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One-sentence summary 8 

Music-selectivity can arise spontaneously in deep neural networks trained for natural sound 9 

detection without learning music.   10 

11 
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Abstract 12 

Music exists in almost every society, has universal acoustic features, and is processed by 13 

distinct neural circuits in humans even with no experience of musical training. These 14 

characteristics suggest an innateness of the sense of music in our brain, but it is unclear 15 

how this innateness emerges and what functions it has. Here, using an artificial deep 16 

neural network that models the auditory information processing of the brain, we show that 17 

units tuned to music can spontaneously emerge by learning natural sound detection, even 18 

without learning music. By simulating the responses of network units to 35,487 natural 19 

sounds in 527 categories, we found that various subclasses of music are strongly clustered 20 

in the embedding space, and that this clustering arises from the music-selective response 21 

of the network units. The music-selective units encoded the temporal structure of music in 22 

multiple timescales, following the population-level response characteristics observed in 23 

the brain. We confirmed that the process of generalization is critical for the emergence of 24 

music-selectivity and that music-selectivity can work as a functional basis for the 25 

generalization of natural sound, thereby elucidating its origin. These findings suggest that 26 

our sense of music can be innate, universally shaped by evolutionary adaptation to process 27 

natural sound. 28 

 29 

30 
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MAIN 31 

Music is a cultural universal of all human beings, having common elements found worldwide1,2, 32 

but it is unclear how such universality arises. As the perception and production of music stem 33 

from the ability of our brain to process the information about musical elements3–7, the universality 34 

question is closely related to how neural circuits for processing music develop, and how 35 

universals arise during the developmental process regardless of the diversification of neural 36 

circuits derived by the spectacular variety of sensory inputs from different cultures and societies.  37 

In our brain, music is processed by music-selective neural populations in distinct regions 38 

of the non-primary auditory cortex; these neurons respond selectively to music and not speech or 39 

other environmental sounds6,8,9. Several experimental observations suggest that music-selectivity 40 

and an ability to process the basic features of music develop spontaneously, without special need 41 

for an explicit musical training10. For example, a recent neuroimaging study showed that music-42 

selective neural populations exist in not only individuals who had explicit musical training but 43 

also in individuals who had almost no explicit musical training11. In addition, it was reported that 44 

even infants have an ability to perceive multiple acoustic features of music12,13, such as melody 45 

that is invariant to shifts in pitch level and tempo, similar to adults. One intuitive explanation is 46 

that passive exposure to life-long music may initialize the music-selective neural populations11, as 47 

hearing occurs even during pre-natal periods14. However, the basic machinery of music 48 

processing, such as harmonicity-based sound segregation, has been observed not only in 49 

Westerners but also in native Amazonians who had limited exposure to concurrent pitches in 50 

music15. These findings raise speculations on whether exposure to music is necessary for the 51 

development of music-selectivity and how the universality of music can arise in different cultures. 52 

Recent modeling studies using artificial deep neural networks (DNNs) have provided 53 

insights into the principles underlying the development of the sensory functions in the brain16–19. 54 
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In particular, it was suggested that a brain-like functional encoding of sensory inputs can arise as 55 

a by-product of optimization to process natural stimuli in DNNs. For example, responses of DNN 56 

models trained for classifying natural images were able to replicate visual cortical responses and 57 

could be exploited to control the response of real neurons beyond the naturally-occurring level20–58 

22. Even high-level cognitive functions have been observed in networks trained to classify natural 59 

images, namely the Gestalt closure effect23 and the ability to estimate the number of visual items 60 

in a visual scene24,25. Furthermore, a DNN trained for classifying music genres and words was 61 

shown to replicate human auditory cortical responses26, implying that such task-optimization 62 

provides a plausible means for modeling the functions of the auditory cortex. Based on this, we 63 

investigated a scenario in which music-selectivity can arise as a by-product of adaptation to 64 

natural sound processing in neural circuits27–30, so that the statistical patterns of natural sounds 65 

constrain universals of music in our brain.  66 

We initially tested whether a distinct representation of music can arise in a DNN trained 67 

for detecting natural sounds (including music) using the AudioSet dataset31. Previous work 68 

suggested that a DNN trained to classify music genres and word categories can explain the 69 

responses of the music-selective neural populations in the brain26. Thus, it was expected that 70 

