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Abstract 24 

The feedback people receive on their behavior shapes the process of belief formation 25 

and self-efficacy in mastering a given task. The neural and computational mechanisms of how 26 

the subjective value of these beliefs and corresponding affect bias the learning process are yet 27 

unclear. Here we investigate this question during learning of self-efficacy beliefs using fMRI, 28 

pupillometry, computational modeling and individual differences in affective experience. 29 

Biases in the formation of self-efficacy beliefs were associated with affect, pupil dilation and 30 

neural activity within the anterior insula, amygdala, VTA/SN, and mPFC. Specifically, neural 31 

and pupil responses map the valence of the prediction errors in correspondence to the 32 

experienced affect and learning bias people show during belief formation. Together with the 33 

functional connectivity dynamics of the anterior insula within this network our results hint 34 

towards neural and computational mechanisms that integrate affect in the process of belief 35 

formation.  36 

 37 

  38 
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Introduction 39 

Self-efficacy expectation is a person's subjective conviction that he or she can 40 

overcome challenging situations by own actions (Bandura, 1977). To successfully perform 41 

goal directed actions, humans must learn from incoming information and thereby form beliefs 42 

about the world and about themselves enmeshed in this world. According to economic theory, 43 

learning should result in accurate beliefs representing an internal model of the world that is 44 

suitable to inform decision making. Novel theoretical frameworks however emphasize that 45 

besides its instrumentality (i.e. being accurate) the belief itself may carry intrinsic value 46 

(Bromberg-Martin and Sharot, 2020) thereby shaping the learning process and how people 47 

ultimately arrive at their beliefs (Sharot and Garrett, 2016). Here, affective states, e.g. 48 

happiness about one’s own good health prognosis, represent intrinsic values that individuals 49 

are inclined to optimize during belief formation (Bromberg-Martin and Sharot, 2020; Hughes 50 

and Zaki, 2015). To prove this entanglement of affect and belief formation, we applied a 51 

learning task that induces affective reactions during the process of forming conceptually novel 52 

beliefs about own abilities in mastering a task (Czekalla et al., 2021; Müller-Pinzler et al., 53 

2019). We focused on the primary affective states elicited by self-related beliefs – the self-54 

conscious emotions of embarrassment and pride – and their impact on the belief. By having 55 

experimental control over failures and successes during the process of belief formation, we 56 

were able to assess how experienced affect relates to computational mechanisms of belief 57 

formation and the underlying neural systems activity, explaining the shifts of preferences for 58 

information of positive or negative valence during learning.  59 

Affective states are considered to guide cognitive processing, representing embodied 60 

and experiential information about the positive or negative value of what people encounter 61 

(Frijda, 1987; Storbeck and Clore, 2008). These internal affective information are proposed to 62 

be integrated with external information shaping beliefs that, rather than being objective, are 63 

motivated and biased by subjective feelings towards the belief itself, which constitutes a 64 
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recursive influence of beliefs and affective states on each other (Bromberg-Martin and Sharot, 65 

2020; Loewenstein, 2006). Previous studies support aspects of the Bromberg-Martin & Sharot 66 

framework by showing that internal beliefs and external feedback can elicit emotions like 67 

happiness, pride, or embarrassment (Müller-Pinzler et al., 2015; Rutledge et al., 2014, 2016; 68 

Stolz et al., 2020). Affective states also alter decision making (Charpentier et al., 2016a, 69 

2016b; Stolz et al., 2020) and cognitive processes like situational judgments or learning styles 70 

(Storbeck and Clore, 2008). Social anxiety, low self-esteem, or depression, which are likely 71 

associated with more negative affective reactions towards self-related beliefs, also bias belief 72 

formation (Koban et al., 2017; Korn et al., 2014; Müller-Pinzler et al., 2019; Will et al., 2020) 73 

supporting the overall rationale of the formation of  “affected beliefs”, that is, the notion that 74 

beliefs are fundamentally shaped by affective experiences. The question however remains 75 

which neurophysiological mechanisms can explain how emotions brought up during learning 76 

are associated with biases in belief formation. 77 

Neuroscientific studies provided initial evidence that common brain areas map the 78 

value of stimuli, actions, and their motivational relevance during social and non-social learning 79 

and decision making (Chib et al., 2009; Ruff and Fehr, 2014). Prediction errors, that is, the 80 

mismatch of prior expectation and a situation’s outcome, which are being minimized by 81 

updating beliefs during learning, are generally processed in the dopaminergically innervated 82 

ventral striatum, but also in the orbitofrontal cortex or the amygdala during learning (King-83 

Casas et al., 2005; O’Doherty, 2004; Ruff and Fehr, 2014; Schultz et al., 1997). However, 84 

more recent findings suggest that there are distinct and unique neural computations potentially 85 

reflecting the impact of motivational and emotional processes that are prominent during belief 86 

formation. For example, studies could show that distinct value-related neural processes in 87 

subregions of the anterior cingulate cortex (ACC) are recruited depending on whether 88 

information about oneself or another agent is processed (Lockwood and Wittmann, 2018; 89 

Lockwood et al., 2016). In other studies, activity in the ventral striatum was modulated if the 90 
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social context changed from a private to a public situation, suggesting that the presence or 91 

absence of others influenced sensitivity to the reward value of certain decisions (Izuma et al., 92 

2010). Biases specific for self-related belief updating that are absent when people learn about 93 

another person (Kuzmanovic et al., 2016), have been related to differences in tracking of 94 

negative prediction errors (Sharot et al., 2011). Here, the ventromedial prefrontal cortex 95 

(vmPFC) shows valence specific encoding of self-related information, which has been shown 96 

to predict optimistic biases in updating (Kuzmanovic et al., 2016, 2018).  97 

Affective states triggered after personal failures or successes are particularly important 98 

when people acquire novel self-concepts (Hopkins et al., 2021) and develop an initial 99 

understanding of themselves as being self-efficacious individuals in a novel task environment. 100 

Central to the entanglement of affect and such self-efficacy beliefs is the assumption that 101 

people are highly motivated to perform well and maintain or even construct a positively shaped 102 

self-image (Markus and Wurf, 1987; Sedikides and Gregg, 2008). Within this process, 103 

performance feedback elicits self-conscious emotions such as pride in case of success (Stolz et 104 

al., 2020; Tangney et al., 2007; Williams and DeSteno, 2008), but also embarrassment if one 105 

fails to achieve the expected outcome (Miller, 1996; Müller-Pinzler et al., 2015; Tangney et 106 

al., 2007). It has already been shown that these emotions are not only a consequence of the 107 

situation but also directly affect behavior. Pride experiences, associated with increased 108 

functional coupling between the ventral striatum and cortical midline structures (Stolz et al., 109 

2020), thus functions as a motivator to continue one’s effort (Williams and DeSteno, 2008). In 110 

contrast, embarrassment experiences, as signified by increased functional connectivity between 111 

brain areas involved in “Theory of Mind” (Kanske et al., 2015) and arousal processing systems 112 

within the ventral anterior insula (vAI) and amygdala (Müller-Pinzler et al., 2015), rather lead 113 

individuals to stop the current behavior, withdraw, and appease others (Apsler, 1975; Feinberg 114 

et al., 2012). For the process of belief formation, it has been argued that specifically the dorsal 115 

mediofrontal cortex (dMFC), the ventral and dorsal anterior insula (vAI/ dAI), and amygdala, 116 
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brain areas involved during action monitoring as well as emotional processing, integrate 117 

affective states with outcome information (Koban and Pourtois, 2014). Therefore, among 118 

others, the AI has been regarded as an integrative hub for motivated cognition and emotional 119 

behavior (Koban and Pourtois, 2014; Wager and Feldman Barrett, 2017). Similarly, 120 

dopaminergic midbrain nuclei in the ventral tegmental area and substantia nigra (VTA/ SN) 121 

are associated with attention processes and at the same time events (i.e. reward cues) that are 122 

of motivational significance specifically during learning (Adcock et al., 2006; Schultz, 1998). 123 

While current frameworks support the idea that intrinsic outcomes such as affective 124 

states impact the process of belief formation (Bromberg-Martin and Sharot, 2020; Hughes and 125 

Zaki, 2015), studies on this issue currently do not probe this framework as a whole. We aim 126 

to bridge this gap by showing how emotional states relate to biases in self-related beliefs, that 127 

is, the formation of self-efficacy and how they shift preferences for information of positive or 128 

negative valence. To do so, we tested the effects of individual differences in affective reactions 129 

to the task and learning behavior. Affective states were evoked during of learning self-efficacy 130 

beliefs in a conceptually novel task environment. Using trial-by-trial updates of performance 131 

expectations, we computed prediction error learning rates by fitting computational learning 132 

models revealing valence specific learning biases. As predicted by current frameworks, 133 

individual differences in the experience of the emotions embarrassment and pride were 134 

distinctively related to biases in learning of self-related beliefs. Biased belief updating and 135 

affect were jointly related to neural processing of valence specific prediction errors in the AI, 136 

amygdala, VTA/ SN and mPFC as well as pupillary reactivity in favor of information that is 137 

preferably used to update the belief. Increases in valence specific functional connectivity of the 138 

dAI with the amygdala, VTA/ SN and mPFC support the idea of an integrative mechanism of 139 

affective and attentional processes within the dAI. These findings provide insights into brain 140 

networks involved in computational biases shaped by emotional experiences and coherently 141 

support current theoretical frameworks integrating affective experiences in the process of belief 142 
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formation.  143 

