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Abstract 

Gene expression evolution underlies the origin, divergence, and conservation of biological 
characters including cell-types, tissues, and organ systems. Previously we showed that large-

scale gene expression changes in decidual stromal cells contributed to the origins of pregnancy 
in eutherians and the divergence of pregnancy traits in primates (Marinić et al., 2021; Mika et al., 

2021a, 2021b), and that transposable elements likely contributed to these gene expression 
changes (Mika et al., 2021a). Here we show that two large waves of TEs remodeled the 

transcriptome and regulatory landscape of decidual stromal cells, including a major wave in 
primates. Genes nearby TE-derived regulatory elements are among the most progesterone 

responsive in the genome and play essential roles in orchestrating progesterone responsiveness 
and the core function of decidual cells by donating progesterone receptor binding sites to the 

genome. We tested the regulatory abilities of 89 TE consensus sequences and found nearly all 

acted as repressors in mammalian cells but that treatment with histone deacetylase inhibitors 
unmasked latent enhancer functions. These data indicate TEs have played an important role in 

the development, evolution, and function of primate decidual stromal cells and suggest a two-step 
model in which latent enhancer functions of TEs are unmasked after they lose primary repressors 

functions. 
 

Introduction 
Changes in gene regulatory evolution underlies the origin, divergence, and homology of 

cell-types, tissues, and organs. Thus, understanding the mechanisms of gene regulatory evolution 
is essential for understanding how anatomical systems evolve. One hypothesis of gene regulatory 

evolution proposes that genes gain and lose expression domains through a multi-step 

accumulation of small-scale mutations, such as point mutations or indels, that either create new 
or destroy old transcription factor binding sites (Stone and Wray, 2001). At the other extreme, a 

gene may evolve a regulatory element in a single step through the integration and cooption of a 
transposable element (TE) that harbors functional transcription factor binding sites (Bourque et 

al., 2008; El-Deiry et al., 1992; Jordan et al., 2003; Kunarso et al., 2010; Lynch et al., 2015; Polak 
and Domany, 2006; Wang et al., 2007). While there is ample data to support both models of gene 

regulatory evolution (reviewed in (Feschotte, 2008; Wray, 2007)),  important questions with both 
models remain (Bourque et al., 2018). For example: Do TEs integrate with regulatory abilities, or 

as ‘pre-regulatory elements’ that need additional mutations to acquire regulatory functions? Do 

the functions of TE derived regulatory elements change, or is their evolution constrained by their 
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functions upon integration? And does cooption of TEs into regulatory elements occur continuously 

or in a single wave? Answers to these (and other) questions are essential for understanding the 
contribution of TEs to gene regulatory evolution. 

 
 Extant mammals span several major evolutionary transitions during the origins, 

divergence, and conservation of pregnancy, including the origin a new cell-types in the uterine 
lining (endometrium),  endometrial stromal fibroblasts (ESF) and decidual stromal cells (DSC) 

(Chavan et al., 2021; Erkenbrack et al., 2018; Wu et al., 2020), which mediate many of the 
maternal responses to pregnancy. For example, an essential step in the establishment and 

maintenance of pregnancy is the differentiation (decidualization) of ESFs into DSCs in response 
to progesterone acting through the progesterone receptor (PGR), the second messenger cyclic 

AMP (cAMP) acting through protein kinase A (PKA) and the transcription factor FOXO1 

(Gellersen and Brosens, 2003; Kajihara et al., 2013), and, in some species, to fetal signals 
(Gellersen et al., 2007). Decidualization evolved in the stem lineage of Eutherian mammals (Kin 

et al., 2015, 2014; Mess and Carter, 2006) and induces large-scale gene regulatory, cellular, and 
physiological changes in the endometrium that are essential for successful implantation and 

pregnancy in many eutherians including humans. 
 

We have previously shown that hundreds of genes gained and lost endometrial expression 
coincident with the origins of pregnancy and decidualization in early mammals (Lynch et al., 2015; 

Marinić et al., 2021), and that a second major episode of gene expression evolution occurred in 
primates (Mika et al., 2021a, 2021b). This latter wave of gene expression evolution occurred 

coincident with the origin of numerous primate-specific female reproductive and pregnancy traits 

including menstruation (Burley, 1979; Emera et al., 2012; Finn, 1998; Strassmann, 1996), 
decidualization in the absence of fetal signals (spontaneous decidualization) (Carter and Mess, 

2017; Gellersen et al., 2007; Gellersen and Brosens, 2003; Kin et al., 2016, 2015; Mess and 
Carter, 2006), deeply invasive placentas (Carter et al., 2015; Pijnenborg et al., 2011a, 2011b; 

Soares et al., 2018),  and a derived parturition signal (Csapo, 1956; Csapo and Pinto-Dantas, 
1965). Remarkably, TEs appear to have played an important role in the origins of pregnancy 

through cooption into progesterone-responsive cis-regulatory elements in DSCs (Lynch et al., 
2015; Mika et al., 2021a) and may have played a similar role during the evolution of primate-

specific pregnancy traits (Lynch et al., 2015; Mika et al., 2021a). Here we show that successive 

waves of TEs have been coopted into progesterone-responsive cis-regulatory elements, including 
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a rolling wave of TE cooption in primates. Genes with regulatory elements derived from primate-

specific TEs are among the most strongly differentially regulated by progesterone, have essential 
roles in decidualization, and likely contribute to primate-specific pregnancy traits such as 

spontaneous decidualization. Finally, we tested 89 consensus TE sequences, as a proxy for 
ancestral TE sequences, and found that nearly all have dominant repressor functions and latent 

enhancer functions in mammalian cells. These data suggest that primate-specific TEs played an 
important role in gene regulatory evolution in primate DSCs. Furthermore, our data suggest a 

general two-stage model of TE domestication into gene regulatory elements, whereby loss of 
ancestral repressor functions unmasks hidden enhancer functions. 

