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Abstract

Here we analyze Darwinian dynamics of cancer introduced in [1], ex-
tended by including a competition matrix, and evaluate (i) when the eco-
evolutionary equilibrium is positive and (ii) when the eco-evolutionary
equilibrium is asymptotically stable.
Keywords: Darwinian dynamics, Lyapunov stability, mathematical on-
cology

1 Introduction

Game-theoretical models help us with understanding cancer and its treatment
[2, 3]. In [1], one such a model, describing eco-evolutinary dynamics of two
cancer cell subtypes, one being completely treatment-sensitive and another one,
evolving treatment-induced resistance, were considered. Different treatment
regimens, which could be more effective than commonly used maximum tol-
erable dose, were analyzed. The interaction between different cancer subtypes
happened only through common carrying capacity. Here we investigate whether
in a model of [1] with cost of resistance in the intrinsic growth rate, expanded
by a competition matrix, we can achieve stable and viable eco-evolutionary
equilibria.

According to the Hartman-Grobman theorem, by linearizing a nonlinear dy-
namic around its equilibrium points, we can judge stability of equilibria in a
vicinity of those points (local stability) [4]. If at least one of the eigenvalues of
the Jacobian matrix corresponding to a particular equilibrium lies on the imag-
inary axis, no judgment can be made on the stability of that equilibrium and
other methods, such as center manifold theory [5], should be utilized. More-
over, due to the linearization, no information can be obtained about the basin
of attraction and global stability cannot be discussed. That is why we adopt
the Lyapunov theory to analyze stability of the eco-evolutionary equilibria, to
see under which conditions they are globally asymptotically stable.
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2 The model

We model the evolution of resistance leading to treatment failure using ordinary
differential equations for a polymorphic tumor cell population. The entire tu-
mor cell population is comprised of two distinct subpopulations: sensitive and
resistant cells (populations xS(t) and xR(t), respectively). In this model, only
the resistant cell subpopulation has the capacity to evolve resistance as a quan-
titative trait uR(t) ∈ R+. We assume that the tumor subpopulations grow logis-
tically and are suppressed by the presence of therapy and natural cell turnover.
The model describes Darwinian dynamics of cancer in response to treatment,
with a fitness-generating function, “G-function” [6]. A G-function describes
how the fitness of a focal cancer cell using a strategy v(t) in the population is
influenced by the environment and by the strategies and population sizes of the
resident subtypes. The set of strategies present in the tumor are represented by
u(t). The population size of cells with a particular strategy is indicated by x(t).
In the polymorphic context, the vector u(t) = (uR(t), uS(t))T encompasses the
strategy for resistant and sensitive cells and x(t) = (xR(t), xS(t))T their popula-
tion sizes. We assume that the physician applies a treatment dose m(t) ∈ [0, 1]
at time t ≥ 0, where m(t) = 0 and m(t) = 1 correspond to no dose and MTD
at time t, respectively. For simplicity, the drug is assumed to be maximally
effective at MTD. The efficacy of the drug is reduced by a focal cell’s resistance
strategy v, innate drug immunity k, and the benefit b of the resistance trait
in reducing therapy efficacy. The G-function is used to derive the evolutionary
dynamics that describe how the resident strategies (i.e. subtypes) of the tumor
change with time. Following Fisher’s fundamental theorem of natural selection,
the resistance strategies change in the direction of the fitness gradient ∂G

∂v with
respect to the fitness of a rare mutant v(t) [7]. This derivative is then evaluated
at the current resident strategies u(t), giving an equation defining the evolu-
tionary dynamics for each resident strategy [6]. The rate at which the strategies
change is scaled by an evolutionary speed term σ. In our model, large values of
evolutionary speed σ correspond to enhanced phenotypic variance which could
result from increased genetic variance or phenotypic plasticity. Innate immunity
k suggests that prior to drug exposure cells possess a mechanism that inhibits
the potency of treatment. This parameter is the only value that reduces drug
efficacy for the sensitive population in our polymorphic model as the sensitive
cells cannot evolve resistance. Treatment efficacy is further diminished by the
magnitude of the benefit b of the resistance strategy for the monomorphic pop-
ulation and the resistant population in the polymorphic model. For a general
introduction to our modelling framework.

The eco-evolutionary dynamics of our polymorphic population can be then
described for i ∈ {R,S} as follows:

ẋi(t) = xi(t)G(v(t),u(t),x(t),m(t))
∣∣
v(t)=ui(t)

(1)

u̇R(t) = σ
∂G(v(t),u(t),x(t),m(t))

∂v(t)

∣∣∣∣
v(t)=uR(t)

(2)
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Here the fitness-generating function is defined as

G(v(t),u(t),x(t),m(t)) = r(v(t))

(
1−

∑
j∈{R,S} a(v, uj)xj(t)

Kmax

)
−d− m(t)

k + bv(t)
,

with a(ui, uj) = αij , αij ∈ [0, 1] being a competition effect of type j on type
i, r(v(t)) = rmax e

−g v(t), and we assume that αii = 1 and uS(t) = 0 for all t.
Using notation

cR(uR(t)) = rmaxe
−guR(t) − d− m(t)

k + buR(t)
, c11(uR(t)) =

rmax

Kmax
e−guR(t),

c12(uR(t)) = −α21c11(uR(t)), cS = rmax − d−
m(t)

k
, c22 =

rmax

Kmax
,

c21 = −α12c22 (3)

we can rewrite dynamics (1)-(2) into the following form:

ẋR(t) = xR(t)

(
cR(uR(t))− c11(uR(t))xR(t) + c12(uR(t))xS(t)

)
,

ẋS(t) = xS(t)

(
cS(t)− c22xS(t) + c21xR(t)

)
, (4)

u̇R(t) = σ

(
− grmaxe

−guR(t)(1− xR(t) + α21xS(t)

Kmax
) +

bm(t)

(k + buR(t))2

)

3 Stability of interior eco-evolutionary eqilibria
via Lyapunov approach

Here we focus on interior equilibria. At first, the necessary conditions for hav-
ing interior equilibria are obtained, and then the stability of this equilibria is
investigated. In the sequel, the time dependence is dropped for simplicity.