 144 

Results 145 

Experimental design 146 

Of the participants in our overall sample more than half completed the task in the MRI 147 

while additionally eye-tracking data were assessed during scanning, the other half completed 148 

the task as a behavioral study (see methods section for details). In our self-efficacy learning 149 

experiment, the “learning of own performance” (LOOP) task (Müller-Pinzler et al., 2019), 150 

participants were repeatedly confronted with manipulated feedback on their own and another 151 

person’s cognitive estimation ability. In different domains (e.g., estimating the weight of 152 

animals) participants were led to form novel beliefs about their performance-related self-153 

efficacy. We invited each participant together with a confederate to take part in the “cognitive 154 

estimation” experiment in our neuroimaging lab. The participant performed the task in the 155 

MRI scanner, while the confederate (introduced as another participant) was located in an 156 

adjacent room to simultaneously perform the task there. During the task, participants were 157 

asked to estimate specific characteristics of different properties (e.g. heights of buildings or 158 

weights of animals). After each trial, they received a manipulated performance feedback for 159 

their last estimation (see Figure 1a). During the entire experiment participants took turns in 160 

performing the estimation task themselves (“Self” condition) or observing the other 161 

participant performing (“Other” condition). At the beginning of each trial participants were 162 

requested to rate either their own or the other person’s expected performance for the upcoming 163 

trial, enabling us to examine the process of self- and other-related belief formation. The design 164 

of the LOOP task provided a High Ability and a Low Ability condition which resulted in 165 

overall four feedback conditions: Agent condition (Self vs Other) x Ability condition (High 166 

Ability vs Low Ability; see Figure 1b and methods for a detailed description of the task). In 167 

previous studies we showed that over time participants adapted their expected performance 168 
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ratings according to the feedback allowing for an assessment of valence specific self- and 169 

other-related learning processes (Czekalla et al., 2021; Müller-Pinzler et al., 2019).  170 

 171 

Figure 1. Trial sequence and timing, experimental conditions, modeling of learning behavior, 172 
learning rates and their association with self-conscious emotions. a) A cue in the beginning of 173 
each trial indicated the following estimation category as well as the agent who’s turn it was. 174 
After providing their performance expectation ratings (EXP) participants received an 175 

estimation question, followed by the corresponding performance feedback. After 176 
approximately every 20 trials participants were asked to rate their current emotional state 177 
(pride, embarrassment, happiness, stress/ arousal). b) The LOOP task contained two 178 

experimental factors, Ability level (High ability vs Low ability) and Agent (Self vs Other), 179 
resulting in four feedback learning conditions that are distinguishable via different estimation 180 
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question types (e.g. estimation of weights of animals or heights of buildings). c) Predicted and 181 

actual performance expectation ratings across time. The behavioral data indicate that 182 
participants adapted their performance expectation ratings (solid lines) to the provided 183 
feedback, thus learning about their allegedly distinct performance levels in the two ability 184 

conditions for themselves and the other person. The winning valence specific learning model 185 
captured the participants’ behavior as indicated by a close match of actual performance 186 
expectations with the predicted data (dashed lines). Shaded areas represent the standard errors 187 
for the actual performance expectations for each trial. d) Learning rates derived from the 188 
winning Valence Model indicate that there was a bias towards increased updating in response 189 

to negative prediction errors (αPE-) in contrast to positive prediction errors (αPE+) for self-190 
related learning. Bars represent mean learning rates, error bars depict +/- one standard error; 191 
*** = p < .001, indicates a significant negativity bias during self-related learning. e) 192 
Correlation plots and spearman correlations of self-related Valence Learning Bias and 193 
embarrassment as well as pride experience during the experiment. * = p < .05, *** = p < .001. 194 

 195 

Model free behavioral analyses reveal more negative self-evaluation 196 

We first performed a model free analysis to capture the basic effects we observed in 197 

our behavioral data. Analyses of behavioral data and learning rates are based on the combined 198 

fMRI (n=39) and behavioral sample (n=30; overall N=69). The Trial x Ability condition x 199 

Agent condition x Group ANOVA revealed a significant main effect of Ability condition 200 

(F(1,67)=175.51, p<.001) and interaction of Trial x Ability condition (F(19,1273)=108.87, p<.001) 201 

indicating that participants adapted their performance expectation ratings over time according 202 

to the feedback provided in each Ability condition (see Figure 1c). There was a significant 203 

main effect of Agent condition (F(1,67)=44.70, p=.001) which indicated that participants 204 

evaluated their own performance more negatively than the other’s performance. There was no 205 

significant interaction of Agent condition x Ability condition (F(1,67)=0.67, p=.415). The three-206 

way interaction of Trial x Agent condition x Ability condition (F(19,1273)=1.60, p=.047) showed 207 

a significant effect hinting towards differential learning patterns between the Ability 208 

conditions for Self vs Other. There was a significant main effect of Group (F(1,67)=4.32, 209 

p=.041) indicating slightly higher ratings in the fMRI sample, but there was no interaction of 210 

Group with any of the effects reported above (p>.174). 211 

Selection of computational models for self-related learning  212 

In a next step, we modeled the participants’ behavior by means of learning rates. 213 
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Therefore, we used the trial-specific expectation ratings for Self and Other to model prediction 214 

error (PE) update learning and assess differences between updating behavior for information 215 

of positive vs negative valence. Our model space contained different models allowing us to 216 

assess the importance of valence specific learning rates in contrast to unbiased learning 217 

between conditions and agents (Figure S1). In line with our previous studies, an extended 218 

version of the Valence Model, including separate learning rates for positive and negative PEs 219 

for Self vs Other was the winning model (Model 8; for a more detailed description of this 220 

model and the whole model space see methods section). It received the highest sum PSIS-221 

LOO score (approximate leave-one-out cross-validation (LOO) using Pareto-smoothed 222 

importance sampling (PSIS)) (Vehtari et al., 2016) out of all models (for all PSIS-LOO scores 223 

see Supplementary Table S1). In addition, Bayesian model selection (BMS) resulted in a 224 

protected exceedance probability of pxp>.999 for this model and a Bayesian Omnibus Risk 225 

of BOR<.001. Thus, the extended Valence Model was selected for all further analyses of 226 

learning parameters allowing for a comparison of valence specific learning rates. The time 227 

courses of performance expectation ratings predicted by our winning model successfully 228 

captured trial-by-trial changes in the actual expectations due to PE updates within each of the 229 

ability conditions at the individual subject level (R2=0.46±0.28 [M±SD]) supporting the 230 

validity of the model in describing the subjects’ learning behavior. In addition to revealing PE 231 

valence specific learning, which could not directly be assessed via model free behavioral 232 

analyses, posterior predictive checks also confirmed that the winning model captured the core 233 

effects in our model free analysis (see Supplementary Results and Figure 1c).  234 

Replication of the negativity bias for self-related learning  235 

Participants showed higher learning rates when learning about themselves compared 236 

to learning about another person (main effect of Agent: F(1,67)=5.77, p=.019). There was also 237 

a main effect of PE valence [pos| neg] (F(1,67)=5.22, p=.025; indicating the categorical 238 

comparison of learning rates for positive vs negative PEs) and a significant interaction of 239 
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Agent x PE valence [pos| neg] (F(1,67)=21.47, p<.001) which replicates earlier findings of a 240 

bias towards more negative updating when learning about one’s own performance (t(68)=-4.85, 241 

p<.001, MαPE+Self=0.25, SD=0.13; MαPE-Self=0.35, SD=0.20) (Müller-Pinzler et al., 2019). 242 

Learning about the other person’s performance did not show a significant bias towards more 243 

negative updating (t(68)=1.53, p=.128; MαPE+Other=0.27, SD=0.16; MαPE-Other=0.24, SD=0.15; 244 

see Figure 1d). There was no significant main effect or interaction for Group (p>.097). 245 

Associations of self-related learning with self-conscious emotions. 246 

Individual differences in the overall experience of embarrassment and pride during the 247 

task were used as between-subject measures to quantify associations between learning 248 

behavior and affect.  Embarrassment and pride ratings were only weakly correlated (ρ(68)=-.10, 249 

p=.436), indicating that the experience of embarrassment and pride during the task represent 250 

two rather independent affective components with respect to the self-related feedback. The 251 

bias in self-related learning (Valence Learning Bias=(αSelf/PE+ - αSelf/PE-)/(αSelf/PE+ + αSelf/PE-)) 252 