 
Results  

Transposable elements are major contributors to regulatory elements in DSCs 

We have previously shown that Mammalian-, Therian-, and Eutherian-specific TEs played 
an important role in the origin of new cis-regulatory elements in DSCs during the evolution of 

pregnancy (Lynch et al., 2015)) and are enriched nearby genes that gained and lost expression 
in primate DSCs (Lynch et al., 2015; Mika et al., 2021a). Here we expanded these studies to all 

classes and ages of TEs using previously generated H3K4me3 ChIP-Seq, H3K27ac ChIP-Seq, 
FAIRE-Seq and DNaseI-Seq data to identify promoters, enhancers, and regions of open 

chromatin (Lynch et al., 2015; Mika et al., 2021a). We found that 58.7% of H3K27ac and 53.0% 
of H3K4me3 ChIP-Seq peaks, 42.2% of FAIRE-Seq peaks, and 67.2% of DNaseI-Seq peaks 

overlapped annotated transposable elements (Figure 1A). Next, we annotated these TEs by their 
lineage specificity and found that TEs from different age classes differentially contributed to each 

kind of regulatory element: relatively young (i.e., Primate-specific) TEs dominated the DNaseI, 

H3K27ac, and H3K4me3 datasets, whereas relatively ancient TEs (i.e., Eutherian-specific and 
older) were more common in the FAIRE dataset (Figure 1B). 427 TE families were enriched (eTE; 

>1.5-fold, P≤0.05, binomial test) within H3K27ac and H3K4me3 ChIP-Seq, and FAIRE-, DNase 
Seq peaks (Figure 1C), most of which were Eutherian- and Primate-specific (Figure 1D). 

 
TE-derived regulatory elements are enriched in transcription factor binding sites that 

regulates DSCs 
To determine if TEs donated motifs for specific transcription factors, we identified over-

represented transcription factor binding sites (TFBS) within eTE-derived regions of FAIRE-seq, 

DNase-seq, H3K27ac ChIP-Seq and H3K4me3 ChIP-Seq peaks using previously published 
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ENCODE ChIP-Seq data for 132 transcription factors as well as previously published PGR ChIP-

Seq data generated from from human DSCs (Mazur et al., 2015). 53 TFBSs were enriched within 
regulatory eTEs relative to genomic TFBS abundances (FDR=0.05; Figure 2A), most notably 

PGR (enrichment=10.31, FDR<1.00×10-250), AHR (enrichment=2.00, FDR=1.00×10-5), and GATA 
(enrichment=1.25, FDR=1.30×10-20). We also observed enrichment for the KRAB-ZFPs ZNF263 

(enrichment=1.71, FDR=7.20×10-150) and ZNF274 (enrichment=1.22, FDR=8.90×10-3), KAP1 
(also known as TRIM18; enrichment=2.00, FDR=7.20×10-41), which binds KRAB-ZFPs and 

functions as a scaffold for the recruitment of histone modifying co-repressor complexes, and parts 
of the SWI/SNF chromatin remodeling complex such as BAF155 (enrichment=2.36, 

FDR=1.00×10-76), BAF170 (enrichment=1.93, FDR=4.20×10-14), INI1 (enrichment=1.43, 
FDR=9.10×10-18), and BRG1 (enrichment=1.38, FDR=2.70×10-5). These data suggest that TEs 

have donated binding sites for transcription factors that mediate decidualization such as PGR and 

its obligate co-factor GATA2 (Rubel et al., 2016, 2011), as well as general transcriptional 
repressors and chromatin modifying proteins (Figure 2B). 

 
TE-derived regulatory elements augment ancient progesterone responsiveness 

Our observation that specific TE families are enriched in DSC regulatory elements 

suggests that they may contribute to gene expression changes that occur during progesterone-
induced decidualization and changes in decidualization-induced gene expression during human 

evolution. To test this hypothesis, we used parsimony to reconstruct the evolutionary history of 
gene expression in the pregnant uterus (Figure 3A) (Marinić et al., 2021), RNA-Seq data from 

human ESFs and DSCs to quantify gene expression changes induced by decidualization (Figure 
3B), and previously published promoter capture HiC (pcHiC) data generated from human DSCs 

(Sakabe et al., 2020) to associate genes with putative regulatory elements (Figure 3C). We found 

that genes with eTE-derived regulatory elements were generally more strongly differentially 
regulated by decidualization than genes without eTE-derived regulatory elements, especially 

genes that were more recently recruited into endometrial expression (Figure 3D). 

TE-derived regulatory elements are enriched in PGR binding sites 

Our observations that TEs are enriched in PGR binding sites and are associated with 
genes that are strongly differentially expressed upon decidualization prompted us to explore the 

contribution of TEs to PGR binding sites in greater detail. We found that 62.8% (5344/8510) of 
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PGR ChIP-Seq peaks in DSCs contained TEs (Figure 4A), nearly all of which are Mammalian-, 

Eutherian-, and Primate-specific (Figure 4B). PGR ChIP-Seq peaks, however, are almost 
exclusively enriched (>1.5-fold, P≤0.05, binomial test) in Eutherian- and Primate-specific TEs 

(Figure 4C). Consistent with a functional role for TE-derived PGR binding sites in orchestrating 
progesterone responsiveness, genes associated with TE-derived PGR binding sites by pcHiC 

(Figure 4D) were more strongly differentially expressed during decidualization than genes not 
associated with TE-derived PGR binding sites (Figure 4E); This trend was more pronounced for 

recently recruited genes (Figure 4E). We also found that genes associated by pcHiC with TE-
derived PGR binding sites were significantly more dysregulated by siRNA-mediated PGR 

knockdown in DSCs (Figure 4F) than genes not associated with TE-derived PGR binding sites 
(Figure 4G).  

 

TE-derived PGR binding sites in primates regulate genes essential for decidualization 

To explore the functional consequences of eTE-derived PGR binding sites, we first binned 
eTEs into ancient mammalian or primate-specific categories based on our observation that TEs 

in regulatory elements are predominantly from two age classes. Next, we used the pcHiC data to 
associate genes with category of eTE-derived PGR binding site and tested whether these genes 

were enriched in biology pathways (KEGG, Panther, Wikipathway, Reactome) using the over-
representation analyses implemented in WebGestalt (Liao et al., 2019). Of the 965 genes 

associated with eTE-derived PGR binding sites expressed in DSCs (TPM≥2), 631 were 
associated with primate-specific eTE-derived PGR binding sites. These genes were enriched in 

113 pathways at FDR≤0.10. Among the enriched pathways were many that play important roles 
in decidualization and pregnancy (Table 1), such as Wnt, FoxO, and prolactin signaling, and 

various pathways related to regulation of the cell cycle which plays a critical role in the earliest 

stages of decidualization (Table 2). In contrast, the 334 genes only associated with ancient 
mammalian eTE-derived PGR binding sites were not enriched in any pathway at at FDR≤0.10. 

