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Abstract—The increasing interest in chromatin conformation
inside the nucleus and the availability of genome-wide experi-
mental data make it possible to develop computational methods
that can increase the quality of the data and thus overcome
the limitations of high experimental costs. Here we develop a
deep-learning approach for increasing Hi-C data resolution by
appending additional information about genome sequence. In
this approach, we utilize two different deep-learning algorithms:
the image-to-image model, which enhances Hi-C resolution by
itself, and the sequence-to-image model, which uses additional
information about the underlying genome sequence for further
resolution improvement. Both models are combined with the
simple head model that provides a more accurate enhancement
of initial low-resolution Hi-C data. The code is freely available in
a GitHub repository: https://github.com/koritsky/DL2021 HI-C.

Index Terms—Hi-C, deep learning, resolution enhancement

I. INTRODUCTION

THE full length of DNA in a diploid human genome
reaches as much as 2 m (three billion base pairs).

This remarkably long chain should be condensed into 6 µm
cell nucleus, compacted into so-called chromatin via histone
proteins further packaged into higher-order structures with
distant loops and chromosome domains being formed. Beyond
this complex structure, the majority of genes are preferentially
located at the specific regions in the genome of a cell, e.g., the
nuclear envelope, heterochromatin domains, and their activity
depends on location and the corresponding epigenetic features
[1]–[3]. This implies that chromatin is not a constant but
rather a dynamic structure where regulation of gene expression
results from properly organized genetic material in space
[4]. The positioning of genes differs from cell to cell and
changes during development, differentiation, and pathological
processes [5].

The 3D organization of the genome has been investigated
with various Chromosome Conformation Capture (e.g., Hi-
C, Micro-C) techniques and high-resolution microscopy (e.g.,
FISH) [6]. 3C to Hi-C techniques enable the identification of
statistically contact frequencies of DNA loci. Hi-C ensures
the detection of loci interacting genome-widely (‘all vs. all’)
to reveal the chromatin contacts in space [7]. The analysis of
obtained Hi-C reads consists of their pre-processing, mapping
to a reference genome, filtering, and normalization of the
revealed interaction frequencies. In this way, the interaction
matrix is created from raw reads indexed by row and column.
This contact matrix is then processed to capture the structural
entities of the genome at the kilobase-megabase scale [8].
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Concordantly, the Hi-C data demonstrate that the genome
is shaped into topologically associating domains (TADs) and
compartments to position the genes in space properly. TADs
are described as domains with a high frequency of genomic
interactions. These structures ensure connections between the
regulatory elements, i.e., a promoter and an enhancer; thereby,
TADs contribute to transcription regulation [9]. The com-
partments are formed to separate active and inactive chro-
matin in space and connect regions through similar chromatin
modifications with distal interactions. As a result, there are
two types of compartments: permissive (A) and inert (B) at
low resolution [10]–[12]. The TAD borders are enriched for
the CCCTC-binding factor (CTCF) and cohesin binding sites
[7]. The CTCF-cohesin loops ensure the close proximity of
promoter and distal enhancer according to the loop extrusion
model describing possible mechanisms of genome topology
in 3D space [13]. Moreover, the CTCF binding sites are
recently shown to participate in the TADs rearrangement after
the cell division [14]. However, the formation of the A/B
compartments and some TADs is not perturbed with the CTCF
loss. This implies that some unrevealed mechanisms exist to
organize the genome in space, and further investigations of its
3D organization are required.

The Hi-C map represents one-to-many-points and two-point
interactions as stripes and insulator cohesin loops, respectively
[15], [16]. Thus, Hi-C contacts reflect which distant epigenetic
elements interact. Hi-C experiments capture the genome 3D
structure but generate data of limited resolution, which might
be insufficient to resolve contacts with high accuracy and to
zoom in on interactions of small regions. The significance
of these small-scale contacts can be underestimated. Thus,
shedding light on them might aid in reviewing known and
unraveling unexplored regulatory mechanisms.