(Müller-Pinzler et al., 2019; Niv et al., 2012; Palminteri et al., 2017) was negatively linked to 253 

the reported experience of embarrassment during the task (ρ(68)=-.24, p=.043; fMRI 254 

subsample: ρ(38)=-.44, p=.005), that is, more negative updating behavior was associated with 255 

increased embarrassment ratings. In contrast, the Valence Learning Bias was positively linked 256 

to the emotion of pride (ρ(68)=.55, p<.001; fMRI subsample: ρ(38)=.47, p=.002). A regression 257 

predicting the Valence Learning Bias with both affect ratings simultaneously showed 258 

independent effects of pride (β=0.56  t(66)=5.81, p<.001) and embarrassment (β=-0.22, t(66)=-259 

2.30, p=.025; R2=.41, F(1,66)=22.90, p<.001). This indicates that the experience of self-260 

conscious emotions during successful and unsuccessful performances are tied to the way 261 

people updated their self-efficacy beliefs (see Figure 1e). Further, the way participants 262 

processed the performance feedback in order to update their self-related ability beliefs was 263 

associated with their self-esteem. People with higher self-esteem showed more positive 264 

updating, ρ(68)=.33, p=.006 (fMRI subsample: ρ(38)=.35, p=.030), which strengthens the 265 
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assumption that prior beliefs about the self have a direct impact on how individuals learn novel 266 

information about new abilities (Müller-Pinzler et al., 2019; Rouault et al., 2019).  267 

Pupil dilation slopes are associated with surprise and valence of prediction errors in line 268 

with a negative learning bias 269 

Prior research has successfully linked changes in pupil diameter to surprise, PEs and 270 

learning (Koenig et al., 2018; Preuschoff, 2011) as well as emotional experiences and arousal 271 

(Bradley et al., 2008; Müller-Pinzler et al., 2015). To corroborate our assumption that changes 272 

in pupil diameter, as indicated by the slope of the change in pupil size during self-related 273 

feedback presentation, reflect increased arousal or attention associated with greater PEs we 274 

regressed trial-by-trial variability in the pupil slope on PE surprise (continuous effect of 275 

unsigned PEs) and PE valence [neg↗️ pos] (continuous effect of signed PEs; see Figure 2a) 276 

(Rouhani and Niv, 2021). The linear mixed model showed a significant positive effect for PE 277 

surprise (t(1406)=2.20, p=.028) and a negative effect for PE valence [neg↗️ pos] (t(31.2)=-2.50, 278 

p=.018; see Figure 2b). First, we observed an effect of PE surprise in the sense that the more 279 

surprising the feedback was with respect to trial-by-trial prior expectations the more pupil 280 

dilation increased, in line with previous findings on pupil dilation in response to surprising 281 

events (Preuschoff, 2011). Second, the results indicate that pupil dilation was greater with 282 

decreasing PE values, linking negative PEs rather than positive PEs to greater dilation, 283 

potentially indicating increased arousal and attention towards negative PEs in line with the 284 

negativity bias we found in learning rates.  285 

Pupil dilation response to prediction error valence is associated with affect and learning 286 

bias  287 

It has been suggested that pupil dilation not only reflects differences between stimuli 288 

but similarly individual biases during decision making (see Figure 2d for examples of 289 

individual differences; de Gee, Knapen, & Donner, 2014). To corroborate our assumption that 290 

pupil slopes should reflect increased arousal or attention associated with PEs that are 291 
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preferably used for updating by each individual (i.e. individuals preferably learning from 292 

negative vs positive PEs, experiencing more embarrassment/ less pride) we thus introduced 293 

individual differences in learning and self-conscious emotions as between-subject covariates 294 

into the linear mixed models assessing trial-by-trial pupil slopes (see Figure 2c). These 295 

analyses demonstrated that individuals who experienced more embarrassment showed 296 

stronger pupil dilations for negative compared to positive PEs while in individuals with lower 297 

embarrassment pupil slopes did not differ between positive and negative PEs (significant 298 

interaction of embarrassment and PE valence [neg↗️ pos]: t(31.8)=-2.57, p=.015; no main effect 299 

for embarrassment: t(34)=-0.42, p=.680; see Figure 2e). Effects were reversed when pride 300 

ratings were included in the model instead of embarrassment ratings (interaction pride and PE 301 

valence [neg↗️ pos] t(32.8)=3.14, p=.004; main effect of pride: t(34.1)=0.04, p=.971). The Valence 302 

Learning Bias modulated the relationship between PE valence [neg↗️ pos] and pupil slopes in 303 

the same way (interaction Valence Learning Bias and PE valence [neg↗️ pos] t(31.3)=2.96, 304 

p=.006; main effect of Valence Learning Bias: t(34.3)=1.05, p=.300) indicating that people with 305 

a more negative Valence Learning Bias had greater pupil dilation for negative PEs whereas 306 

people with no or positive bias, showed less differentiation in the pupil dilation  in response 307 

to the valence of the PE. 308 

 309 
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 310 

Figure 2. Association of pupil slopes with prediction error (PE) valence and individual pupil 311 
response differences explained by differences in Valence Learning Bias, embarrassment and 312 
pride experience. a) Exemplary pupil diameter trace over three trials for one subject (orange 313 
line) and trial specific fitted linear slopes (blue lines) for the feedback phase of each trial. PE 314 
values are calculated with the participant’s current performance expectation (EXP) and the 315 

following feedback value (FB) and PE valence [neg↗️ pos] represents the signed PE while PE 316 
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surprise represents the unsigned PE. b) More negative PEs are associated with greater pupil 317 

slopes compared to positive PEs. The average pupil diameter trace during feedback is depicted 318 
in orange, shaded area represents +/- one standard error. Pupil slopes for the different levels 319 
of PEs (from black = negative to grey = positive) were predicted by the multi-level model 320 

containing PE valence [neg↗️ pos] and PE surprise as predictors as described in the methods 321 
section and depicted in c. c) Description of the multi-level model assessing the association of 322 

PE valence [neg↗️ pos] and PE surprise with within-subject trial-by-trial pupil slopes and the 323 
impact of Valence Learning Bias, embarrassment and pride experience as between-subject 324 
second level covariates explaining differences in the associations on the within-subject level 325 
(cross-level-interaction; indicated in bold). d) Three exemplary scatter plots for three different 326 

subjects show the association of pupil slopes with PE valence [neg↗️ pos] and illustrate the 327 
variance between subjects. Subj#38 shows increased pupil slopes for negative PEs in line with 328 
the group level effect. Subj#37 shows no association and subj#5 shows increased pupil slopes 329 
for positive PEs. e) Illustration of the impact of the three between-subject covariates, Valence 330 

Learning Bias (left), embarrassment (middle) and pride experience (right) explaining 331 

differences in the associations of PE valence [neg↗️ pos] and pupil slope. The plots show the 332 
data as predicted by the multi-level models for the mean covariate as well as the mean 333 
covariate +/- 1 standard deviation (SD). The results show that, for example, individuals with 334 

a more negative Valence Learning Bias (gray dashed line, left), increased experience of 335 

embarrassment (black line, middle) and decreased experience of pride (gray dashed line, right) 336 
showed a stronger pupil response to negative vs positive PEs. 337 
 338 

Neural activations associated with feedback processing indicate a specific role of 339 

feedback valence during self-related learning 340 

In a next step, we examined the brain processes that underlie how people form self- 341 

and other-related ability beliefs. Therefore, we first compared neural activation during 342 

feedback processing as measured with fMRI. We found that the bilateral insula, anterior 343 

cingulate cortex, and thalamus (amongst others, see Figure 3a and Supplementary Table 344 

S2) were activated significantly stronger if feedback was related to one’s own performance as 345 

compared to the other person (i.e. Agent effect). This finding of heightened activity in brain 346 

regions that have been linked to arousal but also self-agency potentially reflects a difference 347 

in the subjective salience of self- vs other-related information (Craig, 2009; Späti et al., 2014; 348 

Sperduti et al., 2011). Feedback for the Other as compared to the Self resulted in stronger 349 

activation of the left and right middle temporal gyrus and precuneus/ middle cingulate gyrus 350 

(Supplementary Table S2).  351 

Second, we compared self-related positive vs negative feedback to examine how the 352 
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valence of information affected neural processing (categorial PE valence [pos| neg] effect). 353 

We found significantly stronger activations of the left and right nucleus accumbens/ ventral 354 

striatum (NAcc/VS), bilateral angular gyrus, medial prefrontal cortex (mPFC), and precuneus/ 355 

posterior cingulate cortex (PCC) for positive vs. negative PE valence [pos| neg] (see 356 

Supplementary Table S2). This valence effect was unique for processing of self-related 357 

information and absent when feedback was related to the other person’s performance (no 358 

significant clusters for the PE valence [pos| neg] effect for Other; p < .001). The opposite 359 

contrast, negative vs positive PE valence [pos| neg], yielded no significant activations, neither 360 

for self-related nor for other-related information. When testing the interaction of Agent x PE 361 

valence [pos| neg]  we found increased activation for self-related positive vs negative feedback 362 