DNNs can learn general features of music to distinguish them from diverse natural sound 71 

categories. 72 

The dataset we used consists of 10 s real-world audio excerpts from YouTube videos that 73 

have been human-labeled with 527 categories of natural sounds (Fig. 1A, 17,902 training data and 74 

17,585 test data with balanced numbers for each category to avoid overfitting for a specific class). 75 

The design of the network model (Fig. 1B and Table S1) is based on conventional convolutional 76 

neural networks32, which have been employed to successfully model both audio event detection33 77 

and information processing of the human auditory cortex26. The network was trained to detect all 78 
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audio categories in each 10 s excerpt (e.g., music, speech, dog barking, etc.). As a result, the 79 

network achieved reasonable performance in audio event detection as shown in Fig. S1A. After 80 

training, 17,585 test data was presented to the network and the responses of the units in the 81 

average pooling layer were used as feature vectors representing the data.  82 

By analyzing the feature vectors of music and non-music data, we confirmed that the 83 

network trained with music has a unique representation for music, distinct from other sounds. We 84 

used t-distributed stochastic neighbor embedding (t-SNE) to visualize the 256-dimensional 85 

feature vectors in two dimensions, which ensures that data close in the original dimensions remain 86 

close in two dimensions34. The resulting t-SNE embedding shows that the distribution of music 87 

data is clustered in a distinct territory of the embedding space, clearly separated from non-music 88 

data (Fig. S1B). Such a result is expected; as music was included in the training data, the network 89 

can learn the features of music that distinguish music from other categories. Given this, one might 90 

expect that such a distinct representation of music would not appear if music were discarded from 91 

the training dataset.  92 

However, further investigation showed that the distinct representation for music can still 93 

arise in a DNN trained without music. To test this, we discarded the data that contain any music-94 

related categories from the training dataset and trained the network to detect other audio events 95 

except the music-related categories. As a result, the network was not able to detect music-related 96 

categories, but still achieved reasonable performance in other audio event detection (Fig. 1C). 97 

Interestingly though, the distribution of music was still clustered in a distinct regime of the t-SNE 98 

embedding space, despite the network not being trained with music (Fig. 1D). We quantified such 99 

separation by calculating the segregation index (SI) between music and non-music in the t-SNE 100 

space. The SI of the network trained with natural sound excluding music was comparable to that 101 

of the network trained with natural sound including music (Fig. S1B), implying that training with 102 

music is not necessary for the distinct representation of music by the DNN. 103 
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Such observation raises a question on how such distinct representations emerge without 104 

training music. Based on previous notions27–30, we speculated that features important for 105 

processing music can spontaneously emerge as a by-product of learning natural sound processing 106 

in DNNs. To rule out other possibilities first, we tested two alternative scenarios: 1) music and 107 

non-music can be separated in the representation space of the log-Mel spectrogram using linear 108 

features, so that a nonlinear feature extraction process is not required, and 2) units in the network 109 

selectively respond to the trained categories but not to unseen categories, so that the distinct 110 

representation emerges without any music-related features in the network. 111 

We first confirmed that the distinct representation did not appear when conventional linear 112 

models were used. To test this, feature vectors were obtained from data in the log-Mel 113 

spectrogram space by applying two conventional models for linear feature extraction: principal 114 

component analysis (PCA, Fig. 1E and Fig. S2A) and a spectro-temporal two-dimensional-Gabor 115 

filter bank (GBFB) model of auditory cortical response35,36 (Fig. 1E and Fig. S2C, Methods). 116 

Next, we applied the t-SNE embedding method to the obtained vectors, as in Fig. 1D, and 117 

analyzed the distribution. The resulting embedding generated by the PCA and GBFB methods did 118 

not show a clear separation between music and non-music (Figs. S2B and S2D), while showing 119 

significantly lower SI values compared to the SI of networks trained without music (PCA: SI = 120 

0.365, p= 0.031; GBFB: SI = 0.331, p = 0.031, Wilcoxon signed rank-sum test).  121 

To further confirm this tendency while avoiding any distortion of data distribution that 122 

might arise from the dimension reduction process, we fitted a linear regression model to classify 123 

music and non-music in the training dataset by using their feature vectors as predictors and tested 124 

the classification performance using the test dataset (Fig. 1F). As a result, the network trained 125 

with natural sounds yielded significantly higher accuracy (mAP of network trained without music: 126 