The equilibriums of dynamics (4) are

x∗R =

cR(u∗
R)

c11(u∗
R) − α21

cS
c22

1− α12α21

x∗S =
cS
c22
− α12x

∗
R (5)

u∗R =
−k
b

+
−mg +

√
m2g2 + 4mgdb

2bdg

According to (5), conditions for having interior eco-evolutionary equilibrium
points are as follows:

1. α12α21 < 1

2.
cR(u∗

R)
c11(u∗

R) > α21
cS
c22
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3. cS
c22

> α12x
∗
R

4. k2dg + kmg < mb

From condition 3, one can obtain:

cS
c22

> α12
cR(u∗R)

c11(u∗R)
(6)

If cR(u∗R) and cS have different signs, then from Condition 3, and (6), it is
concluded that one of α12 or α21 should be negative. Consequently, cR(u∗R) and
cS should have same signs.

Now, the asymptotic stability of the eco-evolutionary equilibrium points is
investigated. Augmenting cancer cells’ dynamics with the dynamics of resistant
cells’ strategies, a new variable ξ = (xR, xS , uR)T is introduced.

Theorem 1. Considering dynamics (4), under assumptions 1-4, the interior
eco-evolutionary equilibrium is globally asymptotically stable.

Proof. For this purpose, the following candidate Lyapunov function is intro-
duced.

V (ξ) =
∑

i∈{R,S}

Vi(ξ) +
1

2
βu(uR − u∗R)2 (7)

in which

Vi(ξ) = βi

(
ln

(
xi
x∗i

)
+
x∗i
xi
− 1

)
, i ∈ {R,S} (8)

Remark 1. The function ln

(
xi

x∗
i

)
+

x∗
i

xi
− 1 is increasing for xi > x∗i , and is

decreasing for xi > x∗i . Also, it is zero at xi = x∗i .

Remark 2. As can be seen, the candidate Lyapunov function (7) is radially
unbounded.

Time derivative of the candidate Lyapunov function is:

V̇ (ξ) =
∑

i∈{R,S}

V̇i(ξ) + βuu̇R(uR − u∗R) (9)

where

V̇i(ξ) =βi

(
ẋi
xi
− x∗i ẋi

x2i

)
=βi

ẋi
xi

(
1− x∗i

xi

)
, i ∈ {R,S} (10)

Substituting dynamics (4) in (10), yields

V̇S(ξ) = βS

(
1− x∗s

xS

)(
cS − c22xS(t) + c21xR(t)

)
(11)

V̇R(ξ) = βR

(
1− x∗R

xR

)(
cR(uR)− c11(uR)xR(t) + c12(uR)xS(t)

)
(12)
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At the equilibrium point, one can obtain

cS =c22x
∗
S + c22α12x

∗
R (13)

cR(uR) =c11(uR)x∗R + c11(uR)α21x
∗
S (14)

By substituting (13) in (11) and using this fact that c21 = −α12c22 we have

V̇S(ξ) =βS

(
1− x∗s

xS

)(
c22(x∗S − xS) + c22α12(x∗R − xR)

)
=− βS

xS
c22(xS − x∗S)2 +

βS
xS
c22α12(xS − x∗S)(x∗R − xR) (15)

With a similar approach one can obtain

V̇R(ξ) = −βR
xR

c11(uR)(xR − x∗R)2 +
βR
xR

c11(uR)α21(xS − x∗S)(x∗R − xR) (16)

According to (15), and (16), if xS − x∗S and xR − x∗R have a same sign, then
both of V̇S(ξ) and V̇R(ξ) become negative definite. In this case, by increasing
βS and βR, and decreasing βu, regardless of the sign of u̇R(uR − u∗R), the time
derivative of the Lyapunov function (9) becomes negative. In the sequel, we will
show via contradiction that for the remaining cases, V̇R(ξ) and V̇S(ξ) cannot be
simultaneously positive.
We assume that xR < x∗R and xS > x∗S , and rewrite (15) and (16) as follows:

V̇S(ξ) = βSc22
xS − x∗S
xS

(
α12(x∗R − xR)− (xS − x∗S)

)
V̇R(ξ) = βRc11

x∗R − xR
xR

(
α21(xS − x∗S)− (x∗R − xR)

)
(17)

If we assume that V̇R(ξ) and V̇S(ξ) are positive simultaneously, it yields

α12(x∗R − xR) > xS − x∗S (18)

α21(xS − x∗S) > x∗R − xR (19)

By multiplying (18) with α21 we have

α21α12(x∗R − xR) > α21(xS − x∗S) > x∗R − xR (20)

This means that α21α12 > 1 which contradicts with condition 1. As a result,
V̇R(ξ) and V̇S(ξ) cannot be simultaneously positive. This fact can be proved in
a similar way for the case xR > x∗R and xS < x∗S . Thus, always at least one
of the V̇R(ξ) or V̇S(ξ) is negative. In this case, we increase the coefficient of
the V̇i(ξ) which is negative, and decrease the other coefficients, and with this
approach, the time derivative of the candidate Lyapunov function (7) is always
negative for all the interior equilibrium points.
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4 Conclusion

The conditions for having an interior eco-evolutionary equilibrium of cancer Dar-
winian dynamics was obtained and the asymptotic stability of these equilibria
was proved.
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