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Abstract 

Experimental evidence in both human and animal studies demonstrated that deep brain stimulation (DBS) 

can induce short-term synaptic plasticity (STP) in the stimulated nucleus. Given that DBS-induced STP 

may be connected to the therapeutic effects of DBS, we sought to develop an appropriate computational 

predictive model that infers the dynamics of STP in response to DBS at different frequencies. Existing 

methods for estimating STP – either model-based or model-free approaches – require access to pre-synaptic 

spiking activity. However, in the context of DBS, extracellular stimulation (e.g. DBS) can be used to elicit 

presynaptic activations directly. We present a model-based approach that integrates multiple individual 

frequencies of DBS-like electrical stimulation as pre-synaptic spikes and infers parameters of the Tsodyks-

Markram (TM) model from post-synaptic currents of the stimulated nucleus. By distinguishing between the 

steady-state and transient responses of the TM model, we develop a novel dual optimization algorithm that 

infers the model parameters in two steps. First, the TM model parameters are calculated by integrating 

multiple frequencies of stimulation to estimate the steady state response of post-synaptic current through a 

closed-form analytical solution. The results of this step are utilized as the initial values for the second step 

in which a non-derivative optimization algorithm is used to track the transient response of the post-synaptic 

potential across different individual frequencies of stimulation. Moreover, we apply our algorithm to 

empirical data recorded from acute rodent brain slices of the subthalamic nucleus (STN) during DBS-like 

stimulation to infer dynamics of STP for inhibitory synaptic inputs. 
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1. Introduction 

Short-term synaptic plasticity (STP) is an essential property of neuronal networks that is involved in 

information processing of the brain (1–3). STP enables neurons to communicate with each other through 

multiple frequency bands (1). This property can alter the strength of a synapse based on the history of 

presynaptic activities and regulates the frequency band of the transmitted information. According to recent 

experimental observations in humans and animals that receive invasive electrical stimulations (2,4–6), the 

strength of the synapse – reflected by the amplitude of the recorded postsynaptic currents in the rat or field 

potentials in single unit recordings of the human brain – varies based on the frequency of electrical 

stimulation. Such studies demonstrated that high-frequency electrical stimulation induces short-term 

synaptic depression in the stimulated nuclei (2,4,7,8). Additionally, theoretical studies (9–12) utilized 

different models of STP and showed that synaptic depression during high frequency DBS is the most 

prominent feature of suppression of firing rates in stimulated nuclei. Rosenbaum et al. (12) showed that 

axonal and synaptic failures can cause synaptic depression in high frequency DBS. Accordingly, they 

derived a computational model to reproduce the suppression of  β oscillations (13-30Hz) observed in 

parkinsonian patients during DBS. Alternatively, Farokhniaee et al. (11) and Milosevic et al. (2) used the 

Tsodyks-Markram (TM) model of STP to incorporate the impact of different types of synaptic plasticity in 

a leaky integrate and fire model to replicate firing patterns of stimulated neurons. The TM model used in 

these studies can justify the experimental observation. However, the parameters of stimulation-induced STP 

were not well characterized in previous theoretical studies. In the present study, we propose a novel 

parameter estimation technique to estimate the dynamics of stimulation-induced STP by the well-known 

TM model. 

Tsodyks and Markram introduced a phenomenological model that accurately represents the dynamics 

underlying facilitation and depression observed in  short-term synaptic plasticity (13,14). Although several 

other models have been developed to describe STP, the TM model and its extended version (5,13,15,16) 

are wildly used due to their simplicity and interpretability of underlying parameters. Generally speaking, 

the parameters of the TM model can be estimated using least mean square error (LMSE) approaches (13) 

in which the parameters are yielded to minimize the mean square error (MSE) between the model output 

(i.e., the postsynaptic current) and the recorded postsynaptic currents. However, the LMSE-based 

algorithms are prone to local minima and might result in low accuracy parameter estimation (13). 

To address the local minima problem, probabilistic approaches are  proposed by Costa et al. (13) to provide 

an estimation of the posterior distribution of the TM parameters and the uncertainty of the estimation 

(13,14). More recently, a new method was developed by Ghanbari et al. (16,17) to estimate the TM 
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parameters from extracellular recordings by utilizing a generalized linear model (GLM) concurrent to the 

TM model and reproducing the firing rate of the postsynaptic neuron. Ghanbari et al. (16,17) also used a 

different GLM to directly estimate the STP dynamics, a model that can be considered as an alternative to 

the TM model. Rossbroich et al. (18) introduced a new synaptic model which represents short-term 

dynamics by combining an exponential kernel with a non-linear readout function. The simplicity of this 

model enabled applying the concepts of STP in artificial neural networks to examine its role in learning.  

Since the dynamics of the TM model or any other STP models are frequency dependent, it is crucial to infer 

STP parameters across different frequencies of presynaptic activations. Traditionally, STP parameters were 

adjusted to fit the model to a neuronal recording during single frequency stimulation or a single frequency 

stimulation with one recovery spike after a 1 second period of silence (13,16). Costa et al. (13) showed that 

using stochastic poisson point process as the presynaptic stimulation significantly improves the accuracy 

and the speed of their probabilistic algorithm. Ghanbari et al. also used a poisson process for the presynaptic 

spike firing, which is more efficient in estimating the TM parameters. Despite the benefits of using 

stochastic firing patterns, this type of stimulus is not common in experimental protocols.  

Recent studies showed that STP is involved in the underlying mechanism of deep brain stimulation (DBS) 

of multiple subcortical regions (2,8,19,20). The experimental procedure for studying STP during DBS 

involves applying multiple individual frequencies of stimulation. Using only one stimulation frequency 

cannot provide enough accuracy in estimating all parameters. For instance, in Costa’s paper (13) the 

estimation posterior distribution of facilitation time constant is large, which shows the low accuracy of this 

strategy. Even if the parameters provide consistent output at the specific frequency that is being used for 

the inference, they are not reliable to predict the STP for other unobserved stimulation frequencies.  

Designing an algorithm for estimating the TM model parameters accurately requires a deep understanding 

of the dynamics of the postsynaptic current (PSC) in response to DBS-like stimulations. Since with DBS at 

a fixed frequency the inter-pulse intervals remains unchanged, the PSC reaches a steady-state value after a 

transient state. Therefore, the DBS-induced PSC response comprises of transient and steady-state 

components. Fitting the TM model to DBS recordings without considering these components might result 

algorithms that converge to local minima. 

To resolve this issue, we divided the PSCs into transient and steady-state components which capture 

different features of the postsynaptic response. It is worth mentioning that the steady-state values of the 

PSC for different stimulation frequencies can be calculated analytically and one can benefit from fast 

gradient-based optimization algorithms to estimate the TM model parameters. However, we show in this 

paper that the estimated parameters based on the steady-state values of the PSC cannot necessarily replicate 
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the underlying transient response of the TM model. In other words, the TM model might have similar 

steady-state values of the PSC, but different transient responses.  

