interpretation is preferred, while a Verb1 parse depth closer to 0 indicates preference for an Active 
interpretation. 
 
We further quantified and visualized BERT’s word-by-word structural interpretations, focusing 
on the dependency between the subject noun and Verb1 which is core to the current interpretation 
of the sentence – whether the subject noun is the agent or the patient of Verb1. We represented 
each sentence by a 3-dimensional vector including the BERT parse depths of the first three words 
up to Verb1 (e.g., “The dog found...”). This 3D vector was kept updated with every incoming later 
word, capturing the degree to which the structural dependency between the subject noun and Verb1 
was dynamically interpreted (and potentially re-interpreted) given the contents of the subsequent 
words in the sentence. Crucially, the trajectory of each sentence in this 3D model space, as it 
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unfolds word-by-word, characterizes the dynamic interpretation constructed by BERT (Fig. 1C, 
upper). We found considerably distributed and intertwined trajectories of individual HiTrans and 
LoTrans sentences, suggesting that BERT structural preferences are sensitive to the specific 
contents in each sentence. 
 
To make sense of these trajectories, we also vectorized the context-free parse depth of the first 
three words indicating Passive and Active interpretations separately and located them in the model 
space as landmarks (Fig. 1C), so that the plausibility of either interpretation for an unfolding 
sentence can be estimated by its distance from the corresponding landmark. As shown by the 
trajectories of the median BERT parse depth of the two sentence types (Fig. 1C, lower), HiTrans 
sentences moved unidirectionally towards the Passive interpretation landmark after Verb1, with 
significant changes of distances found at the main verb (Fig. 1D, orange bars). LoTrans sentences 
started by approaching the Active interpretation landmark but were reorientated to the Passive 
counterpart with the appearance of the actual main verb, with significant changes of distances 
found at both Verb1 and main verb (Fig. 1D, purple bars). These results resemble the pattern of 
human interpretative preference observed in the continuation pre-tests, where the Passive and 
Active interpretations are separately preferred in HiTrans and LoTrans sentences by the end of the 
prepositional phrase in a probabilistic manner (Fig. S1), and the structural ambiguity is eventually 
resolved with the appearance of the actual main verb. 
 
Going beyond their behavioral resemblance to human structural interpretations of the same 
sentences, we investigated whether BERT structural interpretations could also be directly 
explained by the multifaceted constraints placed by the subject noun and Verb1 (see Methods). 
We first focused on BERT’s interpretative mismatch quantified by a sentence’s distance from each 
of the two landmarks in the model space, which was dynamically updated as the sentence unfolded 
(Fig. 1C). Consistently, from the incoming prepositional phrase to the main verb, the ongoing 
sentences that are closer to the Passive landmark have higher Verb1 transitivity, higher Passive 
index and lower Active index, while those closer to the Active interpretation landmark tend in the 
opposite direction (Figs. 2A and 2B). Moreover, the change of distance towards one interpretation 
landmark between two consecutive words is also correlated with these constraints (Figs. 2C and 
2D). Significant effects were primarily seen when the first word of the prepositional phrase is 
encountered, suggesting that this leads to an immediate update in the structural interpretation, in 
combination with the accumulated constraints from the preceding words.  
 
Similarly, we also found that both the incremental BERT parse depth vectors as a whole (which 
are captured by their principal components) and the contextualized parse depth of Verb1 (which 
is the most indicative marker of BERT structural interpretation) are correlated with the constraints  
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Fig. 2. Correlation between incremental BERT structural measures and explanatory variables. BERT 
structural measures include (A, B) BERT interpretative mismatch represented by each sentence’s distance 
from the two landmarks in model space (Fig. 1C); (C, D) Dynamic updates of BERT interpretative 
mismatch represented by each sentence’s movement to the two landmarks; (E, F) Overall structural 
representations captured by the first two principal components of BERT parse depth vectors; (G, H) BERT 
V1 parse depth and its dynamic updates. Explanatory variables include lexical constraints derived from 
massive corpora and the main verb probability derived from human continuation pre-tests (Spearman 
correlation, permutation test, PFDR < 0.05, multiple comparisons corrected for all BERT layers, results 
shown here are based on layer 14, see Figs. S4-S6 for the results of all layers). 
 