([Self positive PE > Self negative PE] > [Other positive PE > Other negative PE]) in the 363 

angular gyrus (see Supplementary Table S2), and on a more lenient threshold also the 364 

bilateral NAcc/VS, the precuneus/ PCC, and precentral gyrus (cluster-wise FWE-corrected 365 

with p < .05 at a cluster forming threshold of p < .001; see Figure 3a/ b and Supplementary 366 

Table S3).  367 

 368 

 369 

Figure 3. Neural activations associated with feedback processing. a) Self-related feedback vs 370 
other-related feedback (left) was associated with an increased activation of the mPFC/ ACC, 371 
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bilateral anterior insula and thalamus among other regions (p < .05, FWE-corrected). The 372 

interaction of Agent and PE valence [pos| neg] (([Self positive PE > Self negative PE] > [Other 373 
positive PE > Other negative PE]; right) resulted in activation of the angular gyrus, the 374 
bilateral NAcc/VS, the precuneus/ posterior cingulate cortex, and precentral gyrus (cluster-375 

wise FWE-corrected with p < .05 at a cluster forming threshold of p < .001). b) Parameter 376 
estimates for the differences between feedback for positive vs negative PEs derived from the 377 
peak voxels of the interaction effect depict the interaction in the left NAcc/ VS [x, y, z: -9 20 378 
-1] and right NAcc/ VS [x, y, z: 12 20 -1]. Self-related feedback resulted in a valence specific 379 
activation while other-related feedback did not. 380 

 381 

Common neural activations associated with prediction error surprise and distinct 382 

activations for self-related prediction error valence 383 

In a second step we assessed the effects of continuous trial-by-trial PE surprise and PE 384 

valence [neg↗️ pos] as parametric weights to assess neural aspects of learning more 385 

specifically (see Figure 4a). Increased PE surprise was associated with greater activation of 386 

the mPFC for Self and Other as well as clusters in the bilateral insula/ temporal pole/ frontal 387 

orbital gyrus on a more lenient threshold (cluster-wise FWE-corrected with p < .05 at a cluster 388 

forming threshold of p < .001; see Figure 4c and Supplementary Table S4). There was no 389 

significant difference between Self and Other (p < .001), potentially indicating that there is a 390 

common process of error tracking mapped within the same brain regions independent of the 391 

agent.  392 

Assessing PE valence [neg↗️ pos] revealed a distinct pattern for self- and other-related 393 

learning. Self-related PE valence [neg↗️ pos] was positively associated with increased 394 

activation of the NAcc/VS, mPFC, bilateral angular gyrus/ superior parietal lobule/ lateral 395 

occipital gyrus and precentral gyrus, showing stronger activation for positive vs negative PEs 396 

(Figure 4b and Supplementary Table S5). There was no effect for other-related PE valence 397 

[neg↗️ pos] and a direct comparison of self vs other-related PE valence [neg↗️ pos] effects 398 

showed stronger associations in the NAcc/VS for Self (right: x, y, z: 12, 17, -4, t(38) = 5.23; k 399 

= 2; left: x, y, z: -9, 26, −1, t(38) = 5.77, k = 19; all coordinates in MNI space), supporting that 400 

the valence of the feedback has a specific value when feedback refers to the self as compared 401 
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to another person. Although behavioral data and learning rates clearly stress the importance 402 

of negative over positive PEs, there were no significant negative associations with PE valence 403 

[neg↗️ pos] in the neural data (p < .001). To test if the activations associated with self-related 404 

PE valence [neg↗️ pos] were actually related to PEs and not only to the feedback value alone 405 

we ran an additional control analysis including parametric weights for trial-by-trial feedback 406 

and performance expectation ratings instead of PE values (Zhang et al., 2020). This model 407 

replicated the findings showing positive associations within the reported brain regions, 408 

including the NAcc/ VS, with trial-by-trial self-related feedback values and negative 409 

associations with prior expectations as it would be expected for PE-related effects 410 

(Supplementary Table S6).  411 
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Figure 4. Common neural activations associated with prediction error (PE) surprise, distinct 413 

activations for self-related PE valence [neg↗️ pos] and individual response differences to PE 414 

valence [neg↗️ pos] explained by differences in Valence Learning Bias, embarrassment and 415 
pride experience, and pupil dilation. a) Exemplary BOLD response over three trials for one 416 
subject (orange line) and regressors for the feedback phase of each trial (back line; originally 417 
separate regressors for self- and other-related feedback are here combined for displaying 418 

purposes). PE valence [neg↗️ pos] (small dashed) and PE surprise (large dashed) are added as 419 
parametric modulators in addition to the feedback regressors. PE values are calculated as 420 

shown in Figure 2. b) PE valence [neg↗️ pos] was associated with increased activation of the 421 
NAcc/VS, mPFC, bilateral angular gyrus/ superior parietal lobule/ lateral occipital gyrus and 422 

precentral gyrus for Self. Activation of the NAcc/VS was stronger for Self vs Other. c) PE 423 
surprise was associated with activation of the mPFC and the bilateral insula/ temporal pole/ 424 

frontal orbital gyrus for Self and Other. d) Neural tracking of self-related PE valence [neg↗️ 425 
pos] in the predefined regions of interest (ROIs: amygdala, ventral and dorsal anterior insula, 426 

mPFC, VTA/ SN) was modulated by between-subject variables. Specifically, individuals with 427 
a more negative Valence Learning bias showed relatively stronger neural responses to 428 
negative as compared to positive PEs, which was similar for individuals with stronger pupil 429 

dilation response to negative PEs, or increased ratings of embarrassment. In contrast, 430 
individuals with higher pride ratings showed relatively stronger neural responses to positive 431 
as compared to negative PEs. Black arrows indicate the direction the covariates are coded in 432 
the analyses; embarrassment is coded negatively as high embarrassment was supposed to be 433 

associated with increased activity for negative rather than positive PE valence [neg↗️ pos]. 434 

Clusters refers to p < .005, uncorrected for displaying purposes; see Supplementary Table 435 
S7 for FWE-corrected statistics. e) Pearson correlations for parameter estimates derived from 436 
the whole areas of our predefined ROIs with the Valence Learning Bias, Pupil Dilation Bias, 437 

embarrassment and pride are color coded. * = p < .05, FDR corrected. 438 
 439 

Neural activity in response to self-related prediction error valence is associated with 440 

affect, learning bias, and pupil dilation 441 

To assess how biases in learning as well as affective experience and pupil dilation were 442 

associated with valence specific PE processing on the single trial level, multiple general linear 443 

models (GLMs) were implemented. These included the Valence Learning Bias, self-conscious 444 

emotions and a score representing a valence bias for pupil dilation responses towards positive 445 

vs negative PEs (Pupil Dilation Bias = PupilSlopeSelf/PE+ - PupilSlopeSelf/PE-) as between 446 

subject covariates for PE valence [neg↗️ pos] tracking. Analyses within our predefined regions 447 

of interest (ROIs) revealed that the more negative the Valence Learning Bias was, the more 448 

neural activity increased in response to negative vs positive PEs in the bilateral dAI, vAI, 449 

amygdala, mPFC, and VTA/ SN (all results are p<.05 FWE-corrected within ROIs; see Figure 450 

4d and Supplementary Table S7). Overall higher experience of embarrassment showed 451 
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similar associations with increased PE tracking for negative vs positive PEs in the right dAI, 452 

bilateral amygdala, and VTA/ SN. Trendwise effects for embarrassment were found in the left 453 

dAI, bilateral vAI, and mPFC. In line with this, lower experience of pride showed the same 454 

association in the dAI and vAI, amygdala, VTA/ SN and mPFC. Additional analyses revealed, 455 

that effects for embarrassment and pride were mainly independent (see Supplementary 456 

Results). Similarly, the more negative the Pupil Dilation Bias was, the stronger the increase 457 

in activation of the dAI and vAI, amygdala and VTA/ SN towards negative vs positive PEs. 458 

Thus, the greater the response of this neural system to PEs with negative valence the greater 459 

was the preference for negative information during learning as well as the negativity of the 460 

affective experience. This gained multi-modal support by similar associations of the Valence 461 

Learning bias and affect with the pupil dilation response, which reflects the activity of this 462 

underlying neural system. In contrast, participants which showed a greater response of this 463 

neural system towards positive PEs also had a preference for positive information during 464 

learning and reported more positive affect. 465 

Functional connectivity of the dorsal anterior insula depends on prediction error valence 466 

in line with the negativity bias 467 

Functional connectivity dynamics of the left and right dAI were assessed as these were 468 

activated during feedback processing for self- and other-related feedback, independent of 469 

Agent and PE valence. Here, we tested if the connectivity of the dAI differed depending on 470 

the level of the valence of the PE, by using psychophysiological interaction (PPI) analyses.  471 