In silico predictions of genome folding in space are based
on the algorithms which generate contact maps from DNA
sequence alone. These predictors rely on large-scale sequenc-
ing data to envision (recover) the chromatin contacts on the
kilobases level, learn and train on the genomic features of
the established contact frequencies for accurate results. The
algorithm has to exploit the Hi-C data with high resolution to
be able to recover the structures from pair contacts to loops
and TADs. The solution to the issue of low-resolution Hi-C
data was proposed in recent studies. The primary aim is to
retrieve the high-resolution maps from low-resolution ones.

There are several computational approaches operating under
this idea but adopting different principles. First, the HiC-
Plus method is a neural network using a super-resolution
imaging mode; second, the hicGAN method is based on
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Generative Adversarial Networks (GAN); third, the DeepC
network utilizes both the GAN loss function and the VGG16
(trained on image data) perceptual loss function [17]–[19].
The most recent and outbreaking approach is the Variationally
Encoded Hi-C Loss Enhancer (VEHiCLE), an algorithm based
on variational autoencoder and adversarial training strategy
equipped with four loss functions (adversarial loss, variational
loss, chromosome topology-inspired insulation loss, and mean
square error loss) to enhance Hi-C contact maps resolution
[20].

Akita [21] is the deep convolutional neural network trained
on a micro-C dataset to predict Hi-C maps of 1-megabase
DNA chunks. The input DNA is processed into a binary
matrix and then is transformed by a convolutional kernel
with 2-kilobase bins resolution of the Hi-C map. The model
is proven to accurately predict the genomic contacts from
publicly available raw sequence reads of Hi-C datasets.

Here, we develop a deep learning model that can both
predict chromatin contacts in the form of a Hi-C map and
enhance the resolution of this Hi-C output.

II. METHODS

In this work, we aim to use information in the Hi-C contact
map equipping it with information about the corresponding
DNA sequence for improving the resolution of the contact
map. In other words, we are addressing the following question:
is it possible to develop a neural network model that is able to
combine low-resolution image (or graph) data and sequence
data, providing high-resolution output?

In order to do this, we propose the following pipeline
(Fig. 1), which is based on using two recently developed
architectures: Akita [21] which will be referred to as sequence-
to-image model, and VEHiCLE, image-to-image model. The
first one is a convolutional network that converts DNA se-
quence into a Hi-C contact map (image). The second one is a
GAN-like model, which has a generator performing resolution
enhancement. Firstly, we train both of them independently but
with a common dataset. Secondly, we stack their outputs into
a single tensor and give it to another simple ”Head” model
trained independently from the previous. After that, we fine-
tune all the architecture to obtain better results. We discuss
each part of the pipeline in detail below.

A. Data prepocessing

In this work, we used mouse Micro-C (hereafter, we treat
Micro-C and Hi-C like synonyms) contact maps (more de-
tailed than Hi-C) along with genome sequence data. We
used GRCm38 (mm10) mouse genome assembly downloaded
from NCBI website, the Micro-C data was obtained from
4DNucleome database [22].

1) Genome data preprocessing: The raw sequence data
provided in FASTA format was split into uniform intervals
of 5000 base-pairs (5kb) long by genome coordinates (in the
following format: chromosome:start-end). We removed all the
intervals where at least one unknown nucleotide (denoted by
N) was present. Also, we removed the intervals where contact
maps information was of bad quality. Additionally, we dropped

Fig. 1. General pipeline of the project

the Y chromosome and mitochondrial chromosome due to
poor contact data quality.

2) Preprocessing of contact maps for sequence-to-image
model: For this step, we fully reproduce the procedure from
the Akita paper [21]. The raw contact data obtained in Cooler
format was split into 200x200 pixels matrices with striding
windows along the diagonal without overlapping. Therefore,
each matrix corresponded to 1 million base-pairs (1Mb) ge-
nomic region; hence, each pixel reflected the contact frequency
between two 5000 base-pairs loci of the genome.