 
of subject noun and Verb1 (Figs. 2E to 2H) (See Figs. S5 and S6 for results of all BERT layers). 
Moreover, the significant effects consistently found as the sentence unfolds suggest that properties 
of preceding words are carried over and used to constrain the interpretation of the upcoming input, 
which is key to resolving potential discontinuous structural dependencies. In addition, we found 
that main verb probability in the human continuations after the prepositional phrase, which directly 
reflects the probabilistic interpretations of human listeners, also matched to the structural 
interpretations generated by BERT (black bars in Fig. 2).  
 
Taken together, BERT structural interpretations, as well as how they are developed and updated 
as the sentence unfolds word-by-word, can be accounted for by the same multifaceted probabilistic 
constraints that constrain incremental structural interpretations in human listeners, suggesting that 
related forms of constraint-based approaches are being adopted by both humans and BERT to build 
structured interpretations. 
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Neural alignment for incremental interpretations in BERT and human listeners 
Beyond the behavioral alignment between structured interpretations by humans and BERT, we 
used ssRSA to test these neurocomputationally specific BERT structural measures against source-
localized EMEG recordings collected when the same sentences were incrementally delivered to 
human listeners. Specifically, we compared the representational geometry of BERT structural 
measures and the multifaceted constraints they incorporate with that of spatiotemporally resolved 
brain activity. Significant RSA fits reveal where and when in the brain there is an alignment 
between the structural interpretations by BERT and humans, allowing us to evaluate directly 
whether these are founded on common underlying computational strategies.  
 
As shown above, consistent with the constraint-based approach, the context-specific BERT parse 
depths incorporate both linguistic knowledge and broad world knowledge that constrain the 
incremental sentential structure underpinning the ongoing event interpretation. Thus, looking 
beyond the neural dynamics of the core fronto-temporal language network, RSA based on these 
broader BERT structural measures enables us to address how brain regions encoding non-linguistic 
knowledge (e.g., event-related knowledge and episodic memory) contribute to building a 
structured interpretation over time (44-46). Given the probabilistic interpretations by BERT and 
human listeners reported above, we combined HiTrans and LoTrans sentences as one group in the 
following analyses rather than treating them as two categories.  
 
To test these BERT structural measures in the brain, we began with the BERT parse depth vector 
containing the parse depth of all the words in an incremental input, providing a structural 
representation for the input over time. Second, we tested the interpretative mismatch between this 
incremental BERT parse depth vector and the corresponding incremental context-free parse depth 
vector for the Passive and the Active interpretations. The degree of mismatch is proportional to 
the broader evidence for or against the structural interpretation being considered (the smaller the 
distance, the more positively loaded the corresponding interpretation). Besides these two measures 
based on the entire incremental input, we also ran separate analyses focused on Verb1 per se since 
the potential ambiguity during the ongoing structural interpretation primarily lies in whether Verb1 
is considered to be a passive verb or the main verb. This can be directly captured by the BERT 
parse depth of Verb1 which is updated with each incoming later word, with increased or decreased 
depth reflecting the preference biased to a Passive or an Active interpretation separately (Fig. S7).  
 
For human neural data, we focused on source-localized EMEG recorded over three critical epochs 
in each sentence: (a) Verb1 – when its structural dependency with the preceding subject noun was 
initially established despite potential ambiguity, (b) the preposition (introducing the prepositional 
phrase following Verb1) – when the initial structural interpretation started being updated, to be 
either strengthened or weakened by the incoming preposition phrase, and (c) main verb – when 
the structural ambiguity was definitively resolved with the identification of the intended structure.  
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We aligned the continuous EMEG data to the onset of Verb1, the preposition, and the main verb 
respectively and obtained three epochs each 600ms in length.  
 