We developed a dual optimization algorithm that incorporates the estimated parameters of the TM model 

calculated from steady-state values of the PSC as initial parameters for an algorithm that further estimates 

those parameters based on the transient responses of the PSCs. This approach improves the accuracy and 

speed of the parameter’s estimation. Using extensive synthetic data and experimental recordings of the 

acute slice of the rat subthalamic nucleus (STN) in response to stimulation, we demonstrate that the 

performance of the dual optimization algorithm significantly outperforms that of conventional methods. 

2. Results 

2.1. Electrical stimulation pulses as pre-synaptic spikes of a stimulated neuron 

Recent experimental studies in the human brain (2,4,9) demonstrated that high frequency DBS induces STP 

in the stimulated nuclei. In-vitro experiments in rat have suggested that high frequency electrical stimulation 

of STN induces synaptic depression which can be observed in the recorded postsynaptic currents of the 

stimulated nuclei. A recent theoretical framework on the cellular mechanisms of DBS (9), revealed that 

DBS-evoked excitatory and inhibitory neuronal responses (of various substructures of the basal ganglia and 

thalamus in human brain) are the results of simultaneous activations of convergent afferent inputs. To this 

end (9), we assumed that the timing of stimulation pulses can be considered as pre-synaptic (stimulation-

evoked) spikes (the effect of axonal failure can be adjusted in the model) which simultaneously activate all 

afferent inputs. Here, we used the TM model to describe stimulation-induced STP. The TM model is a set 

of differential equations that simulate the dynamics of short-term facilitation (STF), short-term depression 

(STD), and the postsynaptic current that is generated as a result of release of neurotransmitters in the 

synaptic cleft. To cover a wider range of synaptic dynamics we utilized an extended version of the TM 

model as follows. 

𝑑𝑢

𝑑𝑡
=      

𝑈 − 𝑢(𝑡)

𝐹
+ 𝑓(1 − 𝑢(𝑡−))𝛿(𝑡 − 𝑡𝑠𝑝𝑘), (1) 

𝑑𝑅

𝑑𝑡
=       

1 − 𝑅(𝑡)

𝐷
− 𝑢(𝑡−)𝑅(𝑡−)𝛿(𝑡 − 𝑡𝑠𝑝𝑘), 

 

(2) 

𝑑𝐼

𝑑𝑡
=       −

𝐼

𝜏𝑠𝑦𝑛
+ 𝐴𝑢(𝑡+)𝑅(𝑡−)𝛿(𝑡 − 𝑡𝑠𝑝𝑘) 

 

(3) 
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where 𝑢 represents the neurotransmitters utilization probability that manifests the STF dynamics, and 

𝑟 represents the fraction of available neurotransmitters that mimics STD dynamics. {f, U, F, D} are the 

parameters of the model denoting magnitude of facilitation, baseline release probability, facilitation time 

constant, and depression time constant, respectively. The effect of each presynaptic action potential 

(stimulation-evoked spike in this study) was expressed by the Dirac delta function, firing at 𝑡 = 𝑡𝑠𝑝𝑘. The 

arrival of spikes to the synaptic terminal triggers the release of the neurotransmitter vesicles and transfers 

the neuronal signal to the postsynaptic neuron. The release of neurotransmitter appears on the postsynaptic 

input current, regulates the probability of the transmitters release and the number of available vesicles 

(Equation 1 and 2). Each of these processes will be recovered to their initial values with their specific time 

constants. Since the time constant of these two recovery processes are not equal, the synaptic efficacy will 

change for the next spike arriving at the presynaptic terminal. The postsynaptic current decays to zero with 

neurotransmitter time constant (𝜏𝑠𝑦𝑛), which is determined by the type of neurotransmitter and the synaptic 

connection (e.g.  for glutamatergic synapses, and  for GABAergic synapses). 

In this study, we used excitatory synapses of  to generate the synthetic data. It is to be noted that 

our results are valid for both excitatory and inhibitory synapses. Moreover, we neglected the modulation of 

the synaptic delay as it is very small compared to the time constants of the STP (21). 

2.2. Steady-state and transient response of TM model to electrical stimulation 

To model stimulation-induced STP, we replaced 𝑡𝑠𝑝𝑘 in the TM model with the stimulation events. In 

consistent with experimental protocols, the inter-spike time intervals of stimulation pulses for each 

individual frequency of stimulation were kept constant. Thus, we simplified the TM model by only 

considering the inter-spike interval of stimulation pulses (i.e., a constant number for each individual 

frequency of stimulation). We referred to this model as Discrete-time Tsodyks-Markram model. The 

discrete-time TM can be written as: 

𝑢[𝑛] = 𝑓 + (1 − 𝑓) (𝑈 + (𝑢[𝑛 − 1] − 𝑈)𝑒𝑥𝑝 (
−1

𝐹𝐷𝐵𝑆 ×  𝐹
 )), 

(4) 

𝑅[𝑛] = 1 + ((1 − 𝑢[𝑛 − 1]) × 𝑅[𝑛 − 1] − 1)𝑒𝑥𝑝 (
−1

𝐹𝐷𝐵𝑆 × 𝐷
 ) 

(5) 

𝐼[𝑛] = 𝐼[𝑛 − 1]𝑒𝑥𝑝 (
−1

𝐹𝐷𝐵𝑆 ×  𝜏𝑠𝑦𝑛
 ) + 𝐴𝑢[𝑛]𝑅[𝑛] 

(6) 
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where 𝐹𝐷𝐵𝑆 denotes the frequency of stimulation. and  indicate 

respectively (as in equations 1 and 2), and 𝑡𝑛 is the time of the 𝑛-th stimulation 

pulse (presynaptic spike). 𝐼[𝑛] = 𝐼(𝑡𝑛
+) is the instantaneous postsynaptic response to 𝑛-th stimulation 

pulse, reflecting the peak of the postsynaptic current (PSC). 

As 𝑛 increases, the peak of PSC converges to a steady-state value and remains unchanged. This steady-

state value can be formulated based on equations 4-5 of discrete-time TM model as follow: 

𝑢∞ =
𝑓 + (𝑓 − 𝑈) 𝑒𝑥𝑝 (

−1
𝐹𝐷𝐵𝑆 × 𝐹

)

1 + (1 − 𝑓) × 𝑒𝑥𝑝 (
−1

𝐹𝐷𝐵𝑆 ∗ 𝐹
)

; 

(7) 

𝑅∞ =
1 − 𝑒𝑥𝑝 (

−1
𝐹𝐷𝐵𝑆 × 𝐷)

1 − (1 − 𝑢∞) × 𝑒𝑥𝑝 (
−1

𝐹𝐷𝐵𝑆 × 𝐷)
; 

(8) 

𝐼∞ =
𝑢∞ 𝑅∞

1 − 𝑒𝑥𝑝 (
−1

𝐹𝐷𝐵𝑆 × 𝜏𝑠𝑦𝑛
)

 

 

(9) 

where  and  represent the steady-state values of the utilization probability and the peak of PSC, 

respectively. 