Then we adaptively coarse-grain each matrix, normalize
it for the distance-dependent decrease in contact frequency
(diagonal-wise normalization), take a natural log, clip to (2,2),
linearly interpolate missing pixels, and convolve with a small
2D Gaussian filter (sigma, 0.8 and width, 7). These steps use
cooltools library functions. The resulting contact map will be
referred to as the Observed over Expected (or O/E) map in
accordance with the applied normalization procedure.

Thus, we obtained 2399 examples in total, which were split
into train, validation and test sets by chromosome-wise. Train
set: 1912 examples from this list of chromosomes: [’chr4’,
’chr10’, ’chr6’, ’chr13’, ’chr19’, ’chr16’, ’chr18’, ’chr17’,
’chr2’, ’chr3’, ’chr5’, ’chr9’, ’chr1’, ’chr12’, ’chr7’, ’chr15’];
Validation set: 231 examples from this list of chromosomes:
[’chr11’, ’chr14’]; Test set: 256 examples from this list of
chromosomes: [’chrX’, ’chr8’]. Such split provides us a nat-
ural way to avoid a data leak.

Data augmentation is critical to avoid overfitting and max-
imize generalization accuracy on unseen sequences. Each
time we processed a sequence, we stochastically shifted input
sequences by up to ±11 bp, reverse complemented the DNA
and flipped the contact map [21].

3) Preprocessing of contact maps for image-to-image
model: Since the VEHiCLE model [20] did not assume
diagonal-wise normalization of contact maps, we developed
another procedure of data preprocessing for the image-to-
image model. The generator of the image-to-image model
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uses low-resolution contact maps as input and tries to enhance
the resolution giving output. We created two sets of contact
matrices for this purpose: (i) 200x200 pixels (target) corre-
sponding 1Mb region as before, where each pixel reflects the
contact frequency of two 5kb loci; (ii) 100x100 pixels (input)
corresponding 1Mb region, but now each pixel reflects the
contact frequency of two 10kb genomic loci. Furthermore, for
this time, we allow matrices to be overlapped (250kb step
along the diagonal or 75% overlapping) following the logic
of the VEHiCLE paper where such an approach was used for
correct data augmentation. Therefore, we used four times more
data due to overlapping for the image-to-image model.

Then, we adaptively coarse-grain each matrix, take a natural
log, normalize all values to [0..1] interval and linearly interpo-
late missing pixels. The resulting contact map will be referred
to as Observed. We split all the data into train, validation, and
test sets by chromosomes as in the previous section.

B. Sequence-to-image model

1) Original model:
a) Architecture: Base architecture for the sequence-to-

image model is taken from Akita [21]. It consists of two
blocks: ’trunk’ that takes the 1D one-hot encoded represen-
tation of DNA sequence and outputs a sequence of features,
and ’head’ transforming sequential features into 2D folding
maps. The ’trunk’ block consists of a set of 1D convolutional
layers:

• Input: 1D one-hot encoded sequence;
• 1D Convolutional layer: 96 filters; kernel 11 → Batch

Normalization → ReLU → Max Pooling: kernel 2;
• 1D Convolutional tower (10 layers): 1D Convolutions: 96

filters; kernel 5→ Batch Normalization→ ReLU→Max
Pooling: kernel 2;

• 1D Dilated residual convolutional tower (8 layers): 1D
Dilated Convolutions with increasing dilation rate +
Dropout before residual connection;

• Bottleneck — 1D Convolution: 64 filters; kernel 1;
• Output: sequence of feature vectors for genomic bins.

The ’head’ converts 1D profile into 2D map:

• 1D to 2D conversion: pairs for genomic bins from se-
quences are averaged using outer sum to get 2D feature
map, which is concatenated with the positional encoding
of the distances between bins → 2D convolution: kernel
1;

• 2D dilated residual convolution tower (6 layers): sym-
metrization with transposed maps is applied after each
layer;

• Linear layer;
• Output: 2D maps for five datasets.