Consensus TEs are repressors with latent enhancer potential 

 It is not clear if TEs integrate with regulatory abilities, and therefore immediately function 

as regulatory elements, or if they integrate as ‘pre-regulatory elements’ that are weakly- or non-
functional and require additional mutations to acquire regulatory functions. To test these 

scenarios, we selected 89 enriched TEs, synthesized their consensus sequences (conTE), and 
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cloned them into the pGL3-Basic[minP] luciferase reporter vector. Next, we transiently transfected 

human ESFs and DSCs with each conTE reporter and used a dual luciferase reporter assay to 
test their regulatory abilities. We found that 55 (62%) the conTE reporters functioned as 

repressors in ESFs while 58 (65%) functioned as repressors in DSC (FDR≤0.05), in contrast only 
13 (3%) and 21 (23%) had enhancer functions in ESFs and DSCs (Figure 5A; FDR ≤ 0.05). To 

test whether these effects were cell-type specific, we repeated the luciferase reporter assay in 
the human hepatocellular carcinoma cell line HepG2 and again observed that 59/89 (66%) were 

strong repressors (FDR≤0.05) whereas 28 were enhancers (Figure 5A; FDR ≤ 0.05). To 
determine if these results were species specific we repeated the luciferase assay in mouse 

embryonic fibroblasts (MEFs) and observed that 51 (57%; FDR ≤ 0.05) of conTEs were repressors 
(34 were enhancers; FDR ≤ 0.05) whereas in elephant dermal fibroblasts 21 (24%; FDR ≤ 0.05) 

were repressors (34 were enhancers; FDR ≤ 0.05) (Figure 5A). While some conTEs, such as 

LTR elements, which have strong internal promoters, had enhancer functions in all cell-types, 
significantly more were repressors than expected by chance in ESFs (Binomial P=0.027), DSCs 

(Binomial P=1.00×10-6), HepG2 (Binomial P<1.00×10-6), and MEFs (Binomial P=0.027). 

 Our observation that TEs enriched within regulatory elements and open chromatin are also 
enriched in binding sites for KRAB-ZFPs, KAP1, as well as histone modifying co-repressor 

complexes, suggest that conTEs may function as repressors because they are recognized by the 
host cell anti-TE machinery and silenced (Feschotte and Gilbert, 2012; Matsui et al., 2010; Rowe 

et al., 2010). To test this hypothesis, we repeated the luciferase reporter assay in ESFs and DSCs 
and treated cells with the mammalian class I and II histone deacetylase (HDAC) inhibitor 

trichostatin A (TSA). TSA treatment de-repressed 30/35 (86%; FDR ≤ 0.05) and 39/55 (71%; FDR 
≤ 0.05) of the conTEs that were repressors in untreated ESFs and DSCs, respectively (Figure 

5B). TSA treatment also unmasked the latent enhancer functions of 29 conTEs in ESFs and 26 

conTEs in DSCs (for example: MIR3, MIRb, and MIRc, MamRep1879, and MER96b). Thus, while 
the majority of conTEs repress luciferase expression, their repressive abilities are likely HDAC 

dependent. 
 

The preponderance of repressor functions among conTEs and their dependence on HDACs 
suggests that conTEs may be recognized by the KRAB-ZFPs/KAP1 TE suppression system and 

silenced by histone modifying co-repressor complexes (NuRD, CoREST, SWI/SNF) (Feschotte 
and Gilbert, 2012; Imbeault et al., 2017; Matsui et al., 2010; Rowe et al., 2010). To test this 
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hypothesis, we repeated the luciferase reporter assay in KAP1 knockout mouse embryonic 

fibroblasts (MEF KAP1-/-), but again observed 53 conTEs (59%; FDR ≤ 0.05) were repressors and 
relief of repression for only 8 (9%; FDR ≤ 0.05) conTEs (Figure 5A). To infer if repression may 

be mediated by KRAB-ZFPs, we took advantage of their restricted lineage specificity and tested 
the regulatory abilities of conTEs in chicken embryonic fibroblasts; The chicken genome only 

encodes 41 KRAB-ZFP, none of which are expressed in chicken embryonic fibroblasts (Addison 
et al., 2015). In stark contrast to the different mammalian cell-types we tested, only 18 (20%; FDR 

≤ 0.05) of the conTEs functioned as repressors whereas 69 (78%; FDR ≤ 0.05) were strong 
enhancers in CEFs (Figure 5A).  

 
Finally, we used multidimensional scaling to explore whether conTEs could be grouped into 

distinct clusters based on their regulatory abilities in different cell-types. We found that conTEs 

formed four clusters in the MDS plot, corresponding to those with weak, moderate, and strong 
enhancer functions and those with repressor functions (Figure 5C). Similarly, hierarchical 

clustering grouped conTEs with enhancer and repressor functions (Figure 5 – figure 
supplement 1). Consistent with our observation that the regulatory functions of conTEs were 

similar in different mammalian cell-types but different in CEFs, CEFs did not cluster with 
mammalian cell-types in an MDS plot (Figure 5 – figure supplement 2). Collectively these data 

indicate that while a few conTEs, mostly LTRs, have strong enhancer or promoter abilities, most 
conTEs function as HDAC-dependent repressors in mammalian cells. 

 
Discussion 

Two waves of transposable element cooption remodel the transcriptome and regulatory 

landscape of decidual stromal cells 
Transposable elements are so frequently coopted into regulatory elements that it is not 

possible to cite all or even most studies reporting either the cooption of individual TEs or large-
scale cooption of (almost) entire TE families. Previous studies, for example, have dissected in 

great detail the cis-regulatory element that drives extra-pituitary prolactin (PRL) in human decidual 
stromal cells (DSCs), which is normally expressed by the pituitary and immune cell-types (Gerlo 

et al., 2006). These studies found that human PRL expression is initiated from an alternative 
promoter located 5.8kb upstream of the canonical pituitary transcription start site which contains 

binding sites for transcription factors that are essential for the identity and function of DSCs 

including PGR, FOXO1A, ETS1, CEBPB, and FOS (Gerlo et al., 2006). Remarkably, the human 
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decidual PRL promoter is derived from a primate-specific long terminal repeat (LTR)-like 

transposable element in the medium reiterated repeat (MER39) family and an upstream enhancer 
derived from a Eutherian-specific MER1 class of DNA transposon (MER20) (Gerlo et al., 2006). 