To validate whether the steady-state values calculated by equation 9 were matched with those obtained by 

the TM (or equivalently the discrete-time TM model), we generated the PSC of the TM model with a 

facilitatory synapse given different frequencies of DBS-like pulses. As it is shown in Figure 1.A, the 

steady-state values of the PSC of both TM and discrete-time TM models fit those obtained by analytical 

solutions across all stimulation frequencies. Several examples of the time traces of the PSC responses and 

their analytically calculated steady-state responses (equation 9) were shown in Figure 1.B.  
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Figure 1. Steady-state responses of postsynaptic current (PSC) in response to different stimulation 

frequencies. A) The steady-state value of PSCs calculated by the analytical formula (blue line) 

accurately fits to the steady-state responses (red dots) of the discrete TM model (calculated for the 100th 

stimulation pulse). B) An example of PSC in response to 1, 5, 10, 20, 30, 50, 100, 130, 200 Hz stimulation 

pulses. The red dashed line represents the steady-state value of PSCs calculated from analytical solution 

(see methods). The black plot shows the time trace of postsynaptic PSC in response to the stimulation 

calculated from the TM model. The blue dots represent the local peaks of the PSC calculated from 

discrete TM model. Each panel shows the response of PSC to 30 stimulation pulses at different 

frequencies. The steady-state values of both TM and discrete TM models converge to those obtained by 

analytical solution.  
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2.3. Inferring STP parameters using steady-state values of postsynaptic currents 

Since the relationship between the steady-state values of PSCs and TM model parameters can be formulated 

in an analytic form, one can estimate these parameters by a solving a system of equations given enough 

data points (i.e., steady-state PSCs for different stimulation frequencies). However, since these equations 

are not linear and the recordings are noisy, we utilized an optimization algorithm to find a set of parameters 

that minimizes the objective function defined based on the peak of the PSCs as derived in equations 7-9. 

Here, we used a gradient-based optimization algorithm, including a trust-region method, to find the optimal 

set of the parameters that minimize the L2 norm of the difference between the steady-state PSC calculated 

in equation 9 and that obtained experimentally across different stimulation frequencies. This cost function 

can be written as: 

𝑆𝑡𝑒𝑎𝑑𝑦 − 𝑠𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = ∑ (𝐼∞
𝑓𝑟𝑒𝑞

− 𝐼∞
𝑓𝑟𝑒𝑞

(𝜃))2

𝑓𝑟𝑒𝑞∈𝐹𝐷𝐵𝑆

 (10) 

where  is the steady-state value of PSCs at stimulation frequency of  , selected from the set of 

recorded frequencies, .  is the estimation PSC obtained by the analytical formula (equation 

7-9) with the parameter set of   Using the trust-region algorithm, we obtain 𝜃 that minimizes 

equation (10).  

To assess the performance of the estimated parameters, we generated a set of synthetic data comprising five 

different types of STPs, ranging from strong depression to strong facilitation dynamics. These parameters 

were chosen from [7] and [11]. Figure 2-A shows the distribution of the estimated parameters using the 

steady-state-based method, running 100 times with different initial values. Note that the low variability in 

the distribution of the estimated parameters represents the accuracy of the algorithm (16,17). The variance 

of estimated parameters , and  were relatively higher than those of  and . This problem in estimating 

, and  were already reported in (13,16). In Figure 2-B, we show that the PSCs calculated by estimated 

parameters (dashed lines) are closely matching with those generated by the TM model with true parameters 

(circles) across different stimulation frequencies.  
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Figure 2. Parameter 

estimation of TM model 

using steady-state responses 

of postsynaptic currents; A) 

Distribution of estimated 

parameters of the TM model 

for 5 different types of 

synaptic plasticity (16). The 

violin plots and black bars 

show the distribution of 

estimated parameters and their 

true values, respectively. B) 

Steady-state PSC in response 

to stimulation of different 

frequencies for true (dots) and 

a randomly selected set of the 

estimated parameters (dashed 

lines). 
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2.4. Dual optimization 

2.4.1. Challenge: parameter estimation based on steady-state responses of postsynaptic 

currents does not guarantee a global solution for the TM model 

Although the steady-state-based method can accurately fit the  in equation 9 to the observed 

steady-state PSCs, the TM parameters acquired from this method did not always replicate the 

underlying transient response. In other words, the steady-state-based method might suffer from local 

minima. To better clarify this point, we applied the steady-state-based method to estimate the model 

parameters given steady-state PSCs at 8 different frequencies including 5, 10, 20, 30, 50, 100, 130, 200 

Hz. With five random initializations, we achieved five different parameter sets that generate similar 

steady-state PSCs. However, the transient responses of the TM model using these parameters were 

different from each other and from those generated by original (true) parameters. Figure 3 shows an 

example in which the steady-state values of the analytically calculated PSCs (for different stimulation 

frequencies) fit those calculated by the TM model, but the transient responses are different.  

 

 

Figure 3. Mismatch of the transient PSCs in spite of similar steady-state responses; Each color 

indicates a specific type of STP and each panel represents PSC response to an individual stimulation 

frequency. Although the steady-state PSCs of the STP types are similar at all illustrated stimulation 

frequencies, the transient phases are remarkably different due to variations in the parameters sets.  

  

Using the discrete-time TM model, one can only plot peak of PSCs versus presynaptic spike times. As 

shown in Figure 3, this representation enables us to normalize the timescale of the PSC response based on 
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stimulation pulse number, which can better illustrate both steady-state and transient responses of the PSCs 

for different stimulation frequencies.  

2.4.2. Proposed Solution: fitting transient and steady-state responses of postsynaptic 

currents 

As observed in Figure 3, the transient and steady-state values of PSCs capture different features of the STP 

dynamics. Thus, applying either of them alone cannot guarantee accurate estimation. To benefit from both 

transient and steady-state values of PSCs, we combined the fitting algorithm for the state-state values of 

PSCs with a LMSE-based optimization algorithm applied to transient response of PSCs. Our proposed 

algorithm uses the estimated parameters calculated from steady-state values of the PSCs (see Section 2.2) 

in response to different frequencies of stimulation as initial parameters for a non-derivative optimization 

algorithm, namely, fminsearch (see Methods, Section 3.3.), that estimates the TM model parameters from 

the transient responses of the PSCs. By utilizing the new estimates as initial parameters of the trust-region 

algorithm for the steady-state values of PSCs, this strategy can continue to sequentially improve the 

accuracy of the estimated TM model parameters. We use the LMSE method to estimate the TM model 

parameters from transient responses of PSCs. The objective function can be written as  

∑
1

𝑁𝑡𝑟𝑎𝑛𝑠
∑ (𝐼𝑛

𝑓𝑟𝑒𝑞
− 𝐼𝑛

𝑓𝑟𝑒𝑞
(𝜃))2

𝑁𝑡𝑟𝑎𝑛𝑠≜20

𝑛=1𝑓𝑟𝑒𝑞∈𝐹𝐸𝑆

 (11) 

where  is the peak value of PSC in response to the n-th stimulation pulse. is the estimated 

PSC in the discrete-time TM model with parameter set . The sum over the stimulation 

pulses was limited to , which indicates the length of the transient response of the PSC. This number 

can be defined mathematically as explained in Methods Section 3.2. Using various types of plasticity for 

different stimulation frequencies in our simulations we found that the length of the transient section is 

between 15 to 20 stimulation pulses, regardless of the stimulation frequency. Therefore, we used a constant 

number of 20 stimulation pulses as the length of the transient state in our optimization algorithm. This 

modification improves the speed of the LMSE method used for the transient part of the PSC and reduces 

convergence time in the dual optimization algorithm.  