0.883 ± 0.005, chance level: 0.246) than PCA or GBFB (PCA: mAP = 0.515, p = 0.031; GBFB: 127 

mAP = 0.529, p = 0.031, Wilcoxon signed rank-sum test). Moreover, the classification accuracy 128 
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was almost unchanged even when the linear features were used together with the features from 129 

the network (Net+PCA: mAP = 0.881 ± 0.006, Net+GBFB: mAP = 0.875 ± 0.016). These results 130 

suggest that conventional linear features cannot explain the distinct representation of music found 131 

in the embedding space. 132 

Next, we tested whether the distinct representation is due to the specificity of the unit 133 

response to the trained categories37,38. It is possible that all features learned by the network are 134 

specifically fitted to the trained sound categories, so that the sounds of the trained categories 135 

would elicit a reliable response from the units while the sounds of unseen categories (including 136 

music) would not. To test this, we checked whether the average response of the units to music is 137 

significantly smaller than the non-music stimuli. Interestingly, the average response to music was 138 

stronger than the average response to non-music (Fig. 2A, p <10-10, Wilcoxon signed rank-sum 139 

test). This suggests that features optimized to detect natural sound can also be rich repertoires of 140 

music; i.e., the network may have learned features of music throughout the training process even 141 

though music was completely absent in the training data. 142 

Based on the above results, we investigated whether units in the network exhibit music-143 

selective responses. We used two criteria to confirm this: 1) whether some units show a 144 

significantly stronger response to music than other sounds, and 2) whether those units encode the 145 

temporal structure of music in multiple timescales. 146 

First, we confirmed that some units in the network respond selectively to music rather than 147 

other sounds. To evaluate this, we define and quantify the music-selectivity index (MSI) of each 148 

network unit as the difference between the average response to music and non-music in the 149 

training dataset normalized by their unpooled variance39 (i.e., t-statistics, Methods). The units 150 

with the top 12.5% MSI values (MSI = 51.0 ± 9.6) showed a 2.76 times stronger response to 151 

music than other sounds in the test dataset on average (Fig. 2B), and thus were considered as 152 

putative music-selective units. We confirmed that the response of these music-selective units can 153 
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be exploited for the music classification task (Fig. 2C, accuracy: AP: 0.842 ± 0.010) using a 154 

linear classifier as in Fig. 1F. In contrast, using other units with intermediate MSI values showed 155 

significantly lower performance (top 37.5–50%, AP: 0.359 ± 0.044, p = 0.031, Wilcoxon signed 156 

rank-sum test), confirming that the music-selective units provide useful information for 157 

processing music.  158 

Second, we found that the music-selective units in the network showed sensitivity to the 159 

temporal structure of music, replicating previously observed characteristics of tuned neural 160 

populations in the human auditory cortex6,40,41. While music is known to have distinct features in 161 

both long and short timescales6,41, it is possible that the putative music-selective units only encode 162 

specific features of music in a specific (especially short) timescale. To test this, we adopted the 163 

‘sound quilting’ method41 (Fig. 3A, Methods), as follows: the original sound sources were 164 

divided into small segments (50–1,600 ms in octave range) and then reordered while considering 165 

smooth connections between segments. This shuffling method preserves the acoustic properties of 166 

the original sound on a short timescale but destroys it on a long timescale. It has been shown that 167 

music-selective neural populations in the human auditory cortex respond robustly when the 168 

segment size is large (e.g., 960 ms) so that most of the temporal structures are preserved, but the 169 

response is greatly reduced when the segment size is small (e.g., 30 ms) so that the temporal 170 

structure of the original sound is broken41. Similarly, after recording the response of the music-171 

selective units to such sound quilts of music, we confirmed that their response is strongly 172 

correlated with the segment size (music quilt: r = 0.57, p = 0.00093). The response was mostly 173 

similar to the case of giving the original sound as an input in 800 ms segments, but greatly 174 

reduced when 50 ms segments were given (Fig. 3B, original: 0.743 ± 0.043; 800 ms: 0.751 ± 175 