However, while there is little evidence that other MER39 elements function as promoters (Emera 
and Wagner, 2012), MER20 elements function as enhancers in DSCs for numerous genes across 

the genome (Lynch et al., 2011).  
 

These data suggest that Eutherian-specific transposable elements played a role in re-wiring 
the gene regulatory network during evolution of pregnancy and decidualization. Consistent with 

this observation, we previously found large-scale cooption of Mammalian-, Therian-, and 
Eutherian-specific TEs (AncMamTEs) into progesterone responsive cis-regulatory elements. 

Here we expanded on these studies and found that 427 TE families were enriched in DSC 

regulatory elements, nearly half of which were primate-specific. Thus, there were at least two 
waves of TE cooption into decidual regulatory elements – a first wave in early mammals and a 

second wave in primates. Remarkably, genes associated by pcHiC with TE-derived regulatory 
elements were significantly more responsive to progesterone than genes without TE derived cis-

regulatory elements. Furthermore, genes with primate-specific TE-derived PGR binding sites 
were more progesterone responsive than genes with either ancient TE-derived PGR binding sites 

or genes without TE-derived PGR binding sites. These data suggest that TEs may have played a 
role in rewiring the progesterone responsive gene regulatory network both during the evolution of 

pregnancy in early mammals and in primates. 
 

Primate-specific transposable elements contribute to the function of decidual stromal cells 

 While eutherian mammals share a suite of traits mediated by endometrial stromal lineage cells 
that support prolonged pregnancies, there is also considerable variation in pregnancy traits within 

eutherians. Catarrhine primates, for example, have evolved spontaneous decidualization 
(differentiation) of endometrial stromal fibroblasts (ESFs) into decidual stromal cells (DSCs) under 

the combined action of progesterone, cyclic adenosine monophosphate (cAMP), and other 
unknown maternal signals (Carter and Mess, 2017; Gellersen et al., 2007; Gellersen and Brosens, 

2003; Kin et al., 2016, 2015; Mess and Carter, 2006). Decidualization induces dramatic gene 
expression and functional changes (Aghajanova et al., 2011; Gellersen et al., 2007; Giudice, 

2003), but the molecular mechanisms that underlie the evolution of spontaneous decidualization 

are largely unknown. We found that coopted primate-specific TEs regulate genes in several 
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pathways that involved in decidualization and the cell cycle (Table 1 and Table 2), most notably 

the FOXO1 signaling pathway. For example, the transcription factor FOXO1 plays a particularly 
important function as a key regulator of decidualization, which integrates cAMP and progesterone 

signaling through physical and functional interactions with the progesterone receptor and other 
transcription factors to direct expression of progesterone response genes (Gellersen and 

Brosens, 2003; Lynch et al., 2009; Takano et al., 2007). Similarly, among the earliest steps in the 
decidualization process is cell cycle exit (Das, 2009; Logan et al., 2010); progesterone initially 

induces cell cycle arrest at  the G0/G1 checkpoint followed by arrest at the G2/M checkpoint both 
of which are regulated by p53 signaling (Logan et al., 2012). These data suggest that primate-

specific TEs may have played a role in the origin of spontaneous decidualization by altering the 
regulation of genes in the FOXO1 signaling and cell cycle regulation pathways. 

 

A multi-stage model for transposable element domestication  
 Numerous studies have shown that transposable elements have donated binding sites for 

transcription factors to the genome, can be bound by transcription factors, and have been coopted 
into cis-regulatory elements (El-Deiry et al., 1992; Jordan et al., 2003; Kunarso et al., 2010; Lynch 

et al., 2011; Polak and Domany, 2006; Wang et al., 2007), but it generally has not been 
determined if TEs integrate into the genome with regulatory functions and therefore immediately 

function as regulatory elements or if they integrate as ‘pre-regulatory elements’ that are not 
immediately functional and require additional mutations to acquire regulatory functions. We 

addressed this question using luciferase assay functional tests of conTEs and found the majority 
of consensus TEs have enhancer ability but this ability is silenced in mammalian cells, perhaps 

by KRAB-ZFPs and the NURD HDAC inhibitory complex. We do see a mild enrichment within the 

dataset of TEs with regulatory marks in DSCs. This enrichment is likely low because 1) the 
elements analyzed have likely escaped repression by KRAB-ZFPs in order to be coopted into 

enhancers, and 2) the datasets used to identify KRAB-ZFP, KAP1, and the majority of other 
transcription factors, were from ENCODE and not DSCs. However, the relief of repression seen 

in chicken cells, which do not express KRAB-ZFPs (Addison et al., 2015), is at least coincidental 
evidence that KRAB-ZFPs may play a role in silencing conTEs. In embryonic stem cells, KAP1 

binds the KRAB-ZFPs and coordinates the silencing of the bound TE (Feschotte and Gilbert, 
2012; Matsui et al., 2010; Rowe et al., 2010). However, in adult somatic tissues the role of KAP1 

is unclear (Ecco et al., 2016; Matsui et al., 2010; Rowe et al., 2010). Here, silencing of the conTEs 

in MEFs appears to be KAP1 independent. These results need to be confirmed, for example, by 
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ChIP to demonstrate conTEs are indeed bound by KRAB-ZFPs. We hypothesize that only when 

TEs escape this silencing regulation are they coopted by the genome to play a regulatory role. 
 