It is to be noted that conventional LMSE methods use the total length of the PSC response to estimate the 

TM model parameters, which can be very time consuming and computationally expensive. Moreover, the 

LMSE method might only fit to the steady-state values and provides a suboptimal estimation because the 

number of data points for steady-state responses is usually larger than that for transient ones. 
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The most remarkable advantage of the dual optimization algorithm to the conventional LMSE method is 

that the steady-state-based part of the dual optimization algorithm provides a strong initialization for the 

transient part. To highlight the impact of such initialization, we compared the performance of the 

conventional LMSE method (applied to the full length of PSC) with a random initial guess compared to the 

LMSE method (applied to the transient part of PSC) initialized by a set of parameters obtained from the 

steady-state-based method. We added a white noise with a standard deviation of 20 percent of the maximum 

PSC amplitude to generate noisy PSCs to assess the robustness of estimation methods in the presence of 

noise. 

The logarithm of the MSE between the TM model output and the original PSC was calculated for 300 

iterations of the fminsearch algorithm. Similar to the MSE, one can measure the accuracy of the estimated 

parameters by calculating the L2 norm between these parameters and their original values. Figure 4.A and 

4.B respectively show that the MSE and the distance measures calculated by the dual optimization 

algorithms are significantly lower than those obtained by conventional LMSE methods. Moreover, strong 

initialization in the dual optimization algorithm results in a faster convergence compared to the 

conventional LMSE method. Four samples of the estimated parameters, by each method, were chosen from 

different iterations of the fminsearch algorithm to create PSC response. These responses are plotted against 

the original PSC in Figure 4C. 

 

 

 

Figure 4. Comparison between accuracy and speed of convergence for the dual optimization 

approach and the conventional LMSE approach. A) The log MSE of the model output at each iteration 

of the non-derivative optimization B) The average distance (norm 2 of vector) between 
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the estimated parameter set at each iteration and the true parameter set C) The peak PSC series generated 

by the estimated parameters at some iterations of the model.  

 

To verify the generalizability of the dual optimization algorithm for different types of STP, we generated a 

large synthetic dataset for PSCs by the TM model with 1000 randomly selected parameter sets. We 

compared the performance of the dual optimization approach with the conventional LMSE and the steady-

state-based method. Figure 5 shows abstract regression plots of the three estimation approaches for each 

parameter of the TM model. In regression plots, the estimated parameters (y-axis) are plotted against the 

original ones (x-axis).  

As can be seen in Figure 5, the dual optimization approach remarkably increases the accuracy (the samples 

in the y-axis have the same values as those in the x-axis) and precision (i.e., standard deviation reflected by 

the shaded areas) of all estimated parameters compared to the other algorithms. Specifically, the parameter 

𝐹 was estimated more accurately by the dual optimization algorithm compared to that by the LMSE method. 

To better clarify the accuracy and precision of the estimated parameters, we chose one sample of the 

synthetic dataset together with corresponding estimated parameters and showed their distributions. In 

Figure 6.A, the mean and the standard deviation of the estimated parameters indicate the accuracy and 

precision of the algorithm, respectively. As it is obvious in this figure, the dual optimization algorithm 

outperforms the conventional LMSE and steady-state based methods.  Neither MSE-based nor steady-state-

based approaches achieve the optimum solution, and they suffer from local optima. An example of PSCs 

generated by the estimated parameters obtained from each algorithm was shown against the synthetic PSCs 

in Figure 6.B at three stimulation frequencies. The above three algorithms successfully predicted the 

steady-state values of the PSC, despite the variability of their estimated parameters.  However, as expected, 

the steady-state-based method failed to fully predict the transient PSCs. Although the estimated parameters 

obtained by the dual optimization method generated fairly close outputs to that of the LMSE method, the 

estimated parameters of dual optimization method are significantly more precise and closer to the correct 

parameters underly the synthetic data. 
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Figure 5. Comparison between the performance of the steady-state-based, the conventional LMSE, 

and the dual optimization approaches in estimating parameters of the TM model. Green, blue, and 

red colors represent the steady-state-based, the conventional LMSE, and dual optimization approaches, 

respectively. The thick lines represent smoothed moving average (Hann window) of the estimation. The 

shaded areas show the 68.2% confidence interval of the estimated values. As the estimation regression 

line gets closer to the  line the correlation of the estimation and true values increases, and the 

estimation is more accurate. 
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Figure 6. Distribution of estimated parameters by the three approaches. A) Normalized probability 

distribution function (PDF) of the estimated parameters by the three approaches. The PDFs have been 

estimated from the results of applying each algorithm with 1000 different initializations. Moreover, a 5% 

white noise has been added to the reference data. The dual optimization approach improved the 

estimation precision by decreasing the standard deviation of the PDF and moving the mean of the PDFs 

closer to the true values. Note that the PFDs of the dual optimization approach are extremely narrow that 

might be covered by the true value lines. The x-axis range is also subjective to only provide a clear 

illustration thus the distance between the peak of PDFs in the upper right panel (D), is lower than it 

appears in the figure. B) The discrete-time TM model output generated by the estimated parameters that 

are obtained from the three methods. The plots include the trace of PSC response for both transient state 

(from stimulus 0 to 10) and steady-state (last 50 stimuli). 

 

2.5. An alternative solution in case of lack of information 

Although the dual optimization approach has several advantages, the number of data points required for 

estimating the parameters must be at least as many as the number of the model parameters (in the case of 

four-parameter TM model we require 4 recorded DBS frequencies). However, the available experimental 

data only provides the PSC recordings during 3 DBS frequencies, which can be compensated in fitting the 

transient part of the PSC response. To estimate the TM parameters from experimental recordings from 3 

frequencies, we modified the dual optimization by freezing one of the parameters during the fitting of the 

steady-state PSC. Since the parameter  has the least effect on changing the steady-state PSC, we choose 

it as the frozen parameter in the algorithm. This modified version of the dual optimization approach has an 

imbalance pace in fitting the steady-state versus the transient part of the response. Therefore, we should 
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decrease the number of optimization steps in both steady-state and transient optimizations and increase the 

iterations between these two steps until convergence. This modification prevents the optimizer from 

overfitting and becoming trapped in local minima. Figure 7 shows the distribution of the estimated 

parameters with 1000 different initial guesses. Since in optimizing the steady-state the parameter is 

frozen, the algorithm cannot estimate the correct value of the model parameter. However, dual optimization 

provides a reliable result compared with the other methods. 