0.042; 50 ms: 0.569 ± 0.028; poriginal-50 ms = 0.031, poriginal-800 ms = 0.91, Wilcoxon signed rank-sum 176 

test).  177 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2021. ; https://doi.org/10.1101/2021.10.27.466049doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466049
http://creativecommons.org/licenses/by/4.0/


Page 9 of 34 
 

To test whether or not the effect is due to the quilting process itself, we provided quilts of 178 

music to the other non-music-selective units. In this condition, we confirmed that the average 179 

response remains constant even when the segment size changes (Fig. 3C). Furthermore, when 180 

quilted natural sound inputs were provided, the correlation between the response of the music-181 

selective units and the segment length was weaker than when quilted music inputs were provided 182 

(Fig. 3B, non-music quilt: r = 0.45, p = 0.011), even though the significant correlation was 183 

observed for both types of inputs. Notably, all these characteristics of the network trained without 184 

music replicate those observed in the human brain6,41. 185 

Then how does music-selectivity emerge in a network trained to detect natural sounds 186 

even without training music? In the following analysis, we found that music-selectivity can be a 187 

critical component to achieve generalization of natural sound in the network, and thus training to 188 

detect natural sound spontaneously generates music-selectivity.  189 

Clues were found from the observation that the music-selectivity of the network gradually 190 

increases throughout the training process for natural sound detection. We measured both SI and 191 

task performance of networks over the course of training (Fig. S3A) and found that both SI and 192 

task performance monotonically increase and saturate at approximately 30 training epochs (Fig. 193 

S3B). Accordingly, we confirmed that SI and task performance are strongly correlated (Fig. S3C, 194 

from 0 to 50 epochs, r = 0.76, p = 5.2 × 10-49), implying that a network’s natural sound detection 195 

performance can be used to predict its music-selectivity.  196 

Based on this, we hypothesized that music-selectivity can act as a functional basis for the 197 

generalization of natural sound, so that the emergence of music-selectivity may directly stem 198 

from the ability to process natural sounds. To test this, we investigated whether music-selectivity 199 

emerges when the network cannot generalize natural sounds (Fig. 4A). To hinder the 200 

generalization, the labels of the training data were randomized to remove any systematic 201 

association between the sound sources and their labels, following a previous work42. Even in this 202 
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case, the network achieved high training accuracy (training AP > 0.95) by memorizing all the 203 

randomized labels in the training data, but showed a test accuracy at the chance level as expected. 204 

We confirmed that the process of generalization is indeed critical for the emergence of 205 

music-selectivity in the network. For the network trained to memorize the randomized labels, the 206 

distributions of music and non-music were less distinct in the t-SNE embedding space compared 207 

to the network trained to generalize (Fig. S4, trained to memorize: SI = 0.587 ± 0.045, p = 0.0090, 208 

Wilcoxon rank-sum test), although some degree of separation was still observed. More 209 

importantly, units in the network trained to memorize did not encode the temporal structure of 210 

music. To test this, we analyzed the response of the units with the top 12.5% MSI values in the 211 

network trained to memorize using sound quilts of music as in Fig. 3B. We found that even if the 212 

segment size of the sound quilt changed, the response of the units remained mostly constant, 213 

unlike the music-selective units in the network trained to generalize natural sounds (Fig. 4B). 214 

This supports our hypothesis that music-selectivity is based on the process of generalization of 215 

natural sounds.  216 

To further investigate the functional association, we performed an ablation test (Fig. 4C), 217 

in which the response of the music-selective units is silenced and then the sound event detection 218 

performance of the network is evaluated. If the music-selective units provide critical information 219 

for the generalization of natural sound, removing their inputs would greatly reduce the 220 

performance of the network. Indeed, we found that ablation of the music-selective units 221 

significantly deteriorates the performance of the network (Fig. 4C, red: top 12.5% music-selective 222 

units, performance drop = 19.7%, pMSI top 12.5%-Baseline = 0.031, Wilcoxon signed rank-sum test). 223 