 

Fig. 3. Neural dynamics underpinning the emerging structure and interpretation of an unfolding 
sentence. (A-C) ssRSA results of BERT parse depth vector up to V1, PP1 and MV in epochs separately 
time-locked to their onsets. (D-F) ssRSA results of the mismatch for the preferred structural interpretation 
(the specific BERT layer from which BERT structural measures were derived was denoted in parentheses). 
From top to bottom in each panel: vertex t-mass (each vertex’s summed t-value during its significant period); 
heatmap of time-series of ROI peak t-value (the highest t-value in an ROI at each time-point) with a green 
bar indicating effect onset and ROI t-mass (each ROI’s summed mean t-value during its significant period); 
cluster t-mass time-series (summed t-value of all the significant vertices of a cluster at each time-point). 
[cluster-based permutation test, vertex-wise P < 0.01, cluster-wise P < 0.05 in (A-E); marginally 
significance in (F) with cluster-wise P = 0.06]. Solid vertical lines indicate the timings of onset, average 
uniqueness point (UP), and average offset of the word time-locked in the epoch with grey shades indicating 
the range of one SD. LH/RH: left/right hemisphere. See Table S2 for full anatomical labels. See Fig. S9 for 
the significant results of other BERT layers in the MV epoch. 
 
 
The strong RSA fit we obtained, for all three epochs, and for all the different types of BERT-
derived quantifiable measures - as summarized below (Figs. 3 to 4, see Table S1 for a summary of 
all BERT measures tested) - is striking evidence for the degree of alignment that can be detected 
between the abstract content and structure of these deep ANN analyses and the parallel 
interpretative operations conducted in the brains of human listeners.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.10.25.465687doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465687
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Starting with the incremental BERT parse depth vectors, these exhibited significant fits to brain 
activity consistently in all three epochs (Figs. 3A to 3C). In the Verb1 epoch, effects in bilateral 
frontal and temporal regions started immediately from Verb1 onset and continued until word 
Uniqueness Point (UP) – the point at which the word has been uniquely identified - while the parse 
depth of Verb1 per se showed similar but more sustained effects which peaked exactly at Verb1 
uniqueness point (Fig. S8). Whereas effects in the two later epochs were found in the left 
hemisphere after the offset of the preposition or the main verb separately.  
 
Turning to the interpretative mismatch for the two possible interpretations, we only observed 
significant effects of the mismatch for the Active interpretation in the Verb1 epoch (Fig. 3D).  
However, it was the mismatch for the Passive interpretation that fitted brain activity in the 
preposition and main verb epochs (Figs. 3E and 3F, marginal significance in main verb epoch with 
cluster-wise P = 0.06). These results suggest that listeners tend to have an initial preference for an 
Active interpretation but may start favoring a Passive interpretation when the prepositional phrase 
begins to be heard, which is consistent with the tendency to process the first noun encountered in 
a sentence as the agent (47-49).  
 
Effects of the BERT parse depth vectors and those of the mismatch for the preferred structural 
interpretation have substantial overlaps in terms of their spatiotemporal patterns in the brain, 
characterized primarily by a transition from bilateral to left-lateralized fronto-temporal regions. 
Across the three epochs, the most sustained effects were observed in the left inferior frontal gyrus 
(IFG) and the anterior temporal lobe (ATL). Notably, with the identification of the actual main 
verb, effects of the presumably resolved structure also involved regions in the left prefrontal and 
inferior parietal cortices (Fig. 3C) which are involved in the multiple-demand network (50).  
 