Thus, the Akita model takes as input batch of one-hot encoded
sequences of length 1Mb (220bp), calculates 1D profiles rep-
resented as feature vectors for 512 genomic bins of length
2,048 bp obtained from a set of 1D convolutions, which
are converted into the 512x512 2D folding map through 2D
convolutions.

b) Training: Authors trained model for 60 epochs using
Stochastic Gradient Descent with momentum. The target loss
function is Mean Square Error over the upper triangular
portion of cropped matrices. Upper triangular indexes are
taken with diagonal offset 2 and cropping size 32. They
applied random shift by up to ±11 bp and reverse complement
to the input DNA sequence with the following flip of the
target 2D map during training as data augmentation. Next,
authors used Bayesian optimization to search over the possible
values of hyperparameters and chose optimizer learning rate of
0.0065, SGD momentum of 0.99575, gradient norm clipping
of 10.7, and batch normalization momentum of 0.9265 as best
parameters.

2) Our model:
a) Akita-like: First, we train a model with Akita-like

architecture with slight changes to tune parameters for input
and output data. As we have input sequences of length 1Mb
and target 2D maps of size 200x200, we add an additional
layer into 1D Convolutional tower block in the ’trunk’ to get
a twice higher sequence length compression. After that, ’trunk’
output 1D profile of length 244. The resulting 244x244 map
outputted from the ’head’ block is then resized into a 200x200
tensor with bilinear interpolation. Finally, we found that the
Adam optimizer with a default learning rate of 0.001 worked
better in our case. We used gradient norm clipping of 10,
batch normalization momentum of 0.9265, and cropping of
target and predicted 2D maps by 10 on each side. We trained
the model for 100 epochs with MSE loss over upper triangular
values of the cropped 2D map.

b) Ours: Here, we replace the ’head’ block from Akita
architecture with custom graph convolutional layers. We be-
lieve this makes the model closer to the ’physical’ represen-
tation of the chromatin as target 2D maps generally represent
analogs to closeness in the 3D space. For this, we construct
a new ’head’ block. A set of Graph blocks is placed in the
beginning: Graph Convolution layer → Batch Normalization
layer → ReLU activation function → Linear layer → Batch
Normalization. The result of the Graph block is added to the
input for residual connection. Then, the resulting genomic bin
features outputted from the Graph block are converted into
a 2D map through the outer matrix dot product. 2D maps
are then symmetrized, and batch normalization with ReLU is
applied to the result. The final output is obtained after applying
a single Linear layer.

For the graph convolution layer, we use a graph transformer
operator described in [23]. Multi-head attention is calculated
as:

q
(l)
c,i =W (l)

c,qh
(l)
i + b(l)c,q

k
(l)
c,j =W

(l)
c,kh

(l)
j + b

(l)
c,k

ec,ij =Wc,eeij + bc,e

α
(l)
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(1)

where h
(l)
i h

(l)
j are source and distant input node features

transformed into the query vector q(l)c,i ∈ R and key vector k(l)c,j ,
respectively, using trainable parameters W (l)

c,q ,W
(l)
c,k, b

(l)
c,q, b

(l)
c,k;
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Fig. 2. Sequence-to-image model architecture. (Image for Attention block is taken from [23].)

eij are edge features further encoded through trainable
Wc,e, bc,e; 〈q, k〉 = exp( q

T k√
d
) is the exponential scale dot-

product; c is for index of the head; d is the hidden size of head.
Next, message aggregation is performed through concatenating
of weighted sums from each head:

v
(l)
c,j =W (l)

c,vh
(l)
j + b(l)c,v

ĥ
(l+1)
i =

∥∥∥C
c=1

[
∑

j∈N (i)

α
(l)
c,ij(v

(l)
c,j + ec,ij)]

(2)

Here, we represent each node as a feature vector of the
corresponding genomic bin. We use embeddings of dimen-
sionality 8 from positional encodings |i − j| of the distance
between genomic bins to get edge feature vectors. We use the
size of the hidden dimension of each head equal to 64, the
number of attention heads equal to 2, and the dropout rate of
input nodes to each attention equal to 0.3.

