Abstract
Proteins ensure their biological functions by interacting with each other, and with other molecules. Determining the relative position and orientation of protein partners in a complex remains challenging. Here, we address the problem of ranking candidate complex conformations toward identifying near-native conformations. We propose a deep learning approach relying on a local representation of the protein interface with an explicit account of its geometry. We show that the method is able to recognise certain pattern distributions in specific locations of the interface. We compare and combine it with a physics-based scoring function and a statistical pair potential.
Competing Interest Statement
The authors have declared no competing interest.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.