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1 

Abstract 20 

Integrating single-cell transcriptomes and epigenomes across diverse cell types can link 21 

genes with the cis-regulatory elements (CREs) that control expression. Gene co-22 

expression across cell types confounds simple correlation-based analysis and results in 23 

high false prediction rates. We developed a procedure that controls for co-expression 24 

between genes and integrates multiple molecular modalities, and used it to 25 

identify >10,000 gene-CRE pairs that contribute to gene expression programs in different 26 

cell types in the mouse brain. 27 

 28 

Main text 29 

Single-cell epigenome sequencing techniques, including snATAC-seq and snmC-seq, can 30 

identify cell-type-specific candidate cis-regulatory elements (cCREs), such as enhancers1,2. To 31 

validate putative enhancers and elucidate their function, it is important to identify the genes they 32 

directly regulate3. This can be accomplished by simultaneously perturbing enhancer activity and 33 

measuring gene expression in the same cells4,5. However, perturbation experiments are 34 

complex and to date have been used to screen pre-selected enhancers in cell types that could 35 

be cultured in vitro4,5. By contrast, single-cell transcriptomes and epigenomes from complex 36 

tissues, such as the brain, contain distinct genome-wide profiles from several hundred cell 37 

types6,7. Correlating enhancer epigenetic profiles with transcription across cell types can identify 38 

potential cell-type-specific enhancer-gene links1,2,8. However, genes with related functions often 39 

have correlated expression patterns, leading to incidental associations that could confound co-40 

expression analyses with false-positives that do not reflect genuine enhancer-target gene 41 

interactions1,2,8–10.  42 
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To separate spurious from genuine associations, trans enhancer-gene correlations can 43 

be used as a negative control11–15. However, a principled analysis and validation of the most 44 

appropriate null model has not been performed. Moreover, different epigenetic assays, such as 45 

snATAC-seq and snmC-seq, measure distinct aspects of enhancer activity. It is unclear how the 46 

differences between these data modalities affect the sensitivity and specificity for detecting 47 

enhancer-gene correlations. Furthermore, correlation results may be strongly influenced by 48 

clustering analysis of single cell data, which in turn depends on multiple unconstrained 49 

parameters and algorithmic choices. 50 

To address these gaps, we identify high-confidence, robust enhancer-gene links using a 51 

non-parametric permutation-based procedure to control for gene co-expression (Fig. 1a, 52 

Supplementary Fig. 1a). We first integrate single-cell transcriptomes (scRNA-seq) and 53 

epigenomes (open chromatin, snATAC-seq, and DNA methylation, snmC-Seq) to generate 54 

multi-modality profiles using a dataset with over 200,000 single cells from the mouse primary 55 

motor cortex6. We correlate the epigenetic state of putative enhancers with expression of nearby 56 

genes, and compare the observed correlation with two null distributions. A conventional 57 

shuffling procedure that randomly permutes cell labels effectively controls for noise present in 58 

single-cell sequencing measurements1,2,10. However, as we discuss below, this null distribution 59 

is confounded by gene co-expression and leads to spurious enhancer-gene associations. This 60 

challenge can be addressed statistically using generalized least squares regression16 (GLS), 61 

which transforms data matrices to decorrelate observations. We used a more general non-62 

parametric approach, shuffling genomic regions to create an appropriate null distribution11–15. 63 

Moreover, we leveraged three complementary data modalities to cross-validate enhancer-gene 64 

links with independent data. Finally, we validated the predicted links with multimodal 3D 65 

chromatin conformation (snm3C-seq) data17.  66 
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 67 
Fig. 1 | Identifying enhancer-gene links through integrated analysis of single-cell transcriptomes 68 
and epigenomes. a. Our proposed method links enhancers with target genes by (1) integrating single-69 
cell transcriptomes (scRNA-seq) and epigenomes (snmC-seq and snATAC-seq), (2) correlating enhancer 70 
activity with gene expression across metacells, (3) identifying significant links compared with a shuffled 71 
null distribution, and (4) evaluating predicted links across null models, data modalities, and metacell 72 
resolutions. b. Strength of enhancer-gene association as a function of genomic distance. The wide 73 
interquartile range (shading) indicates high variability in enhancer-gene associations. c-f. Correlation of 74 
the gene Stim2 with nearby (c) and distal (d-f) enhancer regions. g-i. Scatter plots of Stim2 expression 75 
versus enhancer mCG (g), ATAC-seq signal (h), and enhancer-TSS chromatin contact frequency in 76 
human orthologs (i). j. Enhancer-gene association from linear-genome features (mCG, ATAC) versus 3D-77 
genome features (chromatin contact frequency) for Stim2 proximal enhancers. The x-axis shows the 78 
minimum absolute correlation value between mCG-RNA and ATAC-RNA. Enhancer mCG level is 79 
normalized by the global mean mCG level of each cell type; RNA is log10(CPM+1) normalized; ATAC is 80 
log10(TPM+1) normalized. 81 
 82 
 83 

To illustrate the risk of false associations due to gene co-expression, we analyzed a 84 

large set of single-cell transcriptome and epigenome data from the mouse primary motor 85 

cortex6. Putative enhancers (see Methods; Table S1, Supplementary Fig. 1b) within ~100 kb of 86 
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a gene promoter were enriched in associations with gene expression, including positive 87 

correlations for chromatin accessibility and negative correlations for enhancer DNA methylation 88 

(mCG) (Fig. 1b, Supplementary Fig. 1c,d). However, these associations were highly variable: 89 

We observed many weak correlations for proximal enhancers (<100 kb), and relatively strong 90 

correlations for some distal enhancers (>500kb) (Fig. 1b, interquartile range ~0.4). The broad 91 

distribution of correlation strength makes it difficult to reliably link specific enhancers with their 92 

target genes. 93 

A representative example is the gene Stim2, encoding a calcium sensor that helps 94 

maintain basal Ca2+ levels in pyramidal neurons18. In cortical neurons, we identified 33 95 

enhancers within 100 kb of the Stim2 promoter. Stim2 expression correlates with low mCG (r = 96 