C. Image-to-image model
The model VEHiCLE (short for Variationally Encoded Hi-

C Loss Enhancement) from the paper [20] has the following
training approach:

First, VEHiCLE incorporates a variational autoencoder that
extracts biologically meaningful features from Hi-C data. Sec-
ond, VEHiCLE’s decoder network is engineered to provide an

easy-to-use generative model for Hi-C data generation, which
smoothly maps user tunable, low dimensional vectors to Hi-C
contact maps independent of any low sampled input. Third,
VEHiCLE incorporates a biologically explicit loss function
based on Topologically Associated Domain identification to
ensure accurate downstream genomic analysis.

1) The training loss: The loss that is used for training has
four components: adversarial loss, MSE-loss, VAE-loss, and
insulation loss. Let us explain each component.

Generative Adversarial Network consists of two compo-
nents: Generator G, which takes samples from an input dis-
tribution and generates enhanced matrices, and Discriminator
D, which tries to classify whether its inputs are real high-
resolution Hi-C samples or enhanced resolution Hi-C samples.
The adversarial loss is defined as follows (see Fig. 3 for
details):

Ladv = −
N∑

n=1

log (D (G (Xi))) (3)

where Xi are low-resolution data.
Bin-wise mean square error loss contributes to maintaining

visual similarity between enhanced and target Hi-C contact
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Fig. 3. Pipeline of the image-to-image model: (a) overview of training
strategy, (b) generator architecture, (c) discriminator architecture.

matrices:

Lmse =
1

n2

n∑
i=1

n∑
j=1

|Xenhanced −Xtarget | (4)

A topologically associating domain (TAD) is a self-
interacting genomic region, meaning that DNA sequences
within a TAD physically interact with each other more fre-
quently than with sequences outside the TAD. Insulation loss
is biologically inspired and connected to the identification
of TAD boundaries using the sliding window technique and
computing pseudo-derivative. During the training procedure,
the insulation loss is computed with the use of a neural
network Dvec.

Lins =
1

n

n∑
i=1

|Dvec (Xenhanced )−Dvec (Xtarget )| (5)

Variational loss is computed by taking the mean differ-
ences between the latent feature vectors of the enhanced
Hi-C contact matrix and target high-resolution Hi-C contact
matrix. These latent feature vectors are computed using vari-
ational autoencoders, which aim to condense data into lower-
dimensional space, providing smooth representations.

Lvae =
1

n

n∑
i=1

|fencode (Xenhanced )− fencode (Xtarget )| (6)

The final loss is the linear combination of the four losses:
Ltot = λadv Ladv + λmse Lmse + λvae Lvae + λins Lins with
coefficients λadv = 0.0025, λmse = 1, λvae = 0.01, λins =
1.

2) Our changes in VEHiCLE: GAN architecture was not
changed since it consists of convolution blocks that do not
depend on the input resolution. However, as in original im-
plementation, the resulting image was cropped by 6 pixels on
each side, so for 200x200 input image we get 188x188 as a
result.

However, the VAE part has linear layers, bottleneck and
transposed convolutions. To keep the latent dimension the

same size — 4608 — we had to remove one convolution
layer from the encoder and decoder respectively. The final
architecture become 6 convolutional layers with kernel counts:
[32, 64, 128, 256, 256, 512] with minor adjustments in out
padding configurations.

D. Head model

All the aforementioned procedures can be briefly expressed
with an inference scheme (Fig. 4), where the head model plays
a crucial role and its architecture describing below.

Fig. 4. Inference process scheme

We decided the head architecture should be a convolutional
net with symmetrizing procedure inside, where the sym-
metrization is taken from Akita model. We tried convolutional
nets of different depth and kernel sizes, seeking the best one
giving the highest Pearson and Spearman correlation metrics
(see below). As the result we chose the architecture of 2
(3x3 kernel with padding=1) convolutional layers with kernel
counts: [2→16, 16→1] with ReLU activations (what is rather
natural considering that output is [0..1] normalized). After each
layer the symmetrization procedure occurs.