The potential ambiguity between a Passive and an Active interpretation centers around whether 
Verb1 is considered as a passive verb or the main verb. This is resolved when the actual main verb 
is encountered. We probed how this is achieved in the brain using the dynamic BERT parse depth 
of Verb1. Specifically, the cognitive demands required by the resolution process can be 
characterized by the change between the updated BERT parse depth of Verb1 when the actual 
main verb is heard and its initial value when Verb1 is first encountered. Therefore, we tested the 
change of Verb1 parse depth in the main verb epoch. Significant fits to brain activity emerged in 
the left posterior temporal and inferior parietal regions upon main verb uniqueness point, and then 
extended to more anterior temporal regions (Fig. 4A). Following the main verb offset, in the left 
anterior temporal region, the declining effects of the change of Verb1 parse depth seamlessly 
overlapped with the increasing effects of the updated Verb1 parse depth (Figs. 4B and 4C). It is 
also worth noting that the left hippocampus was activated for both the change of Verb1 parse depth 
and the updated Verb1 parse depth after the actual main verb is presented, suggesting that episodic 
memory of experienced events might contribute to updating the structured interpretation of a 
sentence (46, 51, 52).   
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Fig. 4. Neural dynamics updating the incremental structural interpretation. (A) ssRSA results of 
BERT V1 parse depth change at MV (difference between the BERT parse depth of V1 when first heard as 
opposed to MV). (B) ssRSA results of the updated BERT V1 parse depth when the input sentence reaches 
MV. (C) Spatiotemporal overlap between the effects in (A) and (B) (cluster-based permutation test, vertex-
wise P < 0.01, cluster-wise P < 0.05). 
 
 
Emergent structural interpretations driven by multifaceted constraints in the brain 
By leveraging detailed BERT structural measures, we were able to track the neural dynamics 
underlying the incremental structural interpretation of an unfolding sentence, revealing a 
significant alignment between the structural interpretations of BERT and neural computations in 
human listeners. Following this up, we asked how the multifaceted constraints incorporated in 
BERT structural measures drive the interpretation in human listeners? When and where do these 
constraints emerge in the brain? How are their neural effects related to those of the resolved 
sentential structure?  
 
To this end, we first tested the subject noun thematic role properties. Significant effects of 
agenthood and patienthood were seen in the preposition epoch (Fig. 5A) and in the main verb 
epoch (Fig. 5B) separately. These effects of the subject noun per se preceded the effects of BERT 
parse depth vectors up to the word time-locked in each epoch (compare Fig. 5A with Fig. 3B, and 
Fig. 5B with Fig. 3C). This indicates that subject noun thematic role was evaluated before building 
the overall structural interpretation of the incremental input delivered so far. Specifically, the 
initial preference for an Active interpretation during Verb1, while present as the prepositional  
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Fig. 5. Neural dynamics of multifaceted probabilistic constraints underpinning incremental 
structural interpretations. (A, B) ssRSA results of SN agenthood and SN patienthood (i.e., plausibility of 
SN being the agent or the patient of V1) in PP1 and MV epochs separately. (C) ssRSA results of non-
directional index (i.e., interpretative coherence between SN and V1 regardless of the structure preferred) in 
MV epoch. (D) ssRSA results of Passive index (i.e., interpretative coherence for the Passive interpretation) 
in MV epoch. (E) Influence of the Passive interpretative coherence on the emerging sentential structure in 
MV epoch revealed by the Granger causal analysis (GCA) based on the non-negative matrix factorization 
(NMF) components of whole-brain ssRSA results (see Fig. S10 for more details) [(A-D) cluster-based 
permutation test, vertex-wise P < 0.01, cluster-wise P < 0.05; (E) permutation test PFDR < 0.05]. 
 
 
phrase started, was superseded by the preference for a Passive interpretation as the rest of the 
phrase and the main verb were heard. 
 
Despite being jointly constrained by subject noun thematic role preference and Verb1 transitivity 
in a probabilistic manner, the structural interpretation temporarily held just before the actual main 
verb could differ across sentences (e.g., in “The dog found in the park...” and “The dog walked in 
the park...”). Therefore, in contrast to the Passive or Active index specialized for one particular 
structural interpretation, we constructed a non-directional index that quantifies the degree of 
interpretative coherence for the preferred interpretation, whether Passive or Active (see Methods). 
Thus, a higher value only indicates greater interpretative coherence between the subject noun and 
Verb1 regardless of which interpretation is involved. 
 