–0.87, p=9e-13, n=38 cell types) and high chromatin accessibility (r=0.87, p=1e-12) at a nearby 97 

enhancer (Fig. 1c,g,h). By contrast, 15 other nearby enhancers have weaker, though still 98 

significant (FDR<0.05), correlation with Stim2 expression (|r|=0.46~0.85). Moreover, Stim2 99 

expression also correlated significantly with 25,027 other enhancers located throughout the 100 

genome (FDR<0.05; both mCG-RNA and ATAC-RNA), most of which (n = 23,526) were on 101 

different chromosomes (Fig. 1d-f). Such numerous correlations with trans-enhancers likely 102 

reflect gene co-expression, rather than direct causal links with the Stim2 gene. For example, 103 

these trans-enhancers might directly regulate nearby genes whose expression patterns across 104 

cell types are similar to Stim2 (Supplementary Fig. 1e-h,j,k). 105 

Next, we used three-dimensional genome conformation data to test whether putative 106 

enhancer-gene links correspond to bona fide physical interactions19. We analyzed the 3D 107 

chromatin contact frequency of the predicted enhancer-gene pair (Fig. 1c) across homologous 108 

human brain cell types, using multi-omic snm3C-seq data17. Chromatin contact frequency for 109 

this enhancer was strongly correlated with Stim2 expression (r=0.95, p=3e-4; Fig. 1i; 110 

Supplementary Fig. 1i). By contrast, other proximal enhancers were less correlated (Fig. 1j). 111 
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In addition to the challenge of widespread spurious correlations, the case of Stim2 also 112 

illustrates the challenges associated with defining cell types20. For example, the same set of 113 

cells can be grouped into either 8 major types or 38 fine-grained sub-types, leading to different 114 

correlation values (Fig. 1g,h; Supplementary Fig. 1j,k).  115 

To address these issues, we developed a procedure that controls the risk of false 116 

positives from gene co-expression, and compares predicted links across data modalities and 117 

cell type resolutions (Fig. 2a, Supplementary Fig. 2). We first integrate single-cell transcriptomes 118 

(RNA) and epigenomes (DNA methylation or chromatin accessibility) using correlated gene-119 

level features across data modalities (SingleCellFusion)6,21,22. This allows us to build a neighbor 120 

graph connecting cells within and across data modalities (see Methods). Next, we define 121 

metacells23, which aggregate the transcriptomic and epigenomic profiles from groups of similar 122 

cells. Each metacell has a complete bi-modal (transcriptomic and epigenomic) profile, which 123 

then allows us to correlate enhancer epigenetic features with gene expression. These metacells 124 

represent cells with an adjustable resolution, capturing both discrete and continuous patterns of 125 

variation. 126 
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127 
Fig. 2 | Stringent statistical criteria capture enhancer-gene links with consistent signatures across 128 
data modalities and cell type resolutions. a. Method for linking enhancers to target genes using 129 
metacells with bi-modality profiles. b-c. Null distributions derived from shuffling metacells (b) or shuffling 130 
regions (c). d. Distribution of enhancer-gene correlations. Bars indicate regions of statistical significance 131 
(FDR=0.2 for pairs <100kb). Two null models induce two different types of significance: linked (black bar; 132 
shuffle regions) and correlated (gray bar; shuffle metacells). e. The number of significantly linked or 133 
correlated pairs using mCG-RNA, ATAC-RNA, or both. f. Joint distribution of mCG-RNA correlation 134 
versus ATAC-RNA correlation for enhancer-gene pairs (2-100 kb). g. P-value histograms of enhancer-135 
gene pairs (2-500 kb), using shuffled regions (top panels) or shuffled metacells (bottom panels). The 136 
estimated fraction of true positives is shown24. h. Estimated fraction of true associations vs. enhancer-137 
TSS distance. i. Enrichment of chromatin contact frequency of linked and correlated enhancer-gene pairs 138 
compared with random genomic region pairs (mean ±95% confidence interval). Tracks are aggregated 139 
across all contacts from 8 neuronal cell types. j. The spread (95% range) of correlation coefficients as a 140 
function of the number of metacells. Dots represent observed data; lines represent inverse square root fit 141 
(𝑦 ∼ 𝑎/√𝑥	 + 𝑏). k. Number of linked pairs as a function of the number of metacells (FDR=0.2; mean ± 142 
standard deviation across 5 bootstrap samples with 80% of cells.) 143 
 144 
 145 

We reasoned that genuine enhancer-gene interactions should correspond to stronger 146 

correlations than the background induced by co-expression. Correlations mediated by co-147 
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expression are inherently limited in their strength by the magnitude of gene-gene correlations, 148 

whereas direct enhancer-gene interactions can produce stronger associations. Importantly, this 149 

assumption applies to the strongest enhancer-gene interactions; weak interactions that don’t 150 

exceed the background of gene co-expression cannot be detected by correlation-based 151 

methods.  152 

To test whether the observed correlations exceed what is expected due to noise and 153 

gene co-expression, we compared the observed correlation coefficients with two null 154 

distributions: shuffling metacells1,2,10 and shuffling regions11–13 (Fig. 2b-d). Shuffling metacells 155 

decouples epigenetic and transcriptomic signatures across metacells, removing both enhancer-156 

gene correlation and gene co-expression (Fig. 2b). The significance arising from this distribution 157 

is inflated by gene co-expression, potentially leading to false positives in which an enhancer-158 

gene pair may be correlated due to shared upstream regulation rather than direct interaction. 159 

Shuffling regions retains the gene co-expression structure imposed by the hierarchical 160 

organization of cell types, but it correlates each gene’s expression with distant, randomly 161 

selected enhancers (Fig. 2c)11–13.  162 

As expected, the distribution obtained by shuffling regions was wider than that derived 163 

from shuffling metacells (Fig. 2d), reflecting incidental correlations due to gene co-expression. 164 

Enhancer-gene pairs within 500kb of the TSS are significantly enriched in both positive and 165 

negative correlations when compared with shuffling metacells. However, when compared with 166 

shuffling regions, enrichment is only present in positive correlation for ATAC-RNA, and in 167 

negative correlation for mC-RNA. Thus, shuffling regions is a more stringent null distribution for 168 

calling significant enhancer-gene links, as it effectively controls for spurious enhancer-gene 169 

correlations due to gene co-expression.  170 

We call an enhancer-gene pair significantly “correlated” if it passes an FDR-adjusted 171 

threshold based on shuffling metacells, whereas we reserve the term significantly “linked” for 172 

pairs that pass the criteria set by shuffling regions. We used a relatively lenient FDR threshold 173 
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of 0.2 to reduce the risk of false negatives from our stringent null distribution. Linked pairs 174 

(n=12,243 within 100kb, FDR<0.2) are a subset of correlated pairs (187,343 within 100kb, 175 

FDR<0.2) (Fig. 2e,f), but they have a stronger association that rises above the background from 176 

gene co-expression. Lowering the FDR threshold to 0.1 or 0.05 reduced the number of linked 177 

pairs to 3,142 and 489, respectively.  178 

Notably, we found that removing sample covariance using GLS abolished the difference 179 

between shuffling regions and shuffling cells (Supplementary Fig. 3a-b). This manipulation thus 180 

removes the distinction between correlated pairs and linked pairs (Supplementary Fig. 3c). In 181 

addition, the shuffling-regions null distribution was robust with respect to differences in enhancer 182 