E. Validation metrics

We utilize 5 reproducibility metrics (as in Vehicle paper)
pulled from Hi-C resolution enhancement papers: Pearson Cor-
relation Coefficient (PCC), Spearman Correlation Coefficient
(SPC), Mean Squared Error (MSE), Mean Absolute Error
(MAE) and, one specific for Hi-C task, Stratum Adjusted
Correlation coefficient (SCC). For computing SCC coefficient
we adopted a code from the hicreppy library.
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Fig. 5. Examples of target Hi-C maps and predictions from sequence-to-image
models.

III. RESULTS

1) Sequence-to-image model: We trained two versions of
Sequence-to-image models: one with an Akita-like head and
the other with transformer graph convolutions with parameters
described in Section Sequence-to-image model. Model per-
formances are shown in Table I. Visual comparison of maps
predicted by sequence-to-image models with Akita-like and
graph-based head blocks are provided in Fig. 5.

TABLE I
AKITA MODEL PERFORMANCES

Model Set MAE MSE Pearson Spearman

Akita-like
Train 0.220 0.092 0.778 0.760
Val 0.273 0.157 0.658 0.676
Test 0.283 0.151 0.611 0.585

Ours
Train 0.224 0.089 0.784 0.738
Val 0.276 0.158 0.659 0.647
Test 0.283 0.149 0.611 0.559

2) Image-to-image and hybrid: The Image-to-image (VE-
HiCLE) part pre-trained on our data can be considered as a
SOTA with which to compare the results of our model, and
the hybrid model performs worse (Fig. 6). The main problem
here lies in the diagonal elements that are blurred out to the
thick line because the Akita model does not learn diagonals,
and during the preprocessing, they are approximated with the
gaussian kernel. Consequently, this step presents a potential
room for improvement.

We implemented multiple approaches, including pre-heating
the head and finetuning afterward, but did not achieve signif-
icantly better results (Fig. 8). We suggested that, after some
training, the convolutional head would switch off one of the
networks to get all the profit from the other, but it did not
happen. To check it, we have applied zero tensors as an input
for one part while the input of another part remained valid
and obtained worse results than the combined (Fig. 7).

Thus, one can conclude that the total network learns from
both backbones outputs but can not leverage from it. The

Fig. 6. Examples of different Hi-C maps. On the top panel some region with
point features is depicted. On the bottom panel the fragment corresponding
to purple square is zoomed.

reason might be in the different distributions on each output
type and the small depths of the convolution head not allowing
it to adjust.

To compare our results with the baseline, we used models
HiCPlus, DeepHiC, HiCSR, and VEHiCLE. Since we did
not have enough resources to train them on our data, we
used pre-trained weights on the human genome. This dataset
differs from our mice genome slightly but noticeably decreases
metrics (Table II). Of note, GAN-based VEHiCLE shows
much better generalizability than the previous generations of
algorithms.

TABLE II
METRICS COMPARISON WITH BASELINES AND SOTA

Model MAE MSE Pearson Spearman SCC
Downsampled 0.0373 0.0024 0.9491 0.9244 0.553
HiCPlus 0.1104 0.0189 0.6628 0.7121 0.1189
DeepHiC 0.0946 0.0178 0.79 0.6949 0.1801
HiCSR 0.1252 0.0226 0.7165 0.7155 0.1519
VEHiCLE 0.0807 0.0148 0.9181 0.9096 0.407
img-to-img 0.0311 0.0017 0.9551 0.9257 0.569
Hybrid 0.0327 0.002 0.9473 0.9247 0.5201

IV. DISCUSSION

1) Combined model: The results show that the VEHiCLE
model by itself provides better results than any of our hybrid
models with different head block designs and different train
procedure designs.

We also explored the behavior of the head block of the
hybrid model in the case of replacing one of the backbone
outputs with zeros (Fig. 7). Initially, we assumed that the head
model would suppress weights of kernel linked with Akita
output in case of its uselessness and, therefore, concentrate
the weights on VEHiCLE output which shows the good result
by itself. However, we observed the opposite behavior: the
impact of both backbone outputs was used by the head block
to predict the final results. We can speculate that this behavior
led all the hybrid models to deteriorate the results.