This effect was much weaker when the same number of units with intermediate/bottom MSI 224 

values were silenced (intermediate: p = 0.031, bottom: p = 0.031). Furthermore, the performance 225 

drop was even greater than that of ablating the units showing strong responses to inputs on 226 

average (top 12.5% L1 norm, performance drop = 8.0%, pMSI top 12.5%-L1norm top 12.5% = 0.031, 227 
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Wilcoxon signed rank-sum test). This suggests that music and other natural sounds share key 228 

features, and thus music-selective units can play a functionally important role not only in music 229 

processing but also in natural sound detection.  230 

  231 
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Discussions 232 

What is the origin of music? Here, we put forward the notion that neural circuits for 233 

processing the basic elements of music can develop spontaneously as a by-product of adaptation 234 

for natural sound processing. In the DNN trained for natural sound detection in this work, music 235 

was distinctly represented even when music was not included in the training data. Such distinction 236 

cannot be explained by conventional linear features, but rather arises from the response of the 237 

music-selective units in the feature extraction layer. The music-selectivity was also sensitive to 238 

the temporal structure of music, replicating all of the observed characteristics of the music-239 

selective neural populations in the brain. Further investigation suggested that music-selectivity 240 

can work as a functional basis for the generalization of natural sound, revealing how it can 241 

emerge without learning music. All together, these results support the notion that a universal 242 

template of music can arise from evolutionary pressure to process natural sound. 243 

Our model provides a simple explanation about why a DNN trained to classify musical 244 

genres replicated the response characteristics of the human auditory cortex26, although it is 245 

unlikely that the human auditory system itself has been optimized to process music. This is 246 

because training with music would result in learning general features for natural sound processing, 247 

as music and natural sound processing share a common functional basis. The existence of a basic 248 

ability to perceive music in multiple non-human species is also explained by the model. Our 249 

analysis showed that music-selectivity lies on the continuum of learning natural sound processing. 250 

If the mechanism also works in the brain, such ability would appear in a variety of species 251 

adapted to natural sound processing, but to varying degrees. Consistent with this idea, the 252 

processing of basic elements of music has been observed in multiple non-human species: octave 253 

generalization in rhesus monkeys45, the relative pitch perception of two-tone sequences in 254 

ferrets46, and a pitch perception of marmoset monkeys similar to that of humans47. 255 

Neurophysiological observations that neurons in the primate auditory cortex selectively respond 256 
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to pitch48 or harmonicity49 were also reported, further supporting the notion. A further question is 257 

whether phylogenetic lineage would reflect the ability to process the basic elements of music, as 258 

our model predicts that music-selectivity is correlated with the ability to process natural sounds.  259 

Our results also provide insights into the workings of audio processing in DNNs. Recent 260 

works showed that the class selectivity of DNN units is a poor predictor of the importance of the 261 

units and can even impair generalization performance51,52, possibly because it can induce 262 

overfitting to a specific class. On the other hand, we found that music-selective units are 263 

important for the natural sound detection task, and a good predictor of DNN performance. One 264 

possible explanation is that the music-selective units have universal features for the generalization 265 

of other natural sounds rather than specific features for specific classes, and thus removing them 266 

greatly hinders the performance of the DNN. Thus, these results also support the notion that the 267 

general features of natural sounds learned by DNNs are key features that make up music. 268 

In summary, we demonstrated that music-selectivity can spontaneously arise in a DNN 269 

trained with real-world natural sounds without music, and that the music-selectivity provides a 270 

functional basis for the generalization of natural sound processing. By replicating the key 271 

characteristics of the music-selective neural populations in the brain, our results encourage the 272 

possibility that a similar mechanism could occur in the biological brain, as suggested for visual22–273 

24 and navigational53 functions using task-optimized DNNs. Our findings support the notion that 274 

ecological adaptation may initiate various functional tunings in the brain, providing insight into 275 

how the universality of music and other innate cognitive functions arises. 276 

  277 
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Materials and Methods 278 

All simulations were done in Python using the PyTorch and TorchAudio framework. 279 

Neural network model 280 

Our simulations were performed with conventional convolutional neural networks for audio 281 

processing. At the input layer, the original sound waveform (sampling rate = 22,050 Hz) was 282 

transformed into a log-Mel spectrogram (64 mel-filter banks in the frequency range of 0 Hz to 283 

8,000 Hz, window length: 25 ms, hop length: 12.5 ms). Next, four convolutional layers followed 284 

by a batch-normalization layer and a max-pooling layer (with ReLU activation and a dropout rate 285 

of 0.2) extracted the features of the input data. The global average pooling layer calculated the 286 

average activation of each feature map of the final convolutional layer. These feature values were 287 

passed to two successive fully connected layers, and then a sigmoid function was applied to 288 

generate the final output of the network. The detailed hyperparameters are given in Table S1. 289 