GC content and an enhancer’s distance to its nearest gene (Supplementary Fig. 4a-d).  183 

We compared our results with two alternative strategies for estimating enhancer-gene 184 

interactions using single-cell epigenomes. Using open chromatin data, CICERO8 identified 185 

1,869 significant enhancer-gene associations located within 100kb. These significantly overlap 186 

with a subset of the correlated pairs we identified, and to a lesser degree with linked pairs 187 

(Supplementary Fig. 5a,b). Notably, the mean CICERO co-accessibility scores are 4.8-5.9 fold 188 

higher (p<2e-8) for linked pairs than for correlated pairs (Supplementary Fig. 5c).  A second 189 

strategy, the activity-by-contact (ABC) model5, identified enhancer-gene links using both 190 

chromatin accessibility and chromatin conformation data. This model identified enhancer-gene 191 

links for each cell type independently, without considering correlated variability in expression 192 

across cells. The ABC model identified 150,228 associations within 100kb, which significantly 193 

overlap with our correlated and linked pairs (Supplementary Fig. 5d,e). In addition, the ABC 194 

scores are 1.09-1.22 fold higher (p<1e-8) for linked pairs than for correlated pairs 195 

(Supplementary Fig. 5f). These results show that linked pairs have stronger associations than 196 

correlated pairs, and  are more likely to capture genuine enhancer-gene associations. 197 

A potential pitfall of our stringent enhancer-gene linking procedure is a higher risk of 198 

false-negatives, i.e. failure to detect true interactions. We next empirically compared correlated 199 
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versus linked pairs from several biological and statistical perspectives, to test whether the 200 

correlations filtered out by our method are likely false positives arising from gene co-expression. 201 

First, we observed that correlated pairs include many enhancer-gene links with a non-202 

canonical direction of association (Fig. 2d; Supplementary Fig. 6a). For example, we found 203 

about a third (47,137/150,285) of these pairs had a negative correlation of gene expression with 204 

chromatin accessibility, and a similar proportion (53,687/156,932) had a positive correlation with 205 

mCG. Non-canonical associations were also reported in recent large-scale studies of brain cell 206 

epigenomes1,2. These correlations could suggest novel biological mechanisms such as 207 

methylcytosine-preferring transcription factors25. However, they may also include false-positive 208 

associations due to gene co-expression. Indeed, none of the non-canonical associations passed 209 

our threshold for linked pairs (Fig. 2d). This is consistent with the canonical understanding of 210 

enhancer activity associating with low DNA methylation and open chromatin. 211 

Second, as enhancer-gene interactions are mostly concentrated within ~100-500 kb 212 

around gene promoters4,5, we compared the distance dependence of linked and correlated 213 

pairs. Using a p-value histogram method24, we estimated 16.0-19.9% of enhancers that are 2-214 

500kb away from a promoter are linked (Fig. 2g, Supplementary Fig. 6b). A much larger fraction 215 

(66.8-71.2%) were correlated. Notably, the proportion of correlated pairs remains high even for 216 

distal pairs (e.g. >60% for pairs >1 Mb or on other chromosomes), whereas <5% of these pairs 217 

are linked (Fig. 2h, Supplementary Fig. 6c). These correlated pairs contradict the biological 218 

understanding that most enhancers activate genes in cis; the linked pairs are more coherent 219 

with this canonical framework. 220 

Third, we validated our predicted links with independent chromatin conformation data 221 

from the human brain17. We reasoned that linked enhancer-gene pairs which are conserved 222 

across species should have higher chromatin contact frequency compared with random regions. 223 

Indeed, we found enrichment of contact frequency for both linked (mean fold change (FC) = 224 

1.15, p=2e-4) and correlated pairs (mean FC = 1.10, p=1e-5). Moreover, linked pairs located 225 
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10-30 kb apart have higher levels of contact enrichment than correlated pairs (FDR<0.05; Fig. 226 

2i, Supplementary Fig. 6d,e). 227 

A key parameter for our analysis is the cell type granularity, as determined by the 228 

number of metacells. The sparse genomic coverage of single-cell sequencing and the limited 229 

number of profiled cells create a tradeoff between the number of metacells and the quality of 230 

each metacell--i.e. between fine-grained resolution and signal/noise ratio. As the number of 231 

metacells (𝑁) increases, the width of the null distribution for the shuffled metacells approaches 232 

zero as !
√#

, which is consistent with independent random signals for each metacell (see 233 

Methods; Fig. 2j; Supplementary Fig. 7a-c). By contrast, the range of the null distribution for 234 

shuffled regions does not vanish for large 𝑁, but instead asymptotes at a non-zero value that 235 

reflects gene co-expression (Supplementary Fig. 7c). Notably, the shuffling-regions null 236 

distribution is less sensitive to the number of metacells, and more closely reflects the behavior 237 

of the observed correlations. This suggests enhancer-gene link calling using shuffling-regions is 238 

less sensitive to the choice of cell type granularity than using shuffling-metacells. We found 239 

more linked pairs as the number of metacells increases, but with diminishing returns after 𝑁 >240 
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50. (Fig. 2k; Supplementary Fig. 7d).241 

 242 

Fig. 3 | Consistent gene- and enhancer-level signatures for hundreds of enhancer-gene links. a-b. 243 
Gene expression (a), gene body DNA methylation (b), and enhancer mCG (c) and ATAC signal (d) 244 
across cell types. Genes are organized into 15 modules by K-means clustering. Enhancers are ordered 245 
according to the genes they are linked to (FDR < 0.2 for both mCG-RNA and ATAC-RNA across n=38 cell 246 
types). Signals from multiple enhancers linked to the same gene were averaged. The colormap for the 247 
mC modalities (gene body mCH and enhancer mCG) are reversed. 248 
 249 
 We used our procedure to comprehensively examine regulatory interactions in neurons 250 

of the mouse primary motor cortex6. Linked enhancer-gene pairs formed 15 modules that 251 

capture diverse cell-type-specific signatures (Fig. 3a,b). For example, genes in module 13 are 252 

specifically expressed in pan-inhibitory neurons, with corresponding low CG methylation level 253 

and open chromatin at linked enhancers. Module 9 is most active in caudal ganglionic eminence 254 

(CGE) derived inhibitory neurons (Lamp5, Sncg, and Vip) and in superficial-layer excitatory 255 
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neurons (L2/3 IT and L4/5 IT). These consistent gene- and enhancer-level signals integrated 256 

from three data modalities provide strong support for our identified enhancer-gene associations. 257 