Caveats and limitations 
 Ideally, we would use an ancestral sequence reconstruction (ASR) of each TE to 

determine if TEs had ancestral regulatory abilities. However, reconstructing the earliest ancestral 
sequence for most TEs is not possible because most TEs do not have an outgroup to root their 

phylogeny and therefore we cannot identify which node is the deepest ancestor. In place of an 
ASR, we and others who have explored similar questions used conTEs. This introduces an 

obvious limitation to our inferences: the conTE may not be an accurate representation of the 
deepest ancestral sequence. Indeed, there is no guarantee that a consensus sequence 

represents a sequence that ever existed. Another possible limitation of our approach is the use 

of immortalized ESFs maintained under standard tissue conditions for both functional genomic 
studies and luciferase assays, which may not faithfully represent in vivo functions. These 

limitations impact virtually every study of primate pregnancy, however, endometrial organoids and 
iPSC-derived endometrial stromal fibroblasts are promising systems in which to study the 

evolution of pregnancy (Abbas et al., 2020; Boretto et al., 2017; Marinić et al., 2020; Rawlings et 
al., 2021; Turco et al., 2017). Finally, our reporter assays used an episomal vector rather than a 

construct inserted into the genome which may bias our results by removing context dependent 
effects of regulatory elements within the genome. 

 
Conclusions 

 Here we demonstrate that there were two major waves of TE cooption into regulatory 

elements in endometrial stromal lineage cells, specifically in ancient mammals and primates, and 
that these TEs donated functional transcription factor binding sites to the genome. Furthermore, 

the majority of the TEs tested have context-dependent repressor and enhancer functions, 
suggesting they may have integrated into the genome with regulatory abilities and that their 

genomic functions are cell-type dependent. Genes regulated by TE-derived regulatory elements 
are among the most progesterone responsive in the genome and are associated with essential 

functions of stromal cells and the processes of decidualization. These data suggest that TEs have 
played an important role in the evolution of gene regulation and function of endometrial stromal 

lineage cells. This may have had a particularly significant effect in primates, which have divergent 

pregnancy traits than other mammals. 
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Materials and Methods 

Identification of TE containing regulatory elements 
 We used previously published ChIP-Seq data generated from human DSCs that were 

downloaded from NCBI SRA and processed remotely using Galaxy (Afgan et al., 2016). ChIP-
Seq reads were mapped to the human genome (GRCh37/hg19) using HISAT2 (Kim et al., 2019, 

2015; Pertea et al., 2016) with default parameters and peaks called with MACS2 (Feng et al., 
2012; Zhang et al., 2008) with default parameters. Samples included H3K4me3 (GSE61793), 

H3K27ac (GSE61793), PGR (GSE69539), the PGR A and B isoforms (GSE62475), and DNase1-
Seq (GSE61793). FAIRE-Seq peaks were downloaded from the UCSC genome browser and not 

re-called. 
 

To identify regulatory elements derived from transposable elements (TEs), peaks were 

intersected with the RepMask 3.2.7 track at the UCSC genome browser (repbase libraries release 
20050112). Non-transposable element annotations were removed and corrected for fragmented 

annotations. To identify TEs that were significantly enriched within TE-derived peaks the 
TEanalysis pipeline (https://github.com/4ureliek/TEanalysis) was used with 10,000 replicates. A 

custom bioinformatic pipeline was used to determine enrichment of transcription factor binding 
sites in TEs that intersect with the DSC FAIRE-seq, DNase-seq, H3K27ac ChIP-Seq,  and 

H3K4me3, and PGR ChIP-Seq peaks (https://github.com/4ureliek/TEanalysis) (Lynch et al., 
2015) versus the genomic abundance of ChIP-Seq peaks; 10,000 bootstrap reshufflings were 

used to assess statistical significance. Scripts are publicly available and archived at 
https://github.com/4ureliek/TEanalysis. The location of ChIP-Seq peaks in hg19 ENCODE data 

was downloaded from the USCS genome browser (Txn Fac ChIP V2 - Transcription Factor ChIP-

Seq from ENCODE (V2)). The location of PGR ChIP-Seq peaks was obtained from GEO 
(GSE94036) and is available (Mazur et al., 2015). We also used previously published promoter 

capture HiC (pcHiC) generated from DSCs (Sakabe et al., 2020) to associate genes with 
regulatory elements (SDY1626). 

 
We also used previously published RNA-Seq gene expression data generated from human 

primary human ESFs treated for 48 hr with control non-targeting and PGR-targeting siRNA prior 
to decidualization stimulus for 72 hr. Data were downloaded from NCBI SRA and processed 

remotely using the Galaxy platform (https://usegalaxy.org/; Version 20.01). RNA-Seq datasets 

were transferred from SRA to Galaxy using the Download and Extract Reads in FASTA/Q format 
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from NCBI SRA tool (version 2.10.4+galaxy1). We used HISAT2 (version 2.1.0+galaxy5) to align 

reads to the Human hg38 reference genome using single- or paired-end options depending on 
the dataset and unstranded reads, and report alignments tailored for transcript assemblers 

including StringTie. Transcripts were assembled and quantified using StringTie (v1.3.6) (Pertea 
et al., 2016, 2015), with reference file to guide assembly and the “reference transcripts only” 

option, and output count files for differential expression with DESeq2/edgeR/limma-voom. 
Differentially expressed genes were identified using DESeq2 (Love et al., 2014) (version 

2.11.40.6+galaxy1). The reference file for StringTie guided assembly was 
wgEncodeGencodeBasicV33.  

 
Gene expression data and parsimony reconstruction of gene expression gain/loss 

  We used previously generated RNA-Seq data from the pregnant or gravid uterus of 

amniotes (Supplementary Table 1) and Kallisto version 0.42.4 (Bray et al., 2016) to quantify 
gene expression levels. Kallisto was run with default parameters, bias correction, 100 bootstrap 

replicates. Kallisto outputs are gene expression levels in transcripts per million (TPM). Our 
previous studies of endometrial gene expression data suggests that genes with a TPM≤2 are 

likely from transcriptionally suppressed genes (Wagner et al., 2013). This threshold is consistent 
with one obtained by comparing the transcript abundance with the chromatin state of the 

respective gene (Hebenstreit et al., 2011) and classified genes with TPM ≥ 2 as expressed and 
those with TPM<2 as not expressed. Next, we used Mesquite (v2.75) and parsimony optimization 

to reconstruct ancestral gene expression states, and identified genes that gained and lost 
endometrial expression in Amniotes. Expression was classified as an unambiguous gain if a gene 

was not inferred as expressed at the ancestral node (state 0) but inferred as expressed in a 

descendent node (state 1) and vice versa for the classification of a loss from endometrial 
expression. 