Effects of this non-directional interpretative coherence measure appeared very soon after the main 
verb onset in both hemispheres and lasted till main verb offset (Fig. 5C), suggesting an immediate 
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re-evaluation of the previously integrated constraints from the subject noun and Verb1 after a 
listener realized that the sentence had not yet finished. Moreover, these effects roughly co-occurred  
with the effects of subject noun patienthood (Figs. 5B and 5C), indicating that a patient role for 
the subject noun was considered as the main verb was being recognized. Intriguingly, the most  
sustained regions associated with this non-directional index, including the left ATL, angular gyrus 
(AG) and precuneus, are also the classical areas of the default mode network (DMN). This is  
consistent with recent claims that the DMN integrates external information with internal prior 
knowledge to make sense of an external input such as speech (51). In particular, precuneus and 
AG have been found to be involved in building thematic relationships and event structures from 
episodic memory (52, 53). 
 
Following the declining effects of the non-directional index upon the recognition of the main verb, 
we found significant effects of the Passive index in right anterior fronto-temporal regions (Fig. 
5D), suggesting that the intended Passive interpretation was eventually confirmed. Previous 
studies have revealed that sentence-specific expectancy and general event-relevant inference are 
processed in the left and right hemispheres separately (44, 45). Relevant to this, in the main verb 
epoch, we found effects of the BERT parse depth vector and those of the Passive index in the left 
and right hemispheres respectively, arising almost simultaneously as the main verb was recognized 
(compare Fig. 3C with Fig. 5D). Therefore, a critical question is whether, and if so, how the online 
structural interpretation of a specific sentence is facilitated by the interpretative coherence 
conjured up from broad world knowledge. 
 
To address this question, we adopted non-negative matrix factorization to decompose the whole-
brain RSA fits of Passive index and BERT parse depth vector in the main verb epoch into two sets 
of components given their temporal synchronizations (see Methods). We then conducted 
multivariate Granger causality analyses (MGCA) to infer directed connections among them. We 
found only GC connections from the components of Passive index to those of BERT parse depth 
vector (Fig. 5E). Specifically, we identified information flows from the right hemisphere 
components of the Passive index to the left hemisphere components of BERT parse depth vector, 
suggesting that the construction of sentential structures in the left hemisphere is integrated with 
the general event knowledge drawn from the right hemisphere (see Fig. S10 for more details). 
 
In summary, we found that BERT structural measures exhibited significant fits to brain activity 
during the incremental development of a structured interpretation in human listeners. Beyond this, 
and consistent with the constraint-based approach, these results also revealed how the multifaceted 
constraints incorporated in BERT structural measures are activated, integrated and evaluated to 
constrain the word-by-word interpretation of a sentence’s structure in an extensive set of brain 
regions beyond the classical fronto-temporal language system.     
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Discussion 

In this study, we revealed a deep alignment between human listeners and language ANNs in 
building structured interpretations from incrementally delivered natural sentences. Both their 
behaviors and internal structural representations were consistent with the hypothesized constraint-
based approach, suggesting shared underlying computational principles. By using detailed 
structural measures derived from ANN hidden layers rather than their overall activations, we 
conducted a precise mapping between humans and machines with improved neurocomputational 
specificity, providing direct empirical evidence that the internal operations of language ANNs (i.e., 
BERT) seem to relate closely to processes in the brain as listeners understand spoken language. 
 
Human speech comprehension involves a complex set of processes that transform an auditory input 
into the speaker’s intended meaning, during which each word is sequentially interpreted and 
integrated with the preceding words to obtain a coherent interpretation (54, 55). However, rather 
than simple linear concatenations, individual words are combined according to the nonlinear and 
often discontinuous structure embedded in a spoken utterance as it is delivered over time (56). 
Previous neuroimaging studies on the structure of language primarily focused on syntax (57), 
contrasting grammatical sentences against word lists or sentences with syntactic violations (58, 
59), manipulating the syntactic complexity in sentences (60), or studying artificial grammatical 
rules without intelligible contents (61, 62). But as this and other work have shown, finding the 
structure in an unfolding sentence also depends on the constraints jointly placed by other linguistic 
properties of the input and broad world knowledge (25, 33, 34, 47, 63).  
 