Our analyses highlight the challenge of distinguishing genuine enhancer-gene 258 

interactions from spurious correlations due to gene co-expression. We addressed this by 259 

empirically estimating the expected correlations for unlinked enhancer-gene pairs under co-260 

expression, and comparing results across different epigenetic assays and cell type granularities. 261 

Notably, mCG-RNA and ATAC-RNA associations show striking similarities (Fig. 2d,f-k; Fig. 3), 262 

despite measuring distinct epigenetic features with opposite effects on gene expression. 263 

Predicted enhancer-gene links are robust with respect to a wide range of cell type granularities 264 

(Fig. 2k). We identified hundreds of genes and thousands of linked cCREs with highly 265 

coordinated gene- and enhancer-level activities (Fig. 3a,b). 266 

Correlation-based analysis has notable limitations. First, this approach cannot identify 267 

constitutive enhancer-gene links that are present in all cell types. Larger datasets including 268 

more diverse tissues or cell types may partly address this limitation. Second, rigorous control for 269 

spurious correlations limits the power of detecting genuine but weak enhancer-gene 270 

interactions. Finally, true causal interactions cannot be inferred from correlational analysis 271 

alone. The links we identified (Fig. 3a,b) are strong candidates for causal enhancer-gene 272 

interactions, which must be tested by perturbative experiments26,27. Future experimental 273 

validation, including large-scale assays4,5,28, will be needed to test correlation-based predictions. 274 

By bringing together multiple data modalities to define robust enhancer-gene links, these 275 

analyses can reveal the regulatory principles of cell-type-specific gene expression.  276 

  277 
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Supplementary Figures278 

 279 

Supplementary Figure 1. Examples of enhancer-gene links (Related to Fig. 1). a. Approach 280 
for linking enhancers to target gene(s) by correlating enhancer activities and gene expression 281 
across cell types. Statistically significant correlation alone may not distinguish genuine vs. 282 
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spurious links. b. Distribution of putative enhancer length (list adapted from Ref6; see Methods). 283 
c. Illustration of two modes of enhancer-gene associations: enhancer mCG typically have 284 
positive correlation with gene expression, while enhancer ATAC-seq signals typically have 285 
negative correlation. d. Median Spearman correlation as a function of enhancer-TSS distance. 286 
Both mCG-RNA and ATAC-RNA decay exponentially, with a half decay length of 86.7 kb and 287 
123.3 kb, respectively (Related to Fig. 1b). e-h. Genome browser views across cell types and 288 
data modalities near the gene Stim2 (e), as well as other regions (f-h) with strongly correlated 289 
enhancer signals. Note that the highlighted enhancers in (g-h) are also correlated with the 290 
expression of their nearby genes (Src and Kctd1) (Related to Fig. 1c-f). i. Heatmaps of 291 
chromatin contact frequency in human brain cells near Stim2 and the human ortholog of the 292 
highlighted enhancer across 8 human neuronal cell types. j-k. Scatter plot of Stim2 expression 293 
(upper row) / local genes expression (lower row) versus the highlighted enhancers. Enhancer 294 
mCG level is normalized by the global mean mCG level of each cell type; RNA is log10(CPM+1) 295 
normalized; ATAC is log10(TPM+1) normalized. 296 
  297 
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 298 
Supplementary Figure 2. Method overview. The analysis involves three main steps. 1. 299 
Integrate transcriptomic and epigenomic data to generate metacells with bi-modal profiles. 2. 300 
Correlate enhancer-gene pairs to get correlation coefficients for individual enhancer-gene pairs. 301 
3. Evaluate the statistical significance of correlations by comparing the observed correlations 302 
with null distributions generated by data shuffling. 303 
 304 
  305 
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 306 
Supplementary Figure 3. Generalized Least Squares (GLS) transformation abolishes the 307 
difference between shuffling metacells and shuffling regions (Related to Fig. 2). a-b. 308 
Density distribution (top) and cumulative distribution (bottom) of enhancer-gene correlations 309 
across metacells using OLS (a), and across decorrelated metacells using GLS (b). GLS 310 
transformation decouples the covariance across metacells, making the shuffling-regions 311 
distribution similar to the shuffling-metacell distribution (see Methods). c. Venn diagram showing 312 
the degree of overlap between correlated pairs and linked pairs, using OLS (left) and GLS 313 
(right) approaches. GLS abolishes the difference between correlated and linked pairs.   314 
 315 
 316 
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 317 
Supplementary Figure 4. The shuffling-regions null distribution is robust with respect to 318 
enhancer GC content and distance to the nearest gene (Related to Fig. 2). a-b. Distribution 319 
of GC content (a) and distance to the nearest gene (b) for enhancers that are in all enhancer-320 
gene pairs (2kb - 1Mb). In each case, they are grouped into 10 bins (deciles) with an equal 321 
number of enhancer-gene pairs. c-d. Cumulative distribution of enhancer-gene correlation 322 
(mCG-RNA; observed (<100kb) vs. null (shuffling regions)). The same analyses are applied to 323 
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each of the 10 bins by enhancer GC content (c) and by distance to the nearest gene (d), 324 
respectively. Null distributions from different bins highly overlap.  325 
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326 
Supplementary Figure 5. Comparison with CICERO9 and the activity-by-contact (ABC) 327 
model5 (Related to Fig. 2). a-b. Venn diagram comparing the enhancer-gene associations 328 
identified by applying CICERO8 to the mouse MOp data6 versus linked pairs (a) and correlated 329 
pairs (b) found in this study. c. Barplots comparing the mean CICERO scores across different 330 
groups of enhancer-gene pairs identified in this study. Error bars indicate 95% confidence 331 
intervals. Independent t-test are used to compare between groups (* p<0.05, *** p<0.001). d-e. 332 
Venn diagram comparing the enhancer-gene associations identified by applying ABC model5 to 333 
the mouse MOp data6 versus linked pairs (d) and correlated pairs (e) found in this study. f. 334 
Barplots comparing the mean ABC scores across different groups of enhancer-gene pairs 335 
identified by this study. ABC scores are generated for each enhancer-gene pair and cell type 336 
(n=38). We first took the maximum across cell types, followed by taking the mean of each group 337 
of enhancer-gene pairs. Error bars indicate 95% confidence intervals. Independent t-test are 338 
used to compare between groups (* p<0.05, *** p<0.001). 339 
  340 
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341 
Supplementary Figure 6. Linked vs. correlated enhancer-gene pairs have distinct 342 
characteristics (Related to Fig. 2). a. The number of positively or negatively correlated 343 
enhancer-gene pairs for mCG-RNA and ATAC-RNA, respectively. b. P-value histograms24 of 344 
trans-enhancer-gene pairs using shuffling-regions as the null distribution. The histogram closely 345 
follows a uniform distribution, indicating trans-enhancer-gene pairs are linked. This serves as a 346 
negative control for Fig. 2g. c. P-value histograms24 of trans-enhancer-gene pairs, using 347 
shuffling-metacells as the null distribution. The numbers mark the fraction of p-values that 348 
deviate from the uniform distribution, which estimates the fraction of correlated trans-enhancer-349 
gene pairs. d. Chromatin contact frequencies of pairs of genomic bins as a function of genomic 350 
distance. Linked and correlated pairs (lifted over from mm10 to hg3829) are compared with 351 
random genomic pairs. Results are aggregated over all chromosomes (autosomes + chrX) and 352 
8 different human neuronal cell types (L2/3, L4, L5, L6, Pvalb, Sst, Vip, Ndnf) at 10kb resolution 353 
of chromatin contact maps17. e. Enrichment of contact frequency of linked and correlated 354 
enhancer-gene pairs compared with random genomic region pairs across 8 human neuronal cell 355 
types. 356 
 357 
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 358 
Supplementary Figure 7. Effect of the granularity of metacells on enhancer-gene 359 
correlations (Related to Fig. 2). a. Distributions of correlation coefficients for different numbers 360 
of metacells. The distributions become narrower as the number of metacells increases. Here the 361 
number of metacells controls cell type granularity. b. Range of correlation coefficients 362 
(2.5%~97.5% range) as a function of 1/√𝑁, where 𝑁 is the number of metacells. Data points 363 
are well fitted by a straight line for 𝑁 < 277. c. Fitting quality, as measured by 𝑟$, as a function 364 
of fitting cutoff--range of data points in (b) used for fitting. The fitting quality peaks at 1/√𝑁 = 365 
0.05, i.e., 𝑁= 278. d. The number of linked pairs (left), number of genes involved (middle), and 366 
number of enhancers involved (right) as a function of the number of metacells.   367 
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Methods 368 