 

 

Figure 7.A) Distribution of estimated parameters by the three approaches with only 3 recorded 

responses. Normalized (PDF) of the estimated parameters by the three approaches. The PDFs have been 

estimated from the results of applying each algorithm with 1000 different initial guesses. Moreover, a 

5% white noise has been added to the reference data. The dual optimization approach improved the 

estimation precision by decreasing the standard deviation of the PDF and moving the mean of the PDFs 

closer to the true values. B) The discrete-time TM model output generated by the estimated parameters 

(in case of having the only the observed frequency) that are obtained from the three methods. The plots 

include the trace of PSC response for both transient state (from stimulus 0 to 10) and steady-state (last 

50 stimuli). 

 

2.6. Estimating the TM Parameters from in vitro Recording of rat STN Neurons 

To test the performance of the algorithm in experimental data, we applied the dual optimization approach 

to in vitro recordings of rat STN. In this experiment (see Methods, Section 3.6.), efferent axons that are 
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connected to STN neurons were activated by extracellular stimulation pulses. The details of the 

experimental procedure are mentioned in (7), and the Methods section.  

To apply the dual optimization method on the experimental data, it is necessary to adjust the hyper-

parameters of the algorithm including the number of iterations over transient and steady states, maximum 

number of steps for steady-state optimization, maximum steps for transient optimization, and the factor of 

penalizing distance from steady-state estimation. These hyper-parameters were obtained by trial and error 

to acquire the best results. It is to be noted that the dual optimization algorithm was robust for a wide range 

of hyper-parameters and generated reasonably accurate PSCs.  

As shown in Figure 8.A, The PSCs generated by the estimated parameters precisely matched to the PSCs 

recorded experimentally for three different frequencies of the electrical stimulation. It is worth highlighting 

that estimated parameters were consistent across frequencies, confirming that the TM model with accurate 

parameters captures the dynamics of STP. Figure 8.B shows the distribution of the TM model parameters 

by running the algorithm from 100 different initial guesses. The low variance of the distributions shows 

that the results are repeatable, and the estimation is precise. Note that we used a logarithmic scale to show 

the distribution of parameters because the standard deviation of the parameter was extremely low, and a 

logarithmic scale provides a better resolution for lower values. 

 

 

  

Figure 13. Inferring the model parameters from the experimental data. A) The output generated by 

the estimated parameters perfectly fitted the experimental data. B) Distribution of the estimated 
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parameters by 100 trials of the dual optimization approach with different initial guesses. The estimated 

parameters are low variance with shows the confidence of the method.  

 

3. Methods 

3.1. Discrete-time Tsodyks-Markram model of STP 

Despite intrinsic spike firing of the presynaptic neuron in stimulation-induced STP, it is assumed that all 

are equal during each trial. Since the presynaptic firing events happen every , and we can only 

calculate the state of the variables ( ) at . Hence, the discrete-

time TM model or can be described by a recursive function. We started by defining the 

following equations: 

𝑢(𝑡) =  ∆𝑢𝑛𝜎(𝑡𝑛) + 𝑢𝑛(𝑡), (12) 

∆𝑢𝑛 ≜   𝑢(𝑡𝑛
+) −  𝑢(𝑡𝑛

−), (13) 

𝑢𝑛(𝑡) ≜ 𝑢(𝑡)          ;           𝑡𝑛−1 < 𝑡 ≤ 𝑡𝑛 , (14) 

where in equation 12,  is defined as summation of the rapid changes ∆𝑢𝑛  at the stimulation arrival 

time  (equation 13), and the exponential dynamics between two stimulation denoted as (equation 

14). We calculated both parts as follow to infer equation 15 for the model states at the time 𝑡𝑛
+ which is 

right after arrival of the n-th stimulation pulse: 

∆𝑢𝑛 = 𝑢(𝑡𝑛
+) −  𝑢(𝑡𝑛

−)  

= lim
𝜎→0

∫ (
𝑈 − 𝑢(𝑡)

𝐹
+ 𝑓 × (1 − 𝑢(𝑡𝑛

−)) × 𝛿(𝑡 − 𝑡𝑠𝑝)) 𝑑𝑡
𝑡𝑛+𝜎

𝑡𝑛−𝜎

  

 =  𝑓 × (1 − 𝑢(𝑡𝑛
−))  

 𝑢(𝑡𝑛
+) =  𝑓 + (1 − 𝑓) × 𝑢(𝑡𝑛

−) (15) 

A similar approach can be applied for the state value between to stimulation pulses to infer the equation 

16 which shows formulate based on the : 
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𝑢𝑛(𝑡)   = ∫ (
𝑈 − 𝑢(𝑡)

𝐹
+ 𝑓 × (1 − 𝑢(𝑡𝑛

−)) × 𝛿(𝑡 − 𝑡𝑠𝑝)) 𝑑𝑡
𝑡𝑛

−

𝑡𝑛−1
+

  

= ∫
𝑈 − 𝑢(𝑡)

𝐹
𝑑𝑡

𝑡𝑛

𝑡𝑛−1

  

= 𝑈 + (𝑢(𝑡𝑛−1
+) − 𝑈)𝑒𝑥𝑝 (

−(𝑡 − 𝑡𝑛−1)

𝐹
 ) ,  

𝑢𝑛(𝑡𝑛
−) =  𝑢𝑛(𝑡 = 𝑡𝑛

−)   

=  𝑈 + (𝑢(𝑡𝑛−1
+) − 𝑈)𝑒𝑥𝑝 (

−(𝑡𝑛 − 𝑡𝑛−1)

𝐹
 ) ,  

𝑢𝑛(𝑡𝑛
−) =   𝑈 + (𝑢(𝑡𝑛−1

+) − 𝑈)𝑒𝑥𝑝 (
−1

𝐹𝐷𝐵𝑆 × 𝐹
 ). (16) 

By combining equation 16 in equation 15 we achieve the recursive relation between and 

which can be used as the definition of the discrete-time TM model (equation 18): 

𝑢(𝑡𝑛
+) =  𝑓 + (1 − 𝑓)𝑢(𝑡𝑛

−),  

𝑢(𝑡𝑛
+) = 𝑓 + (1 − 𝑓) (𝑈 + (𝑢(𝑡𝑛−1

+) − 𝑈)𝑒𝑥𝑝 (
−1

𝐹𝐷𝐵𝑆𝜏𝐹𝑎𝑐
 )). 