Stimulus dataset 290 

The dataset we used is the AudioSet dataset31, a collection of human-labeled (multi-label) 10 s 291 

clips taken from YouTube videos. We used a balanced dataset (17,902 training data and 17,585 292 

test data from distinct videos) consisting of 527 hierarchically organized audio event categories 293 

(e.g., ‘classical music’ under ‘music’). Music-related categories were defined as all classes under 294 

the music hierarchy. Each excerpt in the dataset is intrinsically multi-labeled as different sounds 295 

generally co-occur in a natural environment, but a sufficient number of data was selected to 296 

contain only music-related categories (3,620 in the training set and 4,033 in the test set) and no 297 

music-related categories (11,087 in the training set and 10,616 in the test set). To test for the 298 

distinct representation of music, the data were reclassified into music, non-music, and mixed 299 

sound, and then mixed sounds were excluded in the analysis of music-selectivity. This was 300 
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required because some data that contained music-related categories can also contain other audio 301 

categories (e.g., music + barking). 302 

Network training 303 

We trained the network to detect all sound categories in each 10 s clip (multi-label detection task). 304 

To that aim, the loss function of the network was chosen as the binary cross-entropy between the 305 

target (y) and the output (x), which is defined as  306 

� �  ��� · log � � 1 � �� · log1 � ��� 
for each category. For optimizing this loss function, we employed the AdamW optimizer with 307 

weight decay = 0.0154. Each network was trained for 100 epochs (200 epochs for the randomized 308 

labels) with a batch size of 32 and the One Cycle learning rate (LR) method55. The One Cycle LR 309 

is an LR scheduling method for faster training and preventing the network from overfitting during 310 

the training process. This method linearly anneals the LR from the initial LR 4 � 10�� to the 311 

maximum LR 0.001 for 30 epochs and then from the maximum LR to the minimum LR 4 � 10�� 312 

for the remaining epochs. For every training condition, simulations were run for five different 313 

random seeds of the network. The network parameters used in the analysis were determined from 314 

the epoch that achieved the highest average precision over the training epochs with 10% of the 315 

training data used as a validation set. 316 

Analysis of the responses of the network units 317 

The responses of the network units in the average pooling layer were analyzed as feature vectors 318 

(256 dimensions) representing the data. After t-SNE embedding (perplexity = 30) of the feature 319 

vectors, we measured the SI to quantify the separation between the probability distribution of 320 

music and non-music, which is defined as 321 
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where p represents the probability distribution of music and non-music in t-SNE embedding 322 

space.  323 

Following a previous experimental study39, the music-selectivity index of each unit was 324 

defined as 325 

&�� � '����� � '	
	������

()�����
�*�����

� )	
	������
�*	
	������

 

where m is the average response of a unit to music and non-music stimulus, s is the standard 326 

deviation, and n is the number of each type of data.  327 

Extraction of linear features using conventional approaches 328 

The linear features of the log-Mel spectrogram of the natural sound data were extracted by using 329 

principal component analysis (PCA) and the spectro-temporal two-dimensional-Gabor filter bank 330 

(GBFB) model following previous works35,36. In the PCA case, feature vectors were obtained 331 

from the top 256 principal components (total explained variance: 0.965). In the case of the GBFB 332 

model, a set of Gabor filters were designed to detect specific spectro-temporal modulation 333 

patterns, which are defined as  334 

+,, *� � )��, � ,�� · )��* � *�� · - ��
���

, � ,�� · - ��
���

* � *��
 

-��� �  .0.5 � 0.5 cos 224�5 6       � 52 7 � 7 52  0                                             89-:;<=):
> 