Datasets We used three single-cell sequencing datasets from the mouse primary motor cortex 369 

(MOp)6. They are scRNA-seq (single cell; 10x genomics V3; Allen Institute for Brain Science), 370 

snmC-seq (single nucleus; DNA methylation; Ecker lab from the Salk Institute), and snATAC-371 

seq (single nucleus; chromatin accessibility; Ren lab from UCSD). Only high-quality neuronal 372 

cells, as determined in Ref6 (from its Supplementary Table 2; column SCF/SingleCellFusion), 373 

are retained for our analysis. These datasets are publicly available and provided by a previous 374 

study (Ref6; https://assets.nemoarchive.org/dat-ch1nqb7). The starting point of all analyses are 375 

gene-by-cell matrices and/or enhancer-by-cell matrices depending on the data modality. For the 376 

scRNA-seq dataset, we start from the gene-by-cell count matrix. For the snATAC-seq dataset, 377 

we quantified both enhancer-by-cell and gene-by-cell count matrices. For the snmC-seq 378 

dataset, we quantified enhancer-by-cell CG DNA methylation profiles and gene-by-cell non-CG 379 

(CH) DNA methylation profiles. The DNA methylation profile for a particular region and cell can 380 

be summarized by two numbers: the number of methylated cytosines (mC) and the total number 381 

of cytosines covered (C). The DNA methylation level is the ratio of mC to C (mC/C). Please see 382 

sections below for dataset specific procedures of normalizations. The mouse gene annotation 383 

file is downloaded from gencode (vM16). The enhancer list is adapted from the putative 384 

enhancer list from Ref6 (see below).  385 

 386 

Calling putative enhancers We constructed our putative enhancer list based on the mouse 387 

MOp neuronal cell type-specific putative enhancers from Ref6 (from its Supplementary Table 7). 388 

In that study, the enhancers are called using REPTILE30, an algorithm that uses the DNA 389 

methylation and ATAC-seq profiles of 13 mouse neuronal cell types, as well as mouse 390 

embryonic stem cells, as input. Starting from this list, we first selected regions with enhancer 391 

score >0.5 and merged overlapping regions using bedtools31. We subsequently removed 392 
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regions overlapping any gene promoter regions (transcription start site +/- 2kb; all transcripts 393 

from gencode vM16), exons (vM16), and ENCODE blacklist32. This leaves us with 233,524 394 

enhancers in total, with a median size of ~250 bp (Supplementary Fig. 1b; Table S1). 395 

 396 

Curated cell types For analyses related to Figure 1, we curated a list of 38 neuronal cell 397 

clusters based on the SingleCellFusion clusters (L1 and L2, with n=29 to 56 cell types 398 

respectively) in Ref6. We aimed to merge small clusters to increase pseudo bulk coverage at 399 

enhancers, while retaining as much cell type diversity as possible. To achieve this, we first call 400 

an enhancer covered in a cluster if it has at least 20 sequenced CpG sites in that cluster, where 401 

the cluster-level coverage is the sum of cell-level coverages. Next, we call an enhancer 402 

common, if it is covered in more than half of the L2 clusters. We call a cluster covered, if more 403 

than half of the common enhancers are covered in that cluster. For each L1 cluster we then 404 

evaluate 3 cases: 405 

1. If the cluster itself is not covered, we drop it along with all its child (L2) clusters. 406 

2. Else if less than 2 (n<2) of its child (L2) clusters are covered, we retain the L1 cluster 407 

itself, but drop all its child (L2) clusters. 408 

3. !"#$%&'%()%"$(#)%*%+,-*.%/'%&)#%01&"2%+3*.%0"4#)$5#%(5$%0/6$5$27%8$%5$)(&,%)1$%0/6$5$2%3*%409 

0"4#)$5#7%94)%25/:%)1$%4,0/6$5$2%3*%0"4#)$5#%(,2%)1$%3;%0"4#)$5<% 410 

This procedure resulted in 38 clusters with adequate coverage. Table S4 summarized the 411 

correspondence between the 38 clusters we get from this procedure and the cell types defined 412 

in Ref6.  413 

 To compare with the cell types in snm3C-seq data17, we further merged these 38 fine-414 

grained clusters into 8 major clusters based on the well-established neuronal cell type 415 

taxonomy33. Table S4 summarized the correspondence between the 38 fine grained and the 8 416 

major cell clusters defined in this study and those defined in Ref6,17. 417 
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 418 