We calculated the interaction of the continuous PE valence [neg↗️ pos] and the timeseries 472 

extracted from the left and right dAI seed regions separately for Self and Other on the first 473 

level and the two agents were contrasted against each other on the second level GLM as we 474 

were specifically interested in connectivity dynamics that could reflect the differential 475 

learning from negative PEs when processing self-relevant information. Contrasting the PPI 476 

effects for PE valence [neg↗️ pos] between the Self and Other demonstrated that during self-477 
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related learning, functional connectivity dynamics of the right dAI with the bilateral 478 

amygdala, mPFC and VTA/ SN (p<.05, FWE-corrected within ROIs) more strongly aligned 479 

with the negativity of the PEs. The left dAI showed a weaker but similar spatial distribution 480 

with significant differences between self- and other-related PE valence [neg↗️ pos] for the left 481 

amygdala and VTA/ SN (p <. 05, FWE corrected, see Figure 5a/ b and Supplementary Table 482 

S8). Thus, those brain regions that preferably tracked PEs of negative valence in individuals 483 

with increased negative affect and learning biases also showed connectivity dynamics with 484 

the dAI in a similar direction during self-related learning. Individuals who showed more 485 

pronounced differences in functional connectivity, that is, stronger functional connectivity for 486 

negative PEs during Self>Other, also showed a more negative Valence Learning Bias, 487 

although this pattern was not fully consistent across all ROIs (see Figure 5c). 488 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2021. ; https://doi.org/10.1101/2021.10.26.465922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.465922
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

 489 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2021. ; https://doi.org/10.1101/2021.10.26.465922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.465922
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Figure 4. Differences in functional connectivity of the dorsal anterior insula during prediction 490 

error (PE) valence [neg↗️ pos] tracking for self- and other-related learning and associations 491 
with the Valence Learning Bias. a) Increased functional connectivity of the dorsal anterior 492 

insula for the negative effect of PE Valence [neg↗️ pos] for self- vs other-related learning in 493 
the predefined ROIs (amygdala, mPFC, VTA/ SN; p < .005 uncorrected for displaying 494 
purposes). b) Functional connectivity dynamics of the dorsal anterior insula plotted separately 495 
for self- and other-related learning. For displaying purposes parameter estimates are plotted 496 

separately for Self and Other and refer to the peak voxels of the contrast Self vs Other that are 497 
reported in Supplementary Table S8. * = p < .05, ** = p < .01. c) Spearman correlations of 498 
the Valence Learning Bias with the functional connectivity dynamics between the dorsal 499 
anterior insula (seed region reported on the right side) and the amygdala, mPFC and VTA/ SN 500 

associated with PE valence [neg↗️ pos] for self- vs other-related learning are color coded. * = 501 
p < .05, FDR corrected. 502 
 503 

Discussion 504 

Belief formation is essentially biased and various studies have shown how motivations 505 

shape belief formation (Elder et al., 2021; Sedikides and Gregg, 2008; Sedikides and Hepper, 506 

2009; Sharot and Garrett, 2016). Our results demonstrate that the affect people experience 507 

during learning is linked to the process of self-related belief formation on the level of neural 508 

systems. Our computational modelling results imply that biases in the formation of self-509 

efficacy beliefs in mastering a conceptually novel task are associated with the experience of 510 

the self-conscious emotions of embarrassment and pride. Critically, on the level of neural 511 

systems, the valence of PEs was associated with biases in self-related learning biases and 512 

negativity of the affective experience. Individual differences in the response preference 513 

towards negative PEs indicated by the pupil dilation response and activation of the AI, 514 

amygdala, mPFC, and VTA/ SN were associated with a more negative learning bias and 515 

negative affective experience, hinting towards a neurobiological system that integrates affect 516 

during learning.  517 

The novel framework on the “value of beliefs” proposed by Bromberg-Martin and 518 

Sharot (2020) nicely details how beliefs elicit emotions while at the same time these emotions 519 

shape how beliefs are updated in a reciprocal relation. Based on this framework and prior 520 

research on self-conscious emotions a negative belief about one’s abilities should elicit 521 
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stronger embarrassment after failures and reduced pride after successes (Müller-Pinzler et al., 522 

2015; Tangney et al., 2007). In the present data the association of the learning bias with the 523 

affective experience during learning supports this notion, with individuals who experience 524 

more negative affect (embarrassment) and less positive affect (pride) when receiving self-525 

efficacy feedback being also inclined to update their beliefs in a more negative way. Negative 526 

emotions at the same time guide the information processing at various stages, including 527 

perception, attention, and decision-making as discussed in the context of “motivated 528 

cognition” (Hughes and Zaki, 2015). This reciprocal relation finally results in biased belief 529 

formation and beliefs that are both driver of affect as well as affected by emotional responses 530 

to incoming information. Embarrassment in particular is one relevant example illustrating the 531 

recursive relation between both, as the fear of failure as often discussed in the context of social 532 

anxiety (disorder) (Koban et al., 2017; Morrison and Heimberg, 2013; Müller-Pinzler et al., 533 

2015, 2019), leads to shifts of expectations and attention (threat monitoring) towards negative 534 

information. At best this results in reparative behaviour and performance improvement (Darby 535 

and Harris, 2010; Keltner and Potegal, 1997) and at worst results in a vicious cycle of fear and 536 

pathologically increasing negative beliefs about the self (Heimberg et al., 2010) as it is 537 

reflected in our results, when individuals who experience more intense embarrassment end up 538 

with lower self-efficacy beliefs.  539 

There are different ways on how emotions shape learning processes: First, emotions 540 

can imbue how information is processed in the brain by adaptively shifting attention towards 541 

salient aspects of the situation (Christianson, 2014; Kaspar and König, 2012). Second, 542 

emotions entail arousal that intensifies internal rehearsal and evaluations leading to increased 543 

learning (Christianson, 2014; Frijda, 1987; Storbeck and Clore, 2008), although these 544 

processes often interact and are intricately related (Hughes and Zaki, 2015). The increased 545 

pupil dilation in response to negative PEs in our study is in line with both increased salience 546 

of and attentional shifts towards negative PEs (Koenig et al., 2018; Preuschoff, 2011) or 547 
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increased arousal elicited by negative PEs (Bradley et al., 2008; Müller-Pinzler et al., 2015). 548 

Here, we think that the stronger impact of positive or negative information on pupil responses 549 

and brain reactivity maps arousal and affect according to the valence of individual learning 550 

biases and affective experiences.  551 

Specifically the AI has been suggested to function as an integrative hub for motivated 552 

cognition and emotional behavior (Koban and Pourtois, 2014; Wager and Feldman Barrett, 553 

2017). While ventral aspects of the AI are associated with affective processing, emotions, and 554 

physiological arousal (Craig, 2003; Lindquist et al., 2012; Phan et al., 2002; Wager and 555 

Feldman Barrett, 2017) dorsal aspects of the AI are strongly associated with the detection of 556 

salient events, allocation of attention resources, executive working memory (Menon and 557 

Uddin, 2010; Touroutoglou et al., 2012) and also (absolute) PEs and uncertainty during 558 

learning (Loued-Khenissi et al., 2020; Rutledge et al., 2010; Ullsperger et al., 2010). These 559 

findings suggest that the functions of the AI provide a physiological basis for how emotions 560 

are translated into biased, motivated, or affected beliefs (Koban and Pourtois, 2014; Wager 561 

and Feldman Barrett, 2017). A similar role as a link for the attention-emotion interaction has 562 

also been suggested for the amygdala (Kaspar and König, 2012; Koban and Pourtois, 2014), 563 

that shows similar responses in our task. The functional connectivity dynamics of the dAI, 564 

matching the modelled learning rates with a stronger impact of self-related negative PEs, 565 

underline the insula’s role as an integrative hub receiving and forwarding information that 566 

affects information processing in other brain regions.  567 

Tracking of PEs in the dopaminergically innervated VTA/ SN is influenced by 568 

motivational factors during learning (Adcock et al., 2006). The subjective value of self-related 569 

information significantly varies between subjects which is indicated by idiosyncratic response 570 

patterns of the VTA/ SN to gains or losses (Charpentier et al., 2018). In this line, we think that 571 

the present results reflect individual response tendencies at a very basic level of PE tracking. 572 

On higher layers of the computational hierarchy regions in the ACC and mPFC are also 573 
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associated with PE tracking and value representation (Hare et al., 2008; Lockwood and 574 

Wittmann, 2018; Wallis and Kennerley, 2010) and have been previously associated with 575 

biases in belief updating (Korn et al., 2012; Kuzmanovic et al., 2016, 2018). Affect and arousal 576 

could therefore bias learning on various stages of the computational hierarchy of PE 577 

processing from more basic dopaminergic midbrain responses to more abstract value 578 

representations in the neocortex (Diaconescu et al., 2017). While the directionality of the 579 

effects remains to be determined the dynamics in the functional connectivity of the dAI 580 

suggest a modulatory role in this process. Here, information is forwarded to and/ or integrated 581 

from VTA/ SN and mPFC, the same regions, whose response to the valence of PEs was also 582 

modulated by differences in learning bias and affective experience. This strengthens the idea 583 

that the AI plays a role in shifting responses to negative or positive information in other brain 584 

regions (e.g. by shifting attention and by affective tagging) or already receives stronger signals 585 

in response to PEs of negative or positive valence from midbrain regions and mPFC.  586 

The tracking of the absolute error, PE surprise (Rouhani and Niv, 2021), independent 587 

of the agent, is in line with the “common currency” assumption (Izuma et al., 2008; Ruff and 588 