(17) 

𝑢[𝑛] ≜ 𝑢(𝑡𝑛
+) ,  

𝑢[𝑛] =  𝑓 + (1 − 𝑓) (𝑈 + (𝑢[𝑛 − 1] − 𝑈)𝑒𝑥𝑝 (
−1

𝐹𝐷𝐵𝑆𝜏𝐹𝑎𝑐
 )). (18) 

A similar process can be done on the state variable . Similarly, we started by defining the following 

equations: 

𝑟(𝑡) =  ∆𝑟𝑛 + 𝑟𝑛(𝑡) , (19) 

∆𝑟𝑛  ≜   𝑟(𝑡𝑛
+) −  𝑟(𝑡𝑛

−) , (20) 

𝑟𝑛(𝑡) ≜ 𝑟(𝑡)          ;           𝑡𝑛−1 < 𝑡 ≤ 𝑡𝑛 , (21) 

where in equation 19,  is defined as summation of the rapid changes   at the stimulation arrival 

time  (equation 20), and the exponential dynamics between two stimulation denoted as (equation 
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21). We calculated both parts as follow to infer equation 22 for the model states at the time  which is 

right after arrival of the n-th stimulation pulse: 

∆𝑟𝑛 = 𝑟(𝑡𝑛
+) −  𝑟(𝑡𝑛

−)  

= lim
𝜎→0

∫ (
1 − 𝑟(𝑡)

𝐷
− 𝑢(𝑡−)𝑟(𝑡−)𝛿(𝑡 − 𝑡𝑠𝑝𝑘)) 𝑑𝑡

𝑡𝑛+𝜎

𝑡𝑛−𝜎

 ,  

𝑟(𝑡𝑛
+) =  𝑟(𝑡𝑛

−) (1 − 𝑢(𝑡𝑛
−)) , (22) 

 

A similar approach can be applied for the state value between to stimulation pulses to infer the equation 

23 which shows formulate based on the . By replacing and  in the 

equation 22, the recursive relation of the discrete-time TM model is achieved in equation 24 as follow: 

 

𝑟𝑛(𝑡)   = ∫ (
1−𝑟(𝑡)

𝐷
− 𝑢(𝑡−)𝑟(𝑡−)𝛿(𝑡 − 𝑡𝑠𝑝𝑘)) 𝑑𝑡

𝑡𝑛
−

𝑡𝑛−1
+    

= ∫
1 − 𝑟(𝑡)

𝐷
𝑑𝑡

𝑡𝑛

𝑡𝑛−1

  

= 1 − (1 − 𝑟(𝑡𝑛−1
+)) exp (

−(𝑡 − 𝑡𝑛−1)

𝐷
) ,  

𝑟(𝑡𝑛
−) = 1 − (1 − 𝑟(𝑡𝑛−1

+)) exp (
−(𝑡𝑛 − 𝑡𝑛−1)

𝐷
) ,  

𝑟(𝑡𝑛
−) = 1 − (1 − 𝑟(𝑡𝑛−1

+)) exp (
−1

𝐹𝐷𝐵𝑆 × 𝐷
) , (23) 

𝑟[𝑛] ≜ 𝑟(𝑡𝑛
−) ,  

𝑟[𝑛] = 1 − (1 − 𝑟[𝑛 − 1] × (1 − 𝑢[𝑛 − 1])) exp (
−1

𝐹𝐷𝐵𝑆 × 𝐷
) . (24) 

 

Considering equations 18, and 24 we conclude equation 25 to complete the discrete-time TM model: 

𝐼[𝑛] = 𝐼[𝑛 − 1]𝑒𝑥𝑝 (
−1

𝐹𝐷𝐵𝑆 ×  𝜏𝑠𝑦𝑛
 ) + 𝐴𝑢[𝑛]𝑟[𝑛] . (25) 
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3.2. Calculating the steady-state value: 

By stimulating the presynaptic neuron with homogeneous pulses and having homogenous action potential 

at the synaptic terminal the postsynaptic currents in response to these action potentials settle down to a 

steady-state value. This value is a function of TM model parameters and the stimulation frequency. We 

defined the steady-state as a point that: 

𝑢[𝑛] = 𝑢[𝑛 + 1] = 𝑢∞ , (25) 

𝑅[𝑛] = 𝑅[𝑛 + 1] = 𝑅∞ , (26) 

𝐼[𝑛] = 𝐼[𝑛 + 1] = 𝐼∞ , (27) 

 

where  represents the time of the n-th spike and , , and  are the states of the discrete-time TM 

model during steady-state. With this definition, the steady-state value is formalized as: 

𝑢∞ =
𝑓 + (1 − 𝑓) × 𝑈 × (1 − 𝑒𝑥𝑝 (

−1
𝐹𝐷𝐵𝑆 × 𝐹

))

1 + (1 − 𝑓) × 𝑒𝑥𝑝 (
−1

𝐹𝐷𝐵𝑆 ∗ 𝐹
)

 , (28) 

𝐼∞(𝑓, 𝑈, 𝐷, 𝐹, 𝐹𝐷𝐵𝑆) = (𝑢∞ × (1 − 𝑓) + 𝑓) × (
1 − 𝑒𝑥𝑝 (

−1
𝐹𝐷𝐵𝑆 × 𝐷)

1 − (1 − 𝑢∞) × 𝑒𝑥𝑝 (
−1

𝐹𝐷𝐵𝑆 × 𝐷
)

) . (29) 

Note that 𝑢∞ is only defined to make the formula more representative. 

3.3. Optimization and cost function 

To fit the model output to the experimental data or synthetic reference data, the parameters space should be 

explored to find a set of parameters that generates the most similar output to the reference data. Formulizing 

the similarity between model output the reference is the most crucial part of every model fitting problem. 

Assuming the noise/measurement error has a Gaussian distribution, we use MSE to formulize dissimilarity 

between the model output and the reference. Since we inferred the analytical formula for the steady-state 

response PSC, calculating its gradient is feasible, therefore we can apply gradient-based optimization 

algorithms. However, since the transient response of the PSC is provided by simulating the TM model, 

calculating the derivative of the MSE over transient PSC is computationally intensive and impractical. 

Therefore, we can only use non-derivative optimization algorithms for minimizing this error.  
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To minimize the error of the steady-state estimation we applied the Trust-Region optimization methods 

using built-in functions of MATLAB software. This method uses first- and second-order derivatives of the 

cost function to calculate the Tylor estimation of the function in a neighborhood region of the current 

parameters. The algorithm updates the parameters toward descending the cost function using its Tylor 

estimation until convergence or the maximum number of iterations. This since this algorithm uses the 

gradient of the cost function it can be run on parallel computers and provide fast computational 

performance. 

On the other hand, calculating the derivative of the MSE of the transient PSCs is intractable. Therefore, its 

optimization requires one or more model evaluations at each iteration. Hence, we used Nelder-Mead 

optimization to optimize the transient part of the PSC response. The algorithm evaluates the MSE function 

between 1 to 3 times until it converges to an optimum point or the maximum number of iterations.  