Clustering and defining metacells. For analyses related to Figure 2, we generated cell 419 

clusterings with a range of cluster resolutions. We start by normalizing the scRNA-seq count 420 

matrix with log10(CPM+1), where CPM stands for counts per million mapped reads. We then 421 

calculated the top 50 principal components (PCs), and built a k-nearest neighbor graph (k = 30) 422 

connecting cells according to the Euclidean distance in the PC space. We used Leiden 423 

community detection to generate clusters34. Different resolution parameters (r = 1 ~ 794) were 424 

chosen to generate clusters with different granularity (n = 13 ~ 8850 metacells). The pseudo 425 

bulk profiles from each of the individual clusters were used as metacells. 426 

 427 

Feature selection and normalization. We preprocessed the data matrices separately for each 428 

data modality. The starting point is always cell-level matrices containing counts (RNA and 429 

ATAC) or methylation level (mC). To get cluster-level (metacell) matrices, we summed counts 430 

from cells in the same clusters (metacells) to create pseudo-bulk samples.  For methylation 431 

data, we summed methylated counts and total counts (coverage) separately. Next, we 432 

normalized matrices as follows: 433 

- For an RNA matrix (gene-by-cluster/metacell), we normalize the raw count matrix with 434 

log10(CPM+1).  435 

- For an ATAC matrix (enhancer-by-cluster/metacell), we normalize the raw count matrix 436 

with log10(TPM+1), where TPM stands for transcripts per million mapped reads. 437 

Enhancers that are covered in <50% of clusters are removed. 438 

- For a gene body mCH matrix (gene-by-cluster/metacell), we first removed low coverage 439 

genes if the gene has <50% clusters surpassing 1000 counts in the gene body (or < 440 

80% metacells surpassing 20 counts). We then take the ratio of the number of 441 

methylated to the number of coverage to get the methylation fraction. All the steps here 442 

consider cytosines in non-CG (CH) dinucleotide context only.   443 
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- For an enhancer mCG matrix (enhancer-by-cluster/metacell), we first removed low 444 

coverage enhancers if the gene has <50% clusters surpassing 20 counts (or <80% 445 

metacells surpassing 5 counts) in the enhancer region. We then take the ratio of the 446 

number of methylated to the number of coverage to get the methylation fraction. All the 447 

steps here consider cytosines in CG dinucleotide context only.  448 

After normalization and filtering of individual matrices, we then consider only enhancers that are 449 

shared in both ATAC and mCG matrices for downstream analyses. 450 

 451 

Correlating enhancer-gene pairs across cell types. We calculate the Spearman correlation 452 

coefficient between any pair of enhancer and gene that are within 1 Mbp (enhancer center to 453 

gene TSS) across curated cell types (n=38 or n=8). This was done separately for enhancer 454 

mCG vs. RNA and enhancer ATAC vs. RNA. Enhancer mCG signals are normalized by the 455 

global mean mCG levels of each cell type; enhancer ATAC signals are log10(TPM+1) 456 

normalized; RNA expression levels are log10(CPM+1) normalized. 457 

To assess the statistical significance of the enhancer-gene correlations, we repeated the 458 

correlation analysis with 2 types of data shuffling control, as explained in the main text. To 459 

control for random noise, we shuffled cell cluster labels of the gene-by-cluster RNA matrix, 460 

followed by calculating correlation coefficients. To control for background co-expression across 461 

enhancer-gene pairs, we shuffled gene labels of the gene-by-cluster RNA matrix, followed by 462 

calculating correlation coefficients.  463 

 464 

Correlating enhancer-gene pairs across metacells. Given a transcriptomic dataset (scRNA-465 

seq) and an epigenetic dataset (e.g. snmC-seq) collected from the same tissue, we first 466 

generate a constrained k-nearest neighbor network linking cells across the two modalities 467 

(SingleCellFusion; Ref6,22). This network allows us to impute the DNA methylation profiles (mC) 468 

for each RNA cell. We then cluster scRNA-seq cells using Leiden community detection 34 (see 469 
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section Clustering/Generating metacells). We call these clusters metacells, to emphasize that 470 

they do not necessarily correspond to discrete cell types, but could also capture continuous 471 

changes among cell populations. These preparations allow us to construct bi-modal profiles for 472 

each metacell, by aggregating counts--either observed or imputed--from cells in the same 473 

metacells. Finally, we evaluate the correlations between enhancer-gene pairs across metacells.  474 

To be specific, the starting point of this analysis involves 4 matrices: an enhancer-by-cell 475 

mCG (or ATAC) matrix 𝐸%&, a gene-by-cell RNA matrix 𝑅'&!, a cross-modal cell-to-cell k nearest 476 

neighbor matrix: 𝐾&&(, and a metacell assignment matrix of RNA cells 𝐾&!). Here we use 𝑐, 𝑐′and 477 

𝑧 to denote an mC cell, an RNA cell, and a metacell, respectively. A metacell is a group of RNA 478 

cells generated by Leiden clustering. We use 𝑔 and 𝑒 to denote an enhancer and a gene, 479 

respectively. All matrices contain unnormalized raw counts. 𝐾&&( is generated by 480 

SingleCellFusion6,22 with default settings and cross-modal k=30. 𝐾&() is generated by Leiden 481 

clustering on the RNA-seq dataset as mentioned in previous sections.  482 

To get bi-modal profiles for a metacell, we aggregate counts from the cells belonging to 483 

that metacell: 𝑅')	 =	∑ 		
&( 	𝑅'&(𝐾&(), and 𝐸%) = ∑ 		& 	𝐸%&𝐾&&(𝐾&(). The metacell profiles are then 484 

normalized as mentioned in previous sections to adjust for metacell size, library size, and gene 485 

length. Finally, normalized 𝑅')	and 𝐸%)	 allow us to correlate a specific pair of gene 𝑔(,)and 486 

enhancer 𝑒(,) across metacells (𝑧). We calculated Spearman correlation coefficients for all 487 

enhancer-gene pairs with distance between 2kb to 1Mb (enhancer center - TSS).  488 

 489 

Estimating the statistical significance of enhancer-gene links. To assess the statistical 490 

significance of a correlation coefficient 𝑟, we constructed two null distributions by shuffling 491 

metacells (Fig. 2b) and shuffling regions (Fig. 2c). In the first case, we shuffle metacell labels 492 

independently for transcriptomic and epigenetic data, such that the two data modalities become 493 

independent of each other. In the second case, we permute and enhancers randomly from their 494 
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original genomic location to the locations of other genes and enhancers, while retaining the 495 

linked bi-modal profiles of each metacell.  496 

Either null distribution can be used to get empirical p-values and false discovery rate 497 

(FDR). The empirical p-value of a correlation coefficient 𝑟 is defined as the cumulative fraction 498 

of the null distribution that has more extreme (stronger) correlation coefficients than 𝑟. We 499 

calculated two-sided p-values when using the shuffled metacells distribution, and single-sided p-500 

values when using the shuffled regions distribution. FDRs are then calculated using the 501 