This means that to reveal how a spoken sentence is incrementally built and represented in the brain, 
we need to focus on natural speech in its full ecological complexity. This raises the challenge of 
developing quantitative representations of sentential structure that accurately incorporate the 
concurrent effects of constraints from various sources. As a potential solution, we extracted 
detailed incremental structural measures driven by the contents in each sentence from BERT 
hidden states. Although BERT is not specifically trained to parse sentences, its successful 
performance in various NLP tasks suggests that it can acquire from its massive training corpora 
the multi-dimensional properties (30) related to determining the structural dependency among a 
sequence of input words. We showed directly that BERT structural measures incorporated these 
constraints and that they matched remarkably well both to the behaviors and to the brain activity 
of human listeners while listening to the same set of sentences. 
 
In a broad sense, using ANNs to help us understand the neural basis of human cognition 
complements the long-time pursuit of generative rules and interpretable models in cognitive 
neuroscience. ANNs have informed in many ways the internal workings of various cognitive 
functions in the brain by providing quantitative representations and falsifiable predictions that aim 
to connect cognitive behaviors and relevant neural activity in the brain (64-66). This seems 
essential if we are to quantify the outcome of intertwined multi-dimensional regularities in a 
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specific instance (e.g., a spoken sentence) and to construct the representational geometry to be 
probed in the brain. Where language ANNs are concerned, it is feasible to obtain a dynamic 
representation of an unfolding input that is updated with each incoming word, such as the BERT 
parse depth vector. This captures well the incrementality at the core of speech comprehension, that 
each word is interpreted within the sentential structure built so far and in turn updates the structure 
being constructed. 
 
Here, we presented empirical evidence suggesting that the structural interpretations by both human 
listeners and BERT conform closely to the constraint-based approach. But the means by which 
they acquire and use these potentially aligned algorithmic styles could nonetheless be radically 
different. According to the recent “direct fit” view (67), both the human brain and ANNs may learn 
task-relevant structures through dense sampling, which enables humans and machines to flexibly 
produce appropriate context-dependent behaviors through interpolation within the mental or model 
space spanned by instances in life experience or training datasets. However, as an immensely 
complex biological object with a long evolutionary history, the human brain is not a giant 
undifferentiated network that learns from experience in essentially the same way as ANNs (64). 
The evolved neurobiological structure in the brain underpins not only task-relevant structures but 
also rules of abstraction and generalization to the unseen (68, 69). 
 
Following this evolutionary perspective, the Dual Neurobiological Systems framework (70) 
supposes that human language has emerged as an evolutionary coalition between a bi-hemispheric 
system supporting general social communication based on multi-modal input that is inherited from 
our primate ancestors and a left hemisphere system underlying the more complex combinatorial 
capacities (71) that makes human language distinct from its evolutionary precursors. Consistent 
with this view, we found bi-hemispheric or right-hemisphere dominant effects for computations 
related to broad world knowledge (see Fig. 5). Meanwhile, effects of the incremental sentential 
structure were left-lateralized beyond Verb1 when more complex syntax rather than canonical 
linear adjacency is required to build a structured interpretation. Therefore, underneath the similar 
representational geometries of sentence structure, the actual implementation of the constraint-
based approach in the brain is subject to the neurobiology of language, rather than being arbitrarily 
folded into billions of parameters in ANNs. Reconciling this disparity may be central to future 
attempts to fully capture human-level language capacity in an artificial computational system (72, 
73).    
 
In conclusion, through this uniquely in-depth investigation of the parallels between the brain and 
ANNs, we revealed commonalities in their structural interpretations driven by multi-dimensional 
probabilistic constraints. In doing so, we also demonstrated the value of using task-specific 
representations in ANNs to address neural dynamics underpinning higher-level cognitive functions 
with improved neurocomputational specificity, providing realistic neurobiological constructs for 
the development of future AI systems aiming at seamless human-machine communications.  
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Materials and Methods 

Details of materials and methods are provided in Supplementary Information. 
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