Fehr, 2014) for the positive and negative value of one’s own and others’ performance 589 

feedback. The common and valence independent coding of surprise in the insula and the 590 

mPFC might therefore be sufficient to complete the learning task per se. Valence, however, 591 

matters when individuals learn about themselves as indicated by an additional shift in error 592 

tracking in the same regions, AI and mPFC, which also track surprise in a valence independent 593 

manner. As a consequence, across individuals we observe a robust effect for surprise, 594 

however, when people learn more negatively biased and experience more negative affect, this 595 

signal is unbalanced and increases with more negative PEs. This pattern hints towards a 596 

neurocomputational mechanism of how affect shapes the formation of beliefs as proposed 597 

earlier (Bromberg-Martin and Sharot, 2020).  598 

 In the current study, some of the key findings emerge at the level of individual 599 
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differences. We observed a wide inter-individual variance in the affective experience during 600 

the task and in the Valence Learning Bias, that is, the kind of information participants 601 

preferably used to update self-related beliefs. While on average we find a negativity bias 602 

during self-related belief formation, a little less than one third of the participants still shows a 603 

positive learning bias, pointing out the importance of individual factors and meaningfulness 604 

of variability. Studies do not only suggest that biases in belief formation differ between tasks 605 

(Ertac, 2011; Müller-Pinzler et al., 2019; Sharot and Garrett, 2016) but also depend on 606 

situational factors like stress (Czekalla et al., 2021; Garrett et al., 2018). The individual’s 607 

ability to adjust the current information processing strategy to the context might be adaptive 608 

(Bromberg-Martin and Sharot, 2020): for example, adaptation to an increased relevance of 609 

negative or threat-related information during stress (Garrett et al., 2018) or coping with a 610 

negative self-concept following social stress by means of more self-beneficial belief updating 611 

(Czekalla et al., 2021). It might also be adaptive for people who fear negative feedback to pay 612 

more attention to failure-related information in order to learn and circumvent potential future 613 

failures (Sedikides and Hepper, 2009). However, it is not always straightforward to determine 614 

under which conditions a strategy is adaptive or whether the affective experience can 615 

ameliorate the individual’s well-being. A maladaptive consequence of biased self-efficacy 616 

beliefs becomes apparent in psychiatric disorders such as depression and social anxiety, in 617 

which amplified negative updating can lead to persistently distorted self-views and overly 618 

negative beliefs about one’s own capabilities in everyday life (Alden et al., 2008; Amir et al., 619 

2012; Koban et al., 2017; Korn et al., 2014; Taylor and Brown, 1988).  620 

Conclusions 621 

Emotions experienced during learning affect computational mechanisms and manifest 622 

in distributed neural activity during belief formation. In particular, neural activity of the AI, 623 

amygdala, VTA/SN, and mPFC and pupil responses map the valence of PEs in 624 

correspondence to the experienced affect and learning bias people show during belief 625 
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formation. The more negative balancing in the functional connectivity dynamics of the dAI 626 

during processing of self-related PEs within this network outline a scaffold for neural and 627 

computational mechanism integrating affect during belief formation. The results of the first 628 

empirical spell-out of the “value of beliefs model” (Bromberg-Martin and Sharot, 2020) have 629 

broader implications concerning any context which provides personal evaluations based on 630 

behavioral performance. Here, the focus on the affective experience during learning provides 631 

a deeper understanding on how feedback manifests in self-related beliefs which may then 632 

significantly impact developmental processes and future behavior.  633 

 634 

Materials and Methods 635 

Participants 636 

The study was approved by the ethics committee of the University of Lübeck (AZ 18-637 

066), has been conducted in compliance with the ethical guidelines of the American 638 

Psychological Association (APA), and all subjects gave written informed consent. Participants 639 

were recruited at the University Campus of Lübeck, were fluent in German, and had normal 640 

or corrected-to-normal vision. Two independent samples were recruited, one for the fMRI 641 

study and the other for a behavioral study that was added to increase the sample size for the 642 

behavioral data. All participants received monetary compensation for their participation in the 643 

study. The final sample size for the fMRI sample was 39 participants (26 females, aged 18-28 644 

years; M=22.3; SD=2.65). We initially recruited 48 participants and had to exclude six 645 

participants because they did not believe the cover-story of the task and three participants 646 

because they did not attentively complete the task until the end (e.g. participants reported 647 

having been too tired or the ratings indicated that they stopped responding to the estimation 648 

task). The additional behavioral sample consisted of 30 participants (24 females, aged 18-32 649 

years; M=23.3; SD=3.97).  For more details on the sample characteristics see Supplementary 650 

Table S9. 651 
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Learning of own performance task. 652 

The Learning of own performance (LOOP) task enables participants to incrementally 653 

learn about their or another person’s alleged ability in estimating properties. The LOOP task 654 

has been previously introduced and validated in a set of behavioral studies (Müller-Pinzler et 655 

al., 2019). For the LOOP task all participants were invited to take part in an experiment on 656 

"cognitive estimation" together with a confederate who allegedly was another participant. In 657 

contrast to the fMRI study, for the behavioral study two participants were invited and tested 658 

together instead of introducing a confederate. Participants were informed they would take 659 

turns with the other participant/ confederate, either performing the task themselves (Self) or 660 

observing the other person performing (Other). For the task participants were instructed to 661 

estimate different properties (e.g. the height of houses or the weight of animals). On a trial-662 

by-trial basis participants received manipulated performance feedback in two distinct 663 

estimation categories for their own estimation performance as well as for the other person’s 664 

estimation performance. Unbeknownst to the participant, one of the two categories was 665 

arbitrarily paired with rather positive feedback while the other was paired with rather negative 666 

feedback (e.g. “height” of houses = High ability category and “weight” of animals = Low 667 

ability category or vice versa; estimation categories were counterbalanced between Ability 668 

conditions and Agent [Self vs Other] conditions). This resulted in four feedback conditions 669 

with 20 trials each (Agent condition [Self vs Other] x Ability condition [High Ability vs Low 670 

Ability]). Trials of all conditions were intermixed in a fixed order with a maximum of two 671 

consecutive trials of the same condition. Performance feedback was provided after every 672 

estimation trial, indicating the participant’s own or the other person’s current estimation 673 

accuracy as percentiles compared to an alleged reference group of 350 university students 674 

who, according to the cover-story, had been tested beforehand (e.g. "You are better than 94% 675 

of the reference participants.“; see Figure 1a). The feedback was defined by a sequence of 676 

fixed PEs with respect to the participants’ “current belief” about their abilities. The “current 677 
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belief” was calculated as the average of the last five performance expectation ratings per 678 

category, which started at 50% before participants actually rated their performance 679 

expectation. This procedure led to varying feedback sequences between participants but kept 680 

PEs mostly independent of the participants’ performance expectations and insured a relatively 681 

equal distribution of negative and positive PEs across conditions (Self: mean positive PE = 682 

13.6 , SD = 1.8 (average number = 20.3); mean negative PE = -12.6, SD = 1.4 (average number 683 

= 19.7); Other: mean positive PE = 13.0, SD = 1.3 (average number = 19); mean negative PE 684 

= -13.1, SD = 1.1 (average number = 21)). At the beginning of each trial a cue was presented 685 

indicating the estimation category (e.g. “height”) and participants were asked to state their 686 

expected performance for this trial on the same percentile scale used for feedback. As part of 687 

the cover story, participants were informed that accurate expected performance ratings would 688 

be rewarded with up to 6 cents per trial, that is, the better their expected performance rating 689 

matched their actual feedback percentile the more money they would receive, to increase 690 

motivation and encourage honest response behavior. Following each performance expectation 691 

rating, the estimation question was presented for 10 seconds. During the estimation period, 692 

continuous response scales below the pictures determined a range of plausible answers for 693 

each question. Participants indicated their responses by navigating a pointer on the response 694 

scale with an MRI compatible computer mouse. Subsequently, feedback was presented for 3 695 

seconds (see Figure 1a). Jittered inter-stimulus intervals were presented following the cue (2-696 

6 * TR (0.992 secs)), estimation (2.5 – 6.5 * TR) and feedback phase (4-8 * TR) for the fMRI 697 

task. All stimuli were presented using MATLAB Release 2015b (The MathWorks, Inc.) and 698 

the Psychophysics Toolbox (Brainard, 1997). The fMRI task was completed in two separate 699 

sessions of each 20 min with a short break in between. 700 

Before starting the experiment all participants answered several questions about their 701 

self-related beliefs and filled in a self-esteem personality questionnaire (SDQ-III; Marsh & 702 

O’Neill, 1984). During the LOOP task participants were also asked to rate their current levels 703 
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of embarrassment, pride, happiness and stress/ arousal on a continuous scale ranging from not 704 

at all (coded as 0) to very strong (coded as 100). Two emotion rating phases followed self-705 

related feedback and two rating phases followed other-related feedback. The two emotion 706 

rating phases following self-related feedback were averaged to receive a rating for the 707 

experience of self-conscious affect (embarrassment and pride) during self-related learning. 708 