Benjamini-Hochberg procedure35. We call an enhancer-gene pair significantly linked (correlated) 502 

if its empirical FDR is <0.2 using shuffling regions (metacells) as the null. 503 

To see if the shuffled regions distribution depends on enhancer properties such as its 504 

sequence GC content and distance to the nearest gene, we also performed stratified shuffling 505 

analyses (Supplementary Figure 4). We first grouped enhancers into 10 bins (deciles) according 506 

to their GC content or distance to the nearest gene. We then shuffled enhancers within each bin 507 

and compared observed enhancer-gene correlations with shuffled ones for each bin separately.  508 

 509 

Enrichment of 3D chromatin contact frequencies. We validated the predicted enhancer-gene 510 

links using single-cell measurements of 3D-chromatin contact frequency in human prefrontal 511 

cortex 17. Raw contact matrices of 8 neuronal cell types were downloaded as mcool files 17. We 512 

calculated contact frequencies from raw counts using matrix balancing using Cooler36,37. We 513 

then focused on analyzing these contact frequency matrices at a resolution of 10kb non-514 

overlapping genomic bins across the genome.  515 

To compare our enhancer-gene links predicted in the mouse brain with the chromatin 516 

contact data from human brain, we lifted genes (gencode vM16 whole genes) and putative 517 

enhancers from mm10 to hg38 using LiftOver29 with parameters -minMatch=0.8 and -518 

minBlocks=1.00.  519 
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To calculate enrichment, we first assigned enhancers (center) and genes (TSS) to their 520 

corresponding genomic bins (non-overlapping 10kb bins genomewide). We compared the 521 

contact frequencies of the predicted enhancer-gene pairs with random genomic region pairs 522 

with similar genomic distance. We separately tested the enrichment of contact frequencies of 6 523 

groups of predicted enhancer-gene pairs: mCG-RNA linked, ATAC-RNA linked, pairs linked by 524 

both modalities, mCG-RNA correlated, ATAC-RNA correlated, and pairs correlated in both 525 

modalities. For each of the 8 neuronal cell types, we only include pairs that are active in the 526 

specific cell type, i.e. whose gene expression is greater than the median across all 8 cell types.  527 

 528 

Comparison with CICERO. We installed the R package CICERO8 from the Bioconductor 529 

following the instructions from the authors’ tutorial (https://cole-trapnell-lab.github.io/cicero-530 

release/docs_m3/#constructing-cis-regulatory-networks). We ran CICERO on MOp ATAC-seq 531 

data using default parameters. The program takes as input a peak-by-cell ATAC-seq matrix, 532 

where peaks include both putative enhancers we specified and gene promoters (500 bp 533 

upstream of TSS). The program returns co-accessibility scores for peak pairs. We filtered the 534 

output down to enhancer-promoter pairs only, removing enhancer-enhancer and promoter-535 

promoter pairs. We also focused on analyzing enhancer-gene pairs that are within 100kb apart, 536 

to compare with our correlation-based analysis. We used a threshold = 0.2 following Ref9 to call 537 

positive enhancer-gene pairs. 538 

 539 

Comparison with the ABC model. We downloaded code from the github repository of the ABC 540 

model5 (https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction) and followed 541 

instructions. We ran ABC for each MOp cell type (n=38) using our identified putative enhancer 542 

list (n=233,524) and pseudo-bulk ATAC-seq and RNA-seq data as input. We used genomic-543 

distance based power law estimation to model chromatin contacts (--score_column 544 

powerlaw.Score). The software returns a score (ABC score) for each enhancer-gene pair and 545 
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cell type. We excluded the expressed genes from the results, as suggested by the authors. We 546 

also focused on analyzing enhancer-gene pairs that are within 100kb. We used a threshold = 547 

0.022 as recommended by the authors to call positive enhancer-gene pairs. 548 

 549 

Generalized least squares (GLS) analysis to decouple covariance across metacells. We 550 

used GLS 16 to test the association between gene expression and enhancer activity across cell 551 

types (metacells). We will focus on only one given enhancer-gene pair (𝑔, 𝑒), as the same 552 

procedure applies to all enhancer-gene pairs independently. Given an enhancer 𝑒 and gene 𝑔, 553 

Let 𝑦&' be the mRNA expression in cell type 𝑐, 𝑥&% be the enhancer activity (e.g., mC or ATAC). 554 

Let 𝐶 be the number of cell types. A linear model associating 𝑔 and 𝑒 can be written as: 555 

𝑦& = 𝑎 + 𝛽𝑥& + 𝜀&                                                   (eq. 1) 556 

where 𝑐 is the index for cell types, 𝛽	is the association strength, and 𝜀 is a noise term. In 557 

addition, 𝑎 is an intercept term that can be omitted after data centering (𝑥 and 𝑦 can be pre-558 

centered to ensure 𝐸[𝑦&] = 𝐸[𝑥&] = 0). In matrix notation, (eq. 1) can be simply noted as 𝑦 =559 

𝛽𝑥 + 𝜀. 560 

In ordinary least squares (OLS), we assume 𝜀 is uncorrelated across cell types: 𝐸[𝜀&] =561 

0, 𝐸[𝜀&𝜀&(] = 𝜎$𝛿&,&(. The correlation coefficient 𝑟 = 𝐸[𝑥𝑦]/𝜎/𝜎0 is then a measure of the linear 562 

association, and it has an associated p-value calculated using the t distribution. Alternatively, 563 

inference can be performed by permutation analysis to get an empirical p-value. 564 

However, in our case we have correlated noise: 𝐸[𝜀&𝜀&(] = 𝛺&,&(, which reflects the 565 

correlation between cell types due to gene co-expression. That is, 𝛺&,&( represents the 566 

background of correlated variability in gene expression due to the hierarchical structure of cell 567 

types in complex tissues. We can estimate the correlation using the genome-wide covariance, 568 

𝛺C&,&( = 𝐶𝑜𝑣[𝑦]&,&(. In this case, generalized least squares16 (GLS) can be used to give an 569 

estimate of the coefficient 𝛽. This corresponds to transforming the variables 𝑥, 𝑦 from the 570 
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original basis (cell types/metacells, denoted 𝑐 ) to an decorrelated basis (denoted 𝑟), and then 571 

performing OLS on the decorrelated variables. 572 

We first use singular value decomposition (SVD) to decompose the mean-subtracted 573 

gene expression matrix, 𝑦&' = ∑ 		1 	𝑈&1𝑆11𝑉21', where 𝑟 = 𝑚𝑖𝑛(𝑐, 𝑔). Defining 𝑍 = 𝑈𝑆, we have 574 

