Summary
In Alzheimer’s disease (AD), a multitude of genetic risk factors and early biomarkers are known. Nevertheless, the causal factors responsible for initiating cognitive decline in AD remain controversial. Toxic plaques and tangles correlate with progressive neuropathology, yet disruptions in circuit activity emerge before their deposition in AD models and patients. Parvalbumin (PV) interneurons are potential candidates for dysregulating cortical excitability, as they display altered AP firing before neighboring excitatory neurons in prodromal AD. Here we report a novel mechanism responsible for PV hypoexcitability in young adult familial AD mice. We found that biophysical modulation of K+ channels, but not changes in mRNA expression, are responsible for dampened excitability. These K+ conductances could efficiently regulate near-threshold AP firing, resulting in gamma-frequency specific network hyperexcitability. Our findings suggest that posttranslational modulation of ion channels can reshape cortical network activity prior to changes in their gene expression in early AD.
Competing Interest Statement
The authors have declared no competing interest.