 
Over Representation Analyses (ORA) 

 We used WebGestalt v. 2019 (Liao et al., 2019) to identify enriched ontology terms using over-
representation analysis (ORA). We used ORA to identify enriched terms for three pathway 

databases (KEGG, Reactome, and Wikipathway), three disease databases (Disgenet, OMIM, and 
GLAD4U), and a custom database of genes implicated in preterm birth by GWAS. The preterm 

birth gene set was assembled from the NHGRI-EBI Catalog of published genome-wide 

association studies (GWAS Catalog), including genes implicated in GWAS with either the 
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ontology terms “Preterm Birth” (EFO_0003917) or “Spontaneous Preterm Birth” (EFO_0006917), 

as well as two recent preterm birth GWAS (Sakabe et al., 2020; Warrington et al., 2019) using a 
genome-wide significant P-value of 9x10-6. The custom gmt file used to test for enrichment of 

preterm birth associated genes is included as a supplementary data file to Figure 2 (Figure 2 — 
Source data 1). 

 
Transposable element reporter vectors 

  To generate luciferase reporter vectors for functional testing, we selected 79 of the 427 
TE families enriched within DSC regulatory regions as marked H3K4me3 ChIP-seq, H3K27ac 

ChIP-seq, DNaseI-seq, and FAIRE-Seq datasets . These 79 TEs also met the following criteria: 
1) At least 1 element from every lineage; and 2) Represented all 4 classes of TEs (LTR, LINE, 

SINE, and DNA). Consensus sequences for these elements were taken from the database Dfam 

(Wheeler et al., 2013). 10 additional TEs also found in the enriched 427 were then chosen that 
were unique to Old World Monkeys or younger and their consensus sequences were also 

obtained from Dfam (Wheeler et al., 2013). The total set of elements were biased towards, but 
not limited to, the DNA class of transposable elements. These 89 consensus sequences were 

then synthesized by Genscript and cloned into the pGL3 Basic vector (Promega) with an added 
minimal promoter (pGL3Basic[minP]) and are available in the supplementary materials. 

 
Cell lines  

 Human hTERT-immortalized endometrial stromal fibroblasts were purchased from ATCC 
(CRL-4003), their identity has been authenticated by ATCC and were determined by the Lynch 

lab to be mycoplasma free. KAP1 knockout mouse embryonic fibroblasts (MEFs) and Flox/Flox 

control MEFs were gift from D. Trono (Ecole Polytechnique Fédérale de Lausanne), their identity 
has been authenticated by the Trono lab and were determined by the Lynch lab to be mycoplasma 

free. Chicken embryonic fibroblast cells were purchased from ATCC (CRL-12203), their identity 
has been authenticated by ATCC and were determined by the Lynch lab to be mycoplasma free. 

HEPG2 cells were a gift from C. Brown (University of Pennsylvania), their identity has been 
authenticated by the Brown lab and were determined by the Lynch lab to be mycoplasma free. 

African elephant fibroblasts were a gift from the San Diego Frozen Zoo, their identity has been 
authenticated by the San Diego Frozen Zoo and were determined by the Lynch lab to be 

mycoplasma free.  
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Cell culture and luciferase assays 

 Endometrial stromal fibroblasts, KAP1 knockout mouse embryonic fibroblasts (MEFs), 
and Flox/Flox control MEFs were maintained in phenol red free DMEM (Gibco) supplemented 

with 10% charcoal stripped fetal bovine serum (CSFBS; Gibco), 1x ITS (Gibco), 1% sodium 
pyruvate (Gibco), and 1% L-glutamine (Gibco). Chicken embryonic fibroblast cells (ATCC CRL-

12203) and HEPG2 cells were maintained in phenol red containing DMEM + Glutamax (Gibco) 
supplemented with 10% fetal bovine serum (FBS, Gibco) and Normocin (InviviGen). Elephant 

fibroblasts were maintained in 1:1 MEM (Corning cellgro) supplemented with 10% FBS, 1% 
penstrep (Gibco), 1x sodium pyruvate (Gibco), and 1x L-glutamine (Gibco) to FGM-2 (Lonza), 

made per manufacturer’s instructions. 
 

 Confluent cells in 96 well plates in 80µl of Opti-MEM (Gibco) were transfected with 100ng 

of the TE containing luciferase plasmid and 10ng of the pRL-null renilla vector (Promega) with 
0.1µl PLUS reagent (Invitrogen) and 0.25µl of Lipofectamine LTX (Invitrogen) in 20µl Opti-MEM.  

The cells incubated in the transfection mixture for 6hrs and the media was replaced with the 
maintenance media overnight. Decidualization of ESFs was then induced by incubating the cells 

in the decidualization media: DMEM with phenol red (Gibco), 2% CSFBS (Gibco), 1% sodium 
pyruvate (Gibco), 0.5mM 8-Br-cAMP (Sigma), and 1µM of the progesterone analog 

medroxyprogesterone acetate (Sigma) for 48hrs. ESFs (decidualization controls) were incubated 
in the decidualization control media (phenol red free DMEM (Gibco), 2% CSFBS (Gibco), and 1% 

sodium pyruvate (Gibco) instead for 48hrs. For trichostatin A (TSA; Tocris Bioscience) trials, 1µM 
TSA was added to all the medias from plating through decidualization. After decidualization for 

ESFs and DSCs or after 48hrs from transfection for other cell types, Dual Luciferase Reporter 

Assays (Promega) were started by incubating the cells for 15mins in 20µl of 1x passive lysis 
buffer. Luciferase and renilla activity were then measured using the Glomax multi+ detection 

system (Promega). Luciferase activity values were standardized by the renilla activity values and 
background activity values as determined by measuring luminescence from the pGL3-

Basic[minP] plasmid with no insert. Each luciferase experiment was replicated in 4-6 independent 
experiments. To identify significant expression shifts, we performed Wilcoxon tests on the data, 

and adjusted by the Benjamini and Hochberg (Benjamini and Hochberg, 1995) method for multiple 
testing; significance was determined by having an adjusted p-value ≤ 0.05. 
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Data exploration and Multi-Dimensional Scaling (MDS) 

 We used classical Multi-Dimensional Scaling (MDS) to explore the structure of luciferase 
assay data. MDS is a multivariate data analysis method that can be used to visualize the 

similarity/dissimilarity between samples by plotting data points onto two-dimensional plots. MDS 
returns an optimal solution that represents the data in a two-dimensional space, with the number 

of dimensions (k) specified a priori. Classical MDS preserves the original distance metric, between 
data points, as well as possible. MDS was performed using the vegan R package (Oksanen et 

al., 2019) with four reduced dimensions. Luciferase assay data were grouped using K-means 
clustering with K=2-6, K=4 optimized the number of distinct clusters and cluster memberships. 
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Table 1. Pathways in which genes regulated by primate-specific eTE-derived PGR binding-

sites are enriched. E, enrichment ratio. P, hypergeometric P-value. FDR, Benjamini-Hochberg 
false discovery rate. Reference, reference for role of pathway in decidualization. 