𝛺 = 𝑍𝑍2. Multiplying both sides of (eq. 1) by 𝑍3! = 𝑆3!𝑈2 corresponds to a transformation from 575 

correlated to decorrelated (or whitened) basis: 576 

𝑦′ = 𝛽𝑥′	 + 𝜀′                                                   (eq. 2) 577 

 578 

where 𝑦′ = 𝑍3!𝑦, 𝑥′ = 𝑍3!𝑥, and 𝜀′ = 𝑍3!𝜀. The noise term is now uncorrelated, because  579 

𝐶𝑜𝑣[𝜀′	] = 𝐸[𝜀′𝜀′2] = 𝐸[𝑍3!	𝜀	𝜀2(𝑍3!)2] = 𝑍3!𝛺(𝑍3!)2 = 𝑍3!𝑍𝑍2(𝑍3!)2 = 𝐼	 580 

where 𝐼 is the identity matrix. We can therefore use the correlation coefficient and its associated 581 

test statistics on transformed data 𝑦′and 𝑥′, as in the case of OLS. 582 

 583 

Expected range of correlation coefficients for independent variables. Here we provide 584 

theoretical justification on why we expect the range of correlation coefficients (𝑟̂) to scale as !
√#

, 585 

as seen in Fig. 2j and Supplementary Fig. 7b, where 𝑁 is the number of metacells.  586 

 Let 𝑋 and 𝑌 be two independent random variables. Let 𝑥, and 𝑦, be independent and 587 

identically distributed samples of 𝑋 and 𝑌, where  𝑖 ∈ {1,2, . . . , 𝑁}. In our case, 𝑁 represents the 588 

number of metacells, and 𝑥, and 𝑦, are the transcriptomic and epigenetic signals for a given 589 

enhancer-gene pair for metacell 𝑖. We require 𝑋 and 𝑌 to be independent of each other as they 590 

are unlinked, and 𝑥, and 𝑦, be independent samples as different metacells are also independent 591 

observations of 𝑋 and 𝑌, such as in the case of null distribution created by shuffling cells. 592 

 To simplify the notation, we assume 𝐸[𝑋] = 𝐸[𝑌] = 0, as the mean does not affect 593 

correlation coefficient 𝑟. We also assume 𝑋 and 𝑌 are symmetric, as in the case of normal 594 
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distribution. It is obvious that 𝑟(𝑋, 𝑌) = 0. However, we are interested in how the variance of 𝑟̂ 595 

depends on 𝑁, where 𝑟̂ is the sample estimate of 𝑟 by {𝑥,} and {𝑦,}. 596 

𝑣𝑎𝑟[𝑟̂] ∼ 𝐸(𝑟̂$) ∼ 𝐸 W
(∑ 	#

,4! 𝑥,𝑦,)$	

∑ 	#
,4! 𝑥,$ ⋅ ∑ 	#

,4! 𝑦,$
Y 597 

= 𝐸 W
∑ 	#
54! ∑ 	#

64! 𝑥5𝑦5𝑥6𝑦6
∑ 	#
,4! 𝑥,$ ⋅ ∑ 	#

,4! 𝑦,$
Y 598 

= Z 	
#

54!

Z	
#

64!

𝐸 W
𝑥5𝑦5𝑥6𝑦6

∑ 	#
,4! 𝑥,$ ⋅ ∑ 	#

,4! 𝑦,$
Y 599 

= Z 	
#

54!

𝐸[
(𝑥5𝑦5)$

∑ 	#
,4! 𝑥,$ ⋅ ∑ 	#

,4! 𝑦,$
] 600 

(eq.3) 601 

The last equality holds, as only non-interaction terms (𝑎 = 𝑏) are nonzero. Moreover, as (𝑥5𝑦5)$ 602 

are equivalent for different 𝑎 = {1. . . 𝑁}, the above summation can be further simplified as: 603 

∑ 	#
54! 𝐸[ (/"0")#

∑ 	$
%&' /%#⋅∑ 	$

%&' 0%#
]=𝑁 ⋅ 𝐸[ (/'0')#

∑ 	$
%&' /%#⋅∑ 	$

%&' 0%#
] = 𝑁 ⋅ 𝐸[ /'#	

∑ 	$
%&' /%#

] ⋅ 𝐸[ 0'#

∑ 	$
%&' 0%#

],    604 

(eq. 4) 605 

where 𝐸[ /'#	

∑ 	$
%&' /%#

] = !
#
𝐸[∑ 	$

%&' /%#

∑ 	$
%&' /%#

] = !
#

, due to the symmetry among indices. Therefore, we finally 606 

arrive at 607 

𝑣𝑎𝑟(𝑟̂) ∝ 𝑁 ⋅ 𝐸[ /'#	

∑ 	$
%&' /%#

] ⋅ 𝐸[ 0'#

∑ 	$
%&' 0%#

] = 𝑁 ⋅ !
#
⋅ !
#
= !

#
, 608 

(eq. 5) 609 

and thus the range of the distribution goes as !
√#

. 610 

 611 

Supplementary tables 612 

Table S1. A list of putative enhancers (cCREs; n=233,524 in total) 613 
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Table S2. Significant linked enhancer-gene pairs by mCG-RNA correlation 614 

Table S3. Significant linked enhancer-gene pairs by ATAC-RNA correlation 615 

Table S4. Cell type correspondence between this study and Ref6 616 

 617 
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Data availability 636 

The scRNA-seq, snmC-seq, and snATAC-seq datasets from the mouse primary motor cortex 637 

are generated by BICCN (RRID:SCR_015820) as reported previously6. The data can be 638 

accessed via the NeMO archive (RRID:SCR_002001) at accession: 639 

https://assets.nemoarchive.org/dat-ch1nqb7. Genome browser: 640 

https://brainome.ucsd.edu/BICCN_MOp. The chromatin contact data generated by snm3C-seq 641 

is downloaded from publicly available files (Ref17; 642 

https://salkinstitute.app.box.com/s/fp63a4j36m5k255dhje3zcj5kfuzkyj1).  643 

 644 

Code availability 645 

Analysis scripts used for this paper are at https://github.com/FangmingXie/scf_enhancer_paper. 646 

SingleCellFusion is available at https://github.com/mukamel-lab/SingleCellFusion. 647 

The code for ABC model analysis is downloaded from its github repository 648 

(https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction; Ref5). 649 

The code for CICERO analysis is downloaded as an R package 650 

(https://www.bioconductor.org/packages/release/bioc/html/cicero.html; Ref8). 651 
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