After the task participants completed an interview including ratings about self-related beliefs, 709 

were debriefed about the cover-story, and reimbursed for their time before leaving. The whole 710 

procedure took approximately 2 h.  711 

Behavioral Data Analysis and Modeling 712 

A model free analysis was performed on the participants’ expected performance 713 

ratings for each trial to illustrate the basic effects we see in our behavioral data. A repeated-714 

measures ANOVA was calculated with the factors Trial (20 Trials) x Ability condition (High 715 

ability vs Low ability) x Agent condition (Self vs Other) as well as Group as a between-subject 716 

factor to control for potential differences between the two samples. All statistical analyses on 717 

the behavioral data apart from the modeling procedure were performed using jamovi (Version 718 

1.2.27, The jamovi project (2020).  Retrieved from https://www.jamovi.org). 719 

Dynamic changes in self-related efficacy beliefs, that is, performance expectation 720 

ratings, were then modeled using PE delta-rule update equations (adapted Rescorla-Wagner 721 

model; Rescorla & Wagner, 1972). The model space contained three main models varying 722 

with regards to their assumptions about biased updating behavior when learning about the self 723 

(see Supplementary Figure S1). The simplest learning model used one single learning rate 724 

for all conditions for each participant, thus not assuming any learning biases (Unity Model). 725 

The second model, the Valence Model, included separate learning rates for positive PEs (αPE+) 726 

vs negative PEs (αPE-) across both ability conditions, thus suggesting that the valence (positive 727 

vs negative) of the PE biases self-related learning. The third model, the Ability Model, 728 

contained a separate learning rate for each of the ability conditions indicating context specific 729 
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learning. In addition, learning rates were either estimated separately for Self vs Other or across 730 

Agent conditions. The Valence Model with separate learning rates for Self vs Other (Model 731 

5), winning model in our previous studies (Czekalla et al., 2021; Müller-Pinzler et al., 2019), 732 

was further extended by adding a weighting factor reducing learning rates towards the ends 733 

of the feedback scale (percentiles close to 0 % or 100 %), assuming that participants 734 

experienced extreme feedback values as less likely than more average feedback (Kube et al., 735 

2021). In the first model of these (Model 7) a linear decrease of the learning rates was assumed 736 

beginning at 50 % and ending at 0 % and 100 %. A weighting factor w was fitted for each 737 

participant defining how strong the linear decrease was present for each individual. Since 738 

many variables people encounter in every-day life (e.g. many test results) approximately 739 

follow a normal distribution with extreme values being less likely, for the second model of 740 

this kind (Model 8) we assigned the relative probability density of the normal distribution to 741 

each feedback percentile value. Again, a weighting factor w was fitted for each individual 742 

indicating how strongly the relative probability density reduced the learning rates for feedback 743 

further away from the mean. In contrast to our previous studies implementing the LOOP task 744 

with fixed feedback sequences, here, feedback depended on the participants’ current 745 

expectations and thus differed between participants and conditions. Reduced learning rates 746 

towards the ends of the feedback scale which could systematically confound learning rates 747 

between participants and conditions could thus be accounted for in Models 7 and 8. To test if 748 

the participants’ performance expectation ratings can be better explained in terms of PE 749 

learning as compared to stable assumptions in each Ability condition, we included a simple 750 

Mean Model with a mean value for each task condition (Model 9; for more details see 751 

Supplementary Methods).  752 

Model Fitting. 753 

For model fitting we used the RStan package (Stan Development Team, 2016. RStan: 754 

the R interface to Stan. R package version 2.14.1.), which uses Markov chain Monte Carlo 755 
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(MCMC) sampling algorithms. All of the learning models in the model space were fitted for 756 

each participant individually and posterior parameter distributions were sampled for each 757 

participant. A total of 2400 samples were drawn after 1000 burn-in samples (overall 3400 758 

samples; thinned with a factor of 3) in three MCMC chains. We assessed if MCMC chains 759 

converged to the target distributions by inspecting R̂ values for all model parameters (Gelman 760 

and Rubin, 1992). Effective sample sizes (neff) of model parameters, which are estimates of 761 

the effective number of independent draws from the posterior distribution, were typically 762 

greater than 1500 (for most parameters and subjects). Posterior distributions for all parameters 763 

for each of the participants were summarized by their mean as the central tendency resulting 764 

in a single parameter value per participant that we used in order to calculate group statistics.  765 

Bayesian Model Selection and Family Inference.  766 

For model selection we estimated pointwise out-of-sample prediction accuracy for all 767 

fitted models separately for each participant by approximating leave-one-out cross-validation 768 

(LOO; corresponding to leave-one-trail-out per subject; Acerbi et al., 2018; Vehtari et al., 769 

2016). To do so, we applied Pareto-smoothed importance sampling (PSIS) using the log-770 

likelihood calculated from the posterior simulations of the parameter values as implemented 771 

by Vehtari et al. (2016). Sum PSIS-LOO scores for each model as well as information about 772 

�̂� values – the estimated shape parameters of the generalized Pareto distribution – indicating 773 

the reliability of the PSIS-LOO estimate are depicted in Supplementary Table S1. As 774 

summarized in Supplementary Table S1 very few trials resulted in insufficient parameter 775 

values for �̂� and thus potentially unreliable PSIS-LOO scores (on average 1.1 trials per subject 776 

with �̂�>0.7 for the winning model; Vehtari et al., 2016). BMS on PSIS-LOO scores was 777 

performed on the group level accounting for group heterogeneity in the model that best 778 

describes learning behavior (Rigoux et al., 2014). This procedure provides the protected 779 

exceedance probability for each model (pxp), indicating how likely a given model has a higher 780 

probability explaining the data than all other models in the comparison set. The Bayesian 781 
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omnibus risk (BOR) indicates the posterior probability that model frequencies for all models 782 

are all equal to each other (Rigoux et al., 2014). We also provide difference scores of PSIS-783 

LOO in contrast to the model that won the BMS that can be interpreted as a simple ‘fixed-784 

effect’ model comparison (see Supplementary Table S1; Acerbi et al., 2018; Vehtari et al., 785 

2016). Model comparisons according to PSIS-LOO difference scores were qualitatively 786 

comparable to the BMS analyses for our data. 787 

Posterior Predictive Checks and Statistical Analyses of Learning Parameters 788 

First, posterior predictive checks were conducted by quantifying if the predicted data 789 

could capture the variance in performance expectation ratings for each subject within each of 790 

the experimental conditions using regression analyses. Additionally, we repeated the model 791 

free analysis we had conducted on the behavioral data with the data predicted by the winning 792 

model to assess if the winning model captured the core effects in the behavioral data (see 793 

Supplementary Results).  794 

Model parameters, i.e. learning rates, of the winning models for all experiments were 795 

analyzed on the group level. A repeated-measures ANOVA was calculated on the learning 796 

rates with the factor Agent (Self [αSelf/PE+, αSelf/PE-] vs Other [αOther/PE+, αOther/PE-]) and factor PE 797 

valence [pos| neg] (PE+ [αSelf/PE+, αOther/PE+] vs PE- [αSelf/PE-, αOther/PE-]) as well as Group as a 798 

between-subject factor testing if learning about one’s own performance was more valence 799 

specific as compared to learning about the other person’s performance.  800 

To associate learning biases with self-conscious affect, that is, embarrassment and 801 

pride, and self-esteem (SDQ-III subscale scores) we calculated a normalized learning rate 802 

valence bias score for self-related learning (Valence Learning Bias=(αPE+(S) - αPE-(S))/(αPE+(S) 803 

+ αPE-(S))) (Müller-Pinzler et al., 2019; Niv et al., 2012; Palminteri et al., 2017). Spearman 804 

correlations were calculated between Valence Learning Bias, affect ratings, and self-esteem 805 

scores.  806 

Pupil Data Analysis 807 
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For the fMRI sample, eye-tracking data were assessed during scanning. Pupil diameter 808 

and gaze behavior were recorded non-invasively in one eye at 500 Hz using an MRI-809 

compatible Eyelink-1000 plus device (SR Research, Kanata, ON, Canada) with manufacturer-810 

recommended settings for calibration and blink detection. Due to insufficient pupillometry 811 

data quality three participants had to be excluded from analyses (final sample n=36). Pupil 812 

data were preprocessed by cutting out periods of blinks and values in this gap were 813 

interpolated by piecewise cubic interpolation. The pupil trace was subsequently z-normalized 814 

over the whole session. To characterize the pupil dilation for each trial by a single value, we 815 

calculated a linear slope for each feedback phase of three seconds. Pupil traces were only 816 

analyzed for the Self condition as onsets during feedback strongly differed between Agent 817 

conditions, which made a meaningful comparison between pupil slopes impossible. Pupil 818 

slopes during self-related feedback phases for each trial were then entered in linear mixed 819 

models fitted by restricted maximum likelihood including PE valence [neg↗️ pos] (continuous 820 

signed PE values) and PE surprise (continuous unsigned/ absolute PE values) as fixed effects 821 

and participant and PE valence [neg↗️ pos] as random effects. Additionally, separate linear 822 

mixed models including embarrassment ratings, pride ratings or the Valence Learning Bias as 823 

well as their interaction with PE valence [neg↗️ pos] were implemented to assess if variance 824 

in individual pupil responses to positive and negative PEs (random PE valence [neg↗️ pos] 825 

slopes) was explained by with different emotional reactions and learning behavior (see Figure 826 