3.4. Detecting the transient PSCs 
As we described in the result section transient and steady-state sections of the PSC response have different 

sensitivity to TM parameters and defining the error on the whole time trace of the response decreasing the 

estimation accuracy of some parameters. Therefore, in the dual optimization to fit both of these sections 

correctly we are required to define the transient part of the response. In this method the transient is defined 

as follow: 

𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 𝑃𝑆𝐶𝑠 = {𝐼[1], 𝐼[2], … , 𝐼[𝑁𝑡𝑟𝑎𝑛𝑠] |  

𝐼[𝑁𝑡𝑟𝑎𝑛𝑠] − 𝐼[𝑁𝑡𝑟𝑎𝑛𝑠 − 1] < 0.05 × 𝐼[𝑁𝑡𝑟𝑎𝑛𝑠 − 1] 𝑎𝑛𝑑 

 𝑁𝑡𝑟𝑎𝑛𝑠 > max(𝑎𝑟𝑔𝑚𝑎𝑥𝑛(𝐼[𝑛]), 𝑎𝑟𝑔𝑚𝑖𝑛𝑛(𝐼[𝑛])) }, 

(30) 

where 𝑛𝑇 is the stimulation number that is considered as the end of the transient part. This criterion must 

be applied to the reference data and adjusted as a hyper-parameter of the algorithm. In other words, the 

steady-state begins from the 15th PSC and can be considered regardless of any analysis of the reference 

data. As long as the transient part does not include too much of steady-state section (maximum 1 or 2 PSC 

close to steady-state), it is valid, therefore the length of the reference data is not important. 

3.5. Iterative dual optimization algorithm 

Since the sensitivity of each part of the response to the parameters is different, overfitting the model to any 

of them interferes with the estimation of low sensitivity parameters. Therefore, we have to constrain both 

optimizers to avoid overfitting. To control the optimizers, we constrain the number of iterations inside each 

of them and instead repeat the sequence of fitting the steady-state and transient state multiple times. 

Moreover, we penalize the distance from the initial guesses in fitting the transient part to stay around the 
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value estimated by the steady-state-based part. As the internal steps of optimizers decrease the overall 

iterations of the algorithm must increase to guarantee convergence. In other words, as the ratio of internal 

steps to external steps gets lower, the risk of overfitting to one of them decreases. 

3.6. Methods for experimental data 

Methods for collection of experimental data shown in Figure. 8 have been previously described in detail 

(7).  300-µm-thick brain slices containing the STN were cut from acutely isolated rat brains. Whole-cell 

patch-clamp recordings were performed in a submerged-type recording chamber continuously perfused 

with artificial cerebrospinal fluid (containing the following (in mM): 126 NaCl, 2.5 KCl, 1.2 NaH2PO4, 11 

glucose, 19 NaHCO3, 2.4 CaCl2, 1.2 MgCl2) held at 34°C. Somatic whole-cell patch-clamp recordings 

were performed using pipettes pulled from borosilicate glass capillaries (2 mm outer/1 mm inner diameter) 

on a horizontal puller (P-97, Sutter Instrument). The pipettes were filled with an intracellular solution 

containing the following (in mM): 145 K-gluconate, 6 KCl, 10 HEPES, 0.2 EGTA, 5 Na2-phosphocreatine, 

2 Na2ATP, 0.5 Na2GTP, and 2 MgCl2 (290–300 mOsm, pH adjusted to 7.2 with KOH). Filled pipettes 

had a resistance of 3–7 MΩ. For extracellular stimulation, a tungsten bipolar electrode (tip diameter 30 µm) 

was placed in the rostral part of the STN. The electrode was lowered 50 µm into the slice. For the experiment 

shown stimulation intensity was set to and 500 µA, with a pulse duration of 100 µs. To study frequency-

dependent dynamics of synaptic inputs to STN neurons, stimuli were applied at 10, 20, and 130 Hz. Each 

stimulation train was applied for 1 s, and the stimulation interval was followed by a 4 s break. Thus, the 

total sweep duration was 5 s. A total of 10 sweeps were recorded for each stimulation frequency. The four 

neurons displayed were recorded simultaneously in a single experiment. 

3.7. Offline Analyses 

In this study, in order fully replicate the PSC, we convolved a double exponential kernel to match with the 

empirical recordings. Figure 14 demonstrates the double exponential kernel that is used for replicating the 

PSC compared to the experimental recordings. Note that the recordings consist of a compound effect of the 

excitatory and inhibitory trans-synaptic inputs. This could potentially challenge the design of the estimation 

algorithm because excitatory and inhibitory inputs have different STP dynamics, and their compound effect 

cannot necessarily be separated. As is discussed in (7), the rat STN consists of multiple regions that have 

different proportions of excitatory and inhibitory inputs. Therefore, to minimize the problem of compound 

inputs, we chose the recordings with dominant inhibitory inputs. Furthermore, Steiner et al. (7) proved 

experimentally using neuroreceptor blockers, that the excitatory and inhibitory responses appear in the 

recorded PSC response, as separatable negative and positive peaks, respectively. Since the kernel of 

excitatory PSCs are different from that of the inhibitory, we can easily distinguish between these two 
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responses by a visual analysis of the recorded signal. The estimated PSC kernel and the recorded signal of 

the PSC in response to a single DBS pulse is shown in Figure 14. The chosen trial has predominant 

GABAergic inhibitory inputs, which appeared as the positive peak in the signal. The effect of the excitatory 

input is slower than that of inhibitory, which is observable as a reversed peak in the PSC current. 

 

Figure 14 - Generating the PSC kernel using a double exponential function. The red 

line shows the estimated kernel generated by a double exponential function. Black line 

represents the experimental recordings of the acute slice of the rat STN. A is the stimulation 

artifact; B is the positive peak of representing the inhibitory response and C is the negative 

(reversed) peak representing the excitatory response. The difference between PSC signal 

and the estimated PSC kernel, which is maximized at the reversed excitatory peak, can be 

considered as the effect of the excitatory inputs.  

By separating the inhibitory response from the excitatory, we can model the STP dynamics with the four-

parameter Tsodyks-Markram model. Although there is more than one excitatory synapse responsible for 

the generation of the PSC, it is assumed that all excitatory synapses follow the similar STP dynamics. In 

(9), the presynaptic inputs were simulated by multiple Tsodyks-Markram models and the effect of axonal 

failure could be adjusted in the model (9,12). In this method, the effect of axonal failure can be easily 

incorporated by the absolute synaptic activation parameter (A in equation 3).  
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4. Discussion 

STP induced by DBS-like stimulation was observed in both human and animal studies (7,9). By utilizing 

the well-known Tsodyks and Markram (TM) model of STP, we developed a novel algorithm to infer model 

parameters from the postsynaptic current (PSC) of a stimulated neuron in response to DBS-like stimulations 

with different constant frequencies. We used conceptual findings from a recent theoretical work (9) on the 

cellular mechanism of DBS to propose a parameter estimation algorithm that incorporates stimulation 

pulses as pre-synaptic spikes. Unlike other model-based estimation methods for STP, we distinguished 

between the steady-state and transient responses of recorded PSCs and estimated TM model parameters in 

two steps. First, the steady-state PSC was calculated for the extended TM model (four-parameter TM 

model) analytically. We fit the analytical steady-state PSC to that obtained from recorded PSCs from 

stimulations with different frequencies in the interval of [0 – 100] Hz. Second, we optimized TM model 

parameters by fitting the transient part of the model to that obtained by PSCs across all stimulation 

frequencies utilizing parameters estimated in the first step as initial values of a non-derivative optimization 

algorithm. This two-step algorithm was referred to as dual optimization algorithm. 