 
Rank Pathway  E P FDR  Reference 

2 VEGFA-VEGFR2 Signaling Pathway 2.60 2E-8 2.75E-5 (Kim et al., 2013) 

6 Insulin signaling pathway 3.79 6E-7 2.72E-4 (Kawamura et al., 
2009) 

13 TGF-beta Signaling Pathway 3.52 6E-6 1.38E-3 (Kim et al., 2005) 

17 ErbB Signaling Pathway 3.91 3E-5 4.28E-3 (Klonisch et al., 
2001) 

26 Hippo signaling pathway 3.02 5E-5 5.32E-3 (Chen et al., 
2017) 

27 PDGF signaling pathway 3.28 5E-5 5.41E-3 (Schwenke et al., 
2013) 

35 FoxO signaling pathway 3.11 9E-5 7.84E-3 (Kajihara et al., 
2013) 

37 Mitophagy 4.21 1E-4 8.71E-3 (Mestre 
Citrinovitz et al., 
2019) 

38 Oncostatin M Signaling Pathway 4.21 1E-4 8.71E-3 (Fu et al., 2019) 

40 TGF-beta Receptor Signaling 4.56 1E-4 9.63E-3 (Ni and Li, 2017) 

52 BDNF signaling pathway 2.85 3E-4 1.40E-2 (Kawamura et al., 
2009) 

54 EGF/EGFR Signaling Pathway 2.70 3E-4 1.54E-2 (Large et al., 
2014) 

55 Wnt signaling pathway 2.81 3E-4 1.54E-2 (Zhang and Yan, 
2016) 

65 Prolactin Signaling Pathway 3.60 4E-4 1.90E-2 (Bao et al., 2007) 

74 Myometrial Relaxation and Contraction Pathways 2.63 6E-4 2.32E-2 (Salomonis et al., 
2005) 

 
 

 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465769doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465769
http://creativecommons.org/licenses/by/4.0/


28 
 

Table 2. Pathways related to senescence and the cell-cycle in which genes regulated by 

primate-specific eTE-derived PGR binding-sites are enriched. E, enrichment ratio. P, 
hypergeometric P-value. FDR, Benjamini-Hochberg false discovery rate. Reference, reference 

for role of pathway in decidualization. 
 

Rank Pathway  E P FDR  Reference 

11 Cellular senescence 3.25 6E-6 1.38E-3 (Lucas et al., 
2020) 

14 DNA Damage 
Response (only ATM 
dependent) 

3.73 1E-5 2.23E-3 

(Lei et al., 2012) 

19 G2/M Transition 2.82 3E-5 4.37E-3 (Logan et al., 
2012) 

20 Mitotic G2-G2/M phases 2.79 3E-5 4.70E-3 (Logan et al., 
2012) 

41 Apoptosis signaling 
pathway 

3.29 2E-4 1.08E-2 (Joswig et al., 
2003) 

42 Oxidative Stress 5.80 2E-4 1.08E-2 (Yu et al., 2019) 

59 Mitotic G1-G1/S phases 2.75 4E-4 1.79E-2 (Logan et al., 
2012) 

66 Cell Cycle 2.96 4E-4 1.92E-2 (Das, 2009) 

67 Senescence and 
Autophagy in Cancer 

3.12 4E-4 1.92E-2 (Deryabin et al., 
2020) 

75 Cell cycle 2.87 6E-4 2.32E-2 (Das, 2009) 

91 Cyclin D associated 
events in G1 

4.35 1E-3 3.09E-2 (Logan et al., 
2012) 

92 G1 Phase 4.35 1E-3 3.09E-2 (Logan et al., 
2012) 

99 p53 signaling pathway 3.42 1E-3 3.45E-2 (Deng et al., 
2016) 
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Figure 1. Transposable elements are major contributors to regulatory elements in 

endometrial stromal cells.  
(A) Proportion of DNaseI-Seq, FAIRE-Seq, H3K27ac ChIP-Seq, and H3K4me3 ChIP-Seq 

peaks that contain transposable elements (black) or no annotated transposable elements 
(gray). 

(B) Proportion of transposable elements of different ages (color coded by lineage specificity) 

within DNaseI-seq, FAIRE-seq, H3K27ac ChIP-seq, and H3K4me3 ChIP-Seq peaks and 
the human genome. 

(C) Number of transposable element families enriched within DNaseI-seq, FAIRE-seq, 
H3K27ac ChIP-seq, and H3K4me3 ChIP-Seq peaks compared to the human genome. 

(D) WordCloud of the 100 most enriched transposable elements within DNaseI-seq, FAIRE-
seq, H3K27ac ChIP-seq, and H3K4me3 ChIP-Seq peaks. The size of the transposable 

element’s name corresponds to its enrichment (see inset 10-fold scale). Legend indicates 
the lineage-specificity (age) colored coding of transposable elements. 
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Figure 1 — Source data 1. Transposable elements enriched in DNaseI-Seq peaks in human 

DSCs. 
Figure 1 — Source data 2. Transposable elements enriched in FAIRE-Seq peaks in human 

DSCs. 
Figure 1 — Source data 3. Transposable elements enriched in H3K4me3 ChIP-Seq peaks 

in human DSCs. 
Figure 1 — Source data 4. Transposable elements enriched in H3K27ac ChIP-Seq peaks in 

human DSCs. 
Figure 1 — Source data 5. Summary enrichment data for the 427 eTEs. 
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Figure 2. Transposable elements are enriched in binding sites for transcription factors that 
mediate hormone responsiveness and endometrial cell-type identity. 