2c).  827 

fMRI Data 828 

fMRI Image Acquisition 829 

Participants were scanned using a 3T Siemens MAGENTOM Skyra scanner (Siemens, 830 

München, Germany) at the Center of Brain, Behavior, and Metabolism (CBBM) at the 831 

University of Lübeck, Germany with 60 near-axial slices. An echo planar imaging (EPI) 832 

sequence was used for acquisition of on average 1520 functional volumes (min=1395, max= 833 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2021. ; https://doi.org/10.1101/2021.10.26.465922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.465922
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

1672) during each of the two sessions of the experiment, resulting in a total of on average 834 

3040 functional volumes (TR=0.992s, TE=28ms, flip angle=60°, voxel size=3 × 3 × 3mm 3, 835 

simultaneous multi-slice factor 4). In addition, a high-resolution anatomical T1 image was 836 

acquired that was used for normalization (voxel size=1 × 1 × 1mm3, 192×320×320mm3 field 837 

of view, TR= 2.300s, TE = 2.94ms, TI = 900ms; flip angle=9°; GRAPPA factor 2; acquisition 838 

time 6.55 min). 839 

FMRI data analyses 840 

FMRI data were analyzed using SPM12 (www.fil.ion.ucl.ac.uk/spm). Field maps were 841 

reconstructed to obtain voxel displacement maps (VDMs). EPIs were corrected for timing 842 

differences of the slice acquisition, motion-corrected and unwarped using the corresponding 843 

VDM to correct for geometric distortions and normalized using the forward deformation fields 844 

as obtained from the unified segmentation of the anatomical T1 image. The normalized 845 

volumes were resliced with a voxel size of 2 × 2 × 2 mm and smoothed with an 8 mm full-846 

width-at-half-maximum isotropic Gaussian kernel. To remove low-frequency drifts, 847 

functional images were high-pass filtered at 1/384.  848 

Statistical analyses were performed in a two-level, mixed-effects procedure. Three 849 

main GLMs were implemented on the first level. The first fixed-effects GLM included four 850 

epoch regressors modeling the hemodynamic responses to the different cue conditions 851 

(Ability: High vs Low × Agent: Self vs Other), weighted with the performance expectation 852 

ratings per trial as parametric modulator for each condition. Four regressors modeled the four 853 

feedback conditions (PE valence [pos| neg]: Positive vs Negative × Agent: Self vs Other), 854 

each weighted with the PE value for each trial. The estimation periods for Self and Other as 855 

two regressors, and emotion ratings phase and the instruction phase as separate regressors. To 856 

account for noise due to head movement, six additional regressors modeling head movement 857 

parameters were introduced and a constant term was included for each of the two sessions. 858 

The second first-level GLM differed only with respect to the feedback regressors. Here, only 859 
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two regressors modeled feedback separately for Self and Other and two parametric modulators 860 

were included per condition weighting feedback trials with PE valence [neg↗️ pos] (continuous 861 

effect of the signed PE values) and PE surprise (continuous effect of the unsigned PE values). 862 

The third first-level GLM was set-up to show that activation found in response to PEs was 863 

actually related to PEs and not only to feedback level alone. Therefore, the parametric weights 864 

of the two feedback conditions in the second GLM were replaced by feedback level and 865 

performance expectation ratings, allowing us to assess if neural activity goes up with feedback 866 

level and down with performance expectation ratings confirming a potential interpretation in 867 

terms of PE tracking (Zhang et al., 2020).  868 

On the second level for the first GLM model beta images for the four feedback 869 

conditions were included in a flexible factorial design with two repeated-measurement factors 870 

(PE valence [pos| neg] and Agent). Beta images for the parametric weights of feedback were 871 

extracted from the second and third first-level model for Self and Other. Separate repeated-872 

measures ANOVAs and one sample t-tests (for baseline contrasts) were implemented for PE 873 

valence [neg↗️ pos] and PE surprise as well as feedback level and performance expectation 874 

level. Additional second level models for the PE valence [neg↗️ pos] contrast included the 875 

Valence Learning Bias, embarrassment and pride ratings as between subject covariates, 876 

assessing differential tracking of PEs depending on biased learning and self-conscious affect. 877 

A self-related Pupil Dilation Bias (average slope for positive PEs - average slope for negative 878 

PEs; higher scores indicate stronger pupil dilation for positive PEs) was also included as 879 

covariate in another second level model to assess if the neural response towards negative vs 880 

positive PEs was associated with the pupil dilation response.  881 

We additionally performed psychophysiological interaction (PPI) analyses on the first 882 

level, investigating whether functional connectivity of the dAI, that is commonly activated 883 

during feedback processing independent of agent and feedback valence (conjunction of 884 

baseline contrasts: feedback Self ˄ feedback Other) would differ depending on the PE valence 885 
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[neg↗️ pos]. PPI analyses were computed separately for Self and Other and the resulting 886 

contrast images for the PPI effects were aggregated on the second level using two-sample t-887 

tests contrasting PPI effects for Self vs Other. For each participant, we defined 6-mm radius 888 

spherical ROIs, centered at the nearest local maximum for the conjunction contrast feedback 889 

Self ˄ feedback Other and located within 10 mm from the group maximum within the dAI, 890 

separately for the left dAI (x, y, z: -33 20 -4) and right dAI (x, y, z: 36 20 -7). By computing 891 

the first eigenvariate for all voxels within these ROIs that showed a positive effect for the 892 

conjunction (p < .500), we extracted the time course of activations and constructed PPI terms 893 

using the contrast for the parametric weights of PE valence [neg↗️ pos] for Self or Other, 894 

respectively, resulting in four distinct PPI first level GLMs. One participant was excluded 895 

from the PPI analyses for the right dAI, because no voxels survived the predefined threshold 896 

for eigenvariate extraction. The PPI term, along with the activation time course from the (left 897 

or right) dAI was included in a new GLM for each participant that also included all the 898 

regressors in the initial first level GLM (four regressors for the different cue conditions, each 899 

weighted with the expected performance ratings; two feedback regressors for Self and Other 900 

with each two parametric modulators for PE valence [neg↗️ pos] and PE surprise; two 901 

regressors for the estimation periods for self and other; one regressor for the emotion ratings 902 

phase; one regressor for the instruction phase; six regressors modeling head movement 903 

parameters; a constant term for each session). On the second level we assessed if there was a 904 

stronger functional coupling of the dAI with our predefined ROIs (Amygdala, mPFC, VTA/ 905 

SN) for the Self in contrast to the Other when PE valence [neg↗️ pos] was more negative. 906 

Functional connectivity dynamics were also associated with learning behavior by calculating 907 

Spearman correlations for the Valence Learning Bias and the parameter estimates for the PPI 908 

effect of Self > Other derived from a sphere of 6mm around the peak voxels within our 909 

predefined ROIs.  910 

Thresholding procedure and regions of interest 911 
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According to its suggested role as an integrative hub for motivated cognition and 912 

emotional behavior the AI was defined as one of the regions of interest (ROIs) (Koban and 913 

Pourtois, 2014; Wager and Feldman Barrett, 2017). Due to their specific functional 914 

associations, a bilateral ventral and a bilateral dorsal AI ROI was defined according the three 915 

cluster solution by Kelly and colleagues (2012). The bilateral amygdala was defined as another 916 

ROI and derived from the AAL atlas definition in the WFU PickAtlas (Tzourio-Mazoyer et 917 

al., 2002) due to its similar role for the attention-emotion interaction (Kaspar and König, 2012; 918 

Koban and Pourtois, 2014). The mPFC ROI was also derived from the AAL atlas in the WFU 919 

PickAtlas (label: bilateral frontal superior medial) due to its specific role during social learning 920 

and for biases in self-related belief updating in previous studies (Kuzmanovic et al., 2018; 921 

Sharot, 2011). Additionally, a VTA/ SN ROI, dopaminergic nuclei in the midbrain, was 922 

included (Ballard et al., 2011; Murty et al., 2014) as dopamine signals motivationally important 923 

events, e.g. during reward learning (Schultz, 1998), and has been associated with biases in 924 

memory towards events that are of motivational significance (Adcock et al., 2006). 925 

FMRI results were family-wise-error (FWE) corrected on the whole brain level if not 926 

mentioned otherwise and all coordinates are reported in MNI space. As our predefined ROIs 927 

were chosen with respect to their involvement with the emotion-cognition link, we tested the 928 

effects of our covariates on PE valence [neg↗️ pos] tracking and PPI effects within the ROIs. 929 

Anatomical labels of all resulting clusters were derived from the Automated Labeling Atlas 930 

Version 3.0 (Eickhoff et al., 2005).  931 
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