Using extensive synthetic data, we demonstrated that the performance of dual optimization method was 

significantly better than that of conventional LMSE method. Specifically, we showed that the dual 

optimization algorithm reliably estimated TM parameters in the presence of noise. To further validate the 

performance of dual optimization algorithm for experimental data, we applied our algorithm to PSCs 

recorded from acute rodent brain STN slices during DBS-like stimulation with three different frequencies 

(7). We showed that reconstructed PSCs with estimated parameters were accurately fit to recorded PSCs 

from STN neurons with inhibitory-dominant inputs. The proposed dual optimization algorithm provided a 

strategy to illustrate the dynamics of stimulation-induced STP with the TM model. As the TM model is a 

phenomenological model, the estimated stimulation-induced STP dynamics describe the interaction 

between activated presynaptic afferents and postsynaptic responses of the stimulated neuron. Therefore, it 

is essential to obtain STP parameters that are consistent across different frequencies of stimulation. To the 

best of our knowledge, the dual optimization algorithm is first in its kind that infers stimulation-induced 

STP from recorded PSCs in response to different frequencies of stimulation. 

Although the idea of dual optimization has not been directly used in the previous works, Costal et al. (REF) 

showed that increasing the length of the stimulation can increase the accuracy of the estimated parameters 

of the TM model. However, after 20 to 50 pulse the increase of stimulation length did not improve the 

estimation accuracy. This observation is consistent with the fact that the PSC response to DBS-like 

stimulations reach a steady-state value after around 20 pulse and no more information adds to the 
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observation. It can be shown that the transient- and steady-states of a PSC response to DBS-like stimulation 

have various sensitivity to the TM model parameters. As shown in Figure 15, decreasing the depression 

time constant, D (see equation 2), does not significantly affect the transient part of the PSC response, but it 

increases the steady-state value. On the other hand, changing the facilitation time constant, F (see equation 

1), greatly affects the transient part of the PSC while the steady-state part remains almost unchanged.  

 

Figure 15. The sensitivity of the transient and steady-state section of the postsynaptic 

response to changing the TM model parameters. The postsynaptic response of the discrete-

time TM model to 50 Hz periodic pulse stimulation. The parameters 𝐹,and 𝐷 are changed to 

demonstrate the sensitivity of the different sections of the PSC response to these parameters. The 

transient section is considered as the first part of the response that maximum EPSC is still 

changing for each spike. The steady section is the following part that PSCs converge to a value 

and remain unchanged. Considering  the vectorized form of the parameters: 

,  and . Considering the 

blue trace as the reference case changing decreasing 𝐷 leads to increase in the steady-state value 

in the red trace. As it is shown despite changing 𝐷 the transient sections of blue and red traces are 
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almost similar. The purple trace is generated by a larger 𝐹 which leads to change in the transient 

state of the PSC response while having a steady-state value close to that of the blue trace. 

Since the steady-state of the PSC is less sensitive to the facilitation time constant (parameter ), the MSE 

cost function defined on the whole length of the PSC is less sensitive to this parameter. Thus, for the PSC 

responses with long lengths (approximately with more than 30 pulses), the conventional LMSE method is 

not successful to infer this parameter accurately. 

Furthermore, Costa et al. (13) showed that using a Poisson process as the presynaptic simulation 

significantly improves the accuracy of the parameter estimation. It was discussed that the Poisson train 

improves the accuracy of estimated parameters because, unlike the periodic train, the PSC does not reach a 

steady-state value. Although available DBS-like stimulations in the present study had constant inter-pulse 

intervals (similar to periodic stimulations), incorporating all individual frequencies of stimulations in the 

dual optimization algorithm enhanced the accuracy of estimated parameters.  

Despite the robustness of the dual optimization algorithm for estimating parameters of the TM model, 

characterizing dynamics of stimulation-induced STP may involve several challenges and limitations. First, 

the TM model parameters underlying stimulation-induced STP do not necessarily describe the dynamics of 

specific types of STP which exist in various synapses of stimulated neurons. As discussed in (9), each DBS 

pulse can simultaneously activate various presynaptic inputs of the stimulated nucleus, thus one cannot 

expect that the estimated TM model parameters during electrical stimulation lie within a range of STP 

values calculated for glutamatergic and GABAergic synapses in double cell patch clamping experiments 

(6). Nevertheless, using a well-known model for STP to characterize changes to postsynaptic currents (or 

potentials) of a neurons in response to different frequencies of electrical stimulation provides a standard 

approach to represent dynamics of STP induced by these stimulations. 

Second, electrical stimulation is not the only source of variation in the recorded postsynaptic responses, the 

stochasticity of vesicle release and changes in the excitability of the postsynaptic neuron might alter the 

statistics of the postsynaptic responses (16). Ghanbari et al (16) studied how these sources of variability 

affect estimation of the STP parameters (given presynaptic and postsynaptic spikes) by introducing each of 

these variables separately (16). It was shown that changes in the excitability of the postsynaptic neuron – 

modelled by after-hyperpolarization current to the postsynaptic neuron – does not significantly change STP 

estimation whereas stochastic vesicle release can lead to biases in the estimated STP parameters. To validate 

the accuracy of estimated STP parameters in the present study, we added white noise with a standard 

deviation of 20 percent of the maximum amplitude of the PSC and tested if the dual optimization algorithm 

reliably estimated STP parameters. As shown in Figure 4, the STP parameters estimated by the dual 
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optimization algorithm were accurate, and significantly more reliable than those obtained by conventional 

LMSE algorithm in the presence of noise.  

In addition to abovementioned sources of variability in the postsynaptic responses, the impact of other types 

of plasticity (e.g., long-term depression (22) and long-term potentiation (23)) and other postsynaptic factors 

like desensitization (24,25), depolarization blockade (26), or saturation of postsynaptic receptors (27) can 

vary synaptic weights in time scales that are different, but not necessarily distinct, from those related to the 

STP. Therefore, these factors influence the interaction between the pre- and postsynaptic neurons which 

cannot be captured by the dynamics of STP solely. It was suggested that alternative models of plasticity 

with less biophysical constraints like generalized bilinear model (16) and linear-nonlinear cascade model 

(18) could provide more flexible representation of STP dynamics compared to the TM model. Despite such 

limitations, the conventional three-parameter TM model is sufficient to describe STP in many cases (13). 

Here, we used a four-parameter TM model (15) that provided more degrees of flexibility compared to the 

conventional one.   

In the context of electrical stimulation with constant frequencies, we discussed that at least 4 different 

individual frequencies were required to reliably estimate the TM model parameters from the steady state 

response of the recorded PSCs. However, the proposed dual optimization algorithm can still be useful when 

less than 4 individual frequencies of electrical stimulation are available. As demonstrated in Section 2.6, 

one can freeze the parameter  in the four-parameter TM model and run the dual optimization algorithm 

with more iterations between the steady-state and transient parts of the postsynaptic responses to achieve 

sufficiently accurate estimates. Using the synthetic dataset, we demonstrated that this modification does not 

affect the accuracy of the algorithm.   
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