(A) Distribution of enriched (red) and depleted (blue) transcription factor binding sites in 
transposable element derived segments of FAIRE-seq, DNaseI-seq, H3K27ac ChIP-seq, 

and H3K4me3 ChIP-Seq peaks relative to ChIP-Seq peaks with no transposable element 
overlap. 53 and 58 transcription factor binding sites were significantly enriched and 

depleted, respectively, at FDR=0.05%. 

(B) WordCloud of transcription factor binding site enrichment in transposable elements. 
Colors indicate transcription factors that mediate hormone responses (purple), remodel 

chromatin (pink), KRAB-ZFPs (blue), or involved in TE silencing (green). Data shown for 
≥3-fold enriched transcription factors at FDR=0.05%. 

 
Figure 2 — Source data 1. Transcription factors enriched in regulatory eTEs. 
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Figure 3. Genes associated with TE-derived regulatory elements are more strongly 
differentially regulated during decidualization than genes without TE-derived regulatory 

elements.  
(A) Parsimony reconstruction of gene expression gains and losses in the endometrium of 

amniotes. Numbers above branches indicate the average number of genes that gained 
and lost endometrial expression in that stem-lineage as inferred by parsimony. Branch 

lengths are drawn proportional to gene expression gain and loss events for all lineages. 

(B) Volcano chart showing genes differentially expressed between ESFs and DSCs. 
Upregulated genes are shown in blue, downregulated genes are shown in purple. 

Exemplar differentially expressed genes are indicated. 
(C) Cartoon of the pcHiC data to associate regulatory elements with nearby genes. 

(D) Recruited and ancestrally expressed genes associated with ancient mammalian TE-
derived regulatory elements (+) are more strongly differentially regulated upon 

cAMP/MPA-induced decidualization than recruited or anciently expressed genes without 
TE-derived regulatory elements (-). F is the ratio of variances from a two-sample F-test. 
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Figure 3 — Source data 1. Parsimony reconstruction of genes that unambiguously gained 
and lost endometrial expression. 

Figure 3 — Source data 2. Gene expression changes induced by decidualization (from 
dataset GSE94036). 

Figure 3 — Source data 3. pcHiC data from human DSCs (from dataset SDY1626). 
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Figure 4. Lineage specific transposable elements remodeled progesterone receptor 
binding site architecture across the genome. 

(A) The number of PGR ChIP-Seq peaks that contain transposable elements in human 
decidual stromal cells. 

(B) Proportion of transposable elements in PGR ChIP-Seq peaks by age class. 

(C) WordCloud of TEs enriched in PGR ChIP-Seq peaks. Colors indicate age class. Inset 
scale (10x) shows 10-fold enrichment.  

(D) Cartoon of the pcHiC data to PGR binding sites with nearby genes. 
(E) Ancestrally expressed and recruited genes associated with TE-derived PGR binding sites 

(+ PGR) are more strongly differentially regulated by cAMP/MPA than genes without TE-
derived PGR binding sites (-PGR). 
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(F) Volcano chart showing genes differentially expressed between DSCs treated with control 

non-targeting siRNA and PGR-specific siRNA. Upregulated genes are shown in blue, 
downregulated genes are shown in purple. Exemplar differentially expressed genes are 

indicated. 
(G) Ancestrally expressed and recruited genes associated with TE-derived PGR binding sites 

(+ PGR) are more strongly dysregulated by PGR knockdown in human DSCs than genes 
not associated with ancient mammalian TE-derived PGR biding sites (- PGR). F is the 

ratio of variances from a two-sample F-test.  Genes are grouped according to when they 
evolved endometrial expression. * = P<0.01, ** = P<1.0×10-5. 

 
Figure 4 — Source data 1. Transposable elements enriched in PGR ChIP-Seq peaks in 

human DSCs. 

Figure 4 — Source data 2. Gene expression changes induced by siRNA mediated PGR 
knockdown (from dataset GSE94036). 
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Figure 5. Consensus TEs are repressors with hidden enhancer potential.   

(A) Regulatory ability of consensus TEs was assessed using a dual luciferase reporter vector. 
Each box represents the mean luminescence values (log) of 4-6 replicate reporter assays. 

Basic[minP], empty reporter vector reference. TAP2_C is a known progesterone 
responsive enhancer 44. The 89 TE constructs are sorted in order of decreasing age 

inferred by lineage specificity. Red indicates enhancer function and blue indicates 
repressor function (see inset color scale). ESF - Endometrial Stromal Fibroblasts, DSC - 

Decidual Stromal Cells, HEPG2 – Human Liver Cancer, MEF Control - Mouse Embryonic 
Fibroblast, MEF KAP1-/- - Mouse KAP1 knockout Embryonic Fibroblast, Elephant - 

Elephant Dermal Fibroblast, Chicken - Chicken Embryonic Fibroblast, +TSA - Trichostatin 
A added to media.  

(B) Volcano Plot ESF vs ESF treated with TSA and DSC vs DSC treated with TSA 
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(C) Multidimensional scaling plot (MDS) of consensus TEs based on mean luminescence 

values (log) and grouped by K-means clustering (k=4). K-means clustering groups TEs 
into four categories corresponding to TEs with strong/moderate/weak enhancer or 

repressor functions.  
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465769doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465769
http://creativecommons.org/licenses/by/4.0/


38 
 

 
 

Figure 5 – figure supplement 1. Hierarchical clustering of consensus TEs. 

(A) Hierarchical clustering (Manhattan distances) dendogram of consensus TEs based on 
mean luminescence values (log) and colored by K-means clustering (k=4). K-means 

clustering groups TEs into four categories corresponding to TEs with 
strong/moderate/weak enhancer or repressor functions.  

(B) Correlation matrix heatmap. 
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Figure 5 – figure supplement 2. MDS and hierarchical clustering of cell types based on 

conTE luciferase results. 
(A) Multidimensional scaling plot (MDS) of cell-types based on consensus TE mean 

luminescence values (log) and grouped by K-means clustering (k=3).  
(B) Hierarchical clustering (Manhattan distances) dendogram and correlation matrix heatmap 

of cell-types based on consensus TE mean luminescence values (log) colored by K-
means clustering (k=3).   

 
Figure 5 — Source data 1. Consensus TE sequences. 

Figure 5 — Source data 2. Dual luciferase assay results for six replicates in all cell-types. 
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