2) Tranformer model for encoder block: We also tried
incorporating a sequential Transformer into the sequence-to-
image model. Treating DNA data as a ’language’ seems to
be the most natural way. DNA sequences can be represented
as a long sequence of chars or split to the short substrings
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of length k(so-called k-mers). Recently published DNABERT
[24] achieved state-of-the-art performance on many sequence
prediction tasks. The main difficulty in applying NLP tech-
niques to the DNA analysis is the enormous length of the
latter. To some extent, it can be alleviated by Base-Pair
Encoding(BPE) as in CornBERT. But still, the application
of sophisticated Transformer-based architectures is limited be-
cause of a lack of resources. We tried to replace the sequence-
to-image encoder block constructed from convolutions with
the one formed by the DNABERT transformer, but it was
impossible to train such a model as there was not enough
memory to store all gradients for embeddings computed for
the entire input 1Mb sequence. Then, we implemented the
model with Akita-like architecture by removing the encoder
and feeding the precomputed embeddings from DNABERT to
the decoder, but the resulting images became worse while the
inference and training time increased. We imply that not only
the absence of online augmentation contributed to the poor
performance, but the difference between human DNA used
for DNABERT training and mouse DNA, which we used as
well.

3) Data split: Original Akita [21] model was trained on
5 datasets from the human genome with the random split of
genomic bins; however, authors of VEHiCLE [20] model used
chromosome-based train-validation-test split. We firstly trained
our sequence-to-image model on the random split, but then
we used the same train-validation-test split for all sequence-
to-image, image-to-image, and combined models, as described
in Section Data prepocessing. However, the sequence-to-image
model shows much better validation scores on random split
compared with chromosome-based one (Table III). This fact
should be considered for the proper comparison with other
methods.

TABLE III
COMPARISON OF PERFORMANCES OF SEQUENCE-TO-IMAGE MODEL ON

THE RANDOM AND CHROMOSOME-BASED SPLITS.

Split Set MAE MSE Pearson Spearman

Random
Train 0.182 0.061 0.850 0.813
Val 0.246 0.115 0.682 0.656
Test 0.244 0.116 0.690 0.664

Chromosome
Train 0.220 0.092 0.778 0.760
Val 0.273 0.157 0.658 0.676
Test 0.283 0.151 0.611 0.585

4) Concluding remarks: Although hybrid models show
poor results, we should note that independently trained back-
bone models were rather successful. The obtained results and
learned methodology allow continuing experiments with other
types of data to reveal new properties of interconnection
between three-dimensional genome form and its nucleotide
code.

APPENDIX A
CODE LIST

• Pytorch – building models.
• Pytorch-Lightning – model training and logging.
• Torch-geometric – graph convolution layers.
• Tensorboard – logging.

• Neptune – logging.
• Akita – tensorflow code for Akita sequence-to-image

model (we adapted it to torch).
• VEHiCLE – code for VEHiCLE image-to-image model.
• hicreppy – library for Hi-C specific metric calculation.
• Cooler – library for Hi-C data reading.
• cooltools – library for manipulation of Hi-C data.

APPENDIX B
INDIVIDUAL CONTRIBUTION

Dmitrii Kriukov: overall project design, data preprocess-
ing, literature review, training hybrid models, report writing,
presentation preparation, github contributions.

Mark Zaretckii: sequence-to-image (Akita) model imple-
mentation and training, hybrid model and logging implemen-
tation and training, report writing, github contributions.

Igor Kozlovskii: sequence-to-image (Akita) model imple-
mentation and training, graph models, data preprocessing,
report writing, github contribution.

Mikhail Zybin: metrics calculation implementation, report
writing.

Nikita Koritskiy: image-to-image (VEHiCLE) model im-
plementation and training, data preprocessing, comparison
with baseline and state of the art models, logging control,
report writing, github contributions.

Mariia Bazarevich: biological supervising, help with liter-
ature review section.

APPENDIX C
EXTRA IMAGES

Fig. 7. Behavior of the network head output in case of zerofying one of the
backbone outputs.
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Fig. 8. Metrics and loss on validation set for model with and without
preheated head. Preheated head increases training stability at the beginning,
but non preheated head shows better final results.
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