)��� �  exp =<�� 
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where k and n represent the channel and time variables (center: k0 and n0), wk is the spectral 335 

modulation frequency, wn is the temporal modulation frequency, and ν is the number of semi-336 

cycles under the envelope. The distribution of the modulation frequencies was designed to limit 337 

the correlation between filters as follows, 338 

<�
��� �  <�

�
1 � A21 � A2  ,              A � B�

8D�  

Here, we used dk = 0.1, dn = 0.045, νk = νn = 3.5, with wk, max = wn, max = π/4, resulting in 15 339 

spectral modulation frequencies, 18 temporal modulation frequencies, and 263 independent Gabor 340 

filters (15×18–7). Next, a log-Mel spectrogram was convolved with each Gabor filter and then 341 

averaged to generate the 263-dimensional feature vector representing the data. Nonetheless, our 342 

investigation showed that the specific choice of the parameters does not change the results 343 

significantly. 344 

Generation of sound quilts 345 

Sound quilts were created according to the algorithm proposed in a previous work41. First, the 346 

original sound sources were divided into small segments of equal size (50–1,600 ms in octave 347 

range). Next, these segments were reordered while minimizing the difference between the 348 

segment-to-segment change in log-Mel spectrogram of the original sound and that of the shuffled 349 

sound. Finally, we concatenated these segments while minimizing the boundary artifacts by 350 

matching the relative phase between segments at the junction 41.  351 

Ablation test 352 

In the ablation test, the units in the network were grouped based on MSI value: top 12.5% units 353 

(MS units, N = 16), middle 43.75–56.25% units, and bottom 12.5% units. In addition, we grouped 354 
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the units that showed a strong average response to the test data (top 12.5% L1 norm). The 355 

response of the units in each group was set to zero to investigate their contribution to natural 356 

sound processing. 357 

Statistical analysis 358 

All statistical variables, including the sample sizes, exact P values, and statistical methods, are 359 

indicated in the corresponding texts or figure legends.  360 

Data and code availability 361 

The data and codes that support the findings of this study are available at 362 

https://github.com/kgspiano/Music 363 

 364 

  365 
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Figures and Tables 490 

 491 

Fig. 1. Distinct representation of music in deep neural networks trained for natural sound detection 492 

with and without music. 493 

(A) Example log-Mel spectrograms of the natural sound data in AudioSet31. (B) Architecture of the deep 494 

neural network used to detect the natural sound categories in the input data. The purple box indicates the 495 

average pooling layer. (C) Performance (mean average precision, mAP) of the network trained without 496 

music for music-related categories (top, red bars) and other categories (bottom, blue). (D) Density plot of 497 

the t-SNE embedding of feature vectors obtained from the network in C. The lines represent iso-proportion 498 

lines at 80%, 60%, 40%, and 20% levels. (E) Two conventional methods for linear feature extraction. 499 
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Examples of principal components (left) and Gabor filters (right) are shown. (F) Binary classification of 500 

the data using a linear regression classifier. Error bars represent the standard deviation for different 501 

network initialization conditions in (C) and (F). 502 
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 504 

Fig. 2. Selective response of units in the network to music. 505 

(A) Histograms of the response of the units averaged over music (red) and non-music (blue) stimuli in 506 

networks trained without music. The dashed lines represent the response averaged over all units. (B) 507 

Response of the music-selective units to music (red) and non-music stimuli. Inset: Response of the units in 508 

the untrained network with the top 12.5% MSI values to music and non-music stimuli. Error bars represent 509 

the standard deviation for various inputs. (C) Illustration of the binary classification of music and non-510 

music using the response of the music-selective units (left), and the performance of the linear classifier 511 

(right). The asterisks indicate statistical significance (p<0.05) (from the top, p = 0.031, p = 0.031, p = 512 

0.031, Wilcoxon signed rank-sum test). Error bars represent the standard deviation for different network 513 

initialization conditions. 514 

 515 
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 517 

Fig. 3. Encoding of the temporal structure of music by music-selective units in the network as in the 518 

human brain. 519 

(A) Schematic diagram of the generation of sound quilts. (B) Response of the music-selective units to 520 

sound quilts made of music (red) and non-music (blue). For the music quilts, from the top: p = 0.031, p = 521 

0.031, p = 0.031, p = 0.69, p = 1.0, p = 0.91; for the non-music quilts, from the top: p = 0.031, p = 0.031, p 522 

= 0.031, p = 0.97, p = 1.0, p = 1.0, Wilcoxon signed rank-sum test. (C) Response of the other units to 523 

sound quilts made of music (red) and non-music (blue). For the music quilts, from the top: p = 0.91, p = 524 

0.94, p = 0.84, p = 0.91, p = 0.91, p = 0.68; for the non-music quilts, from the top: p = 0.5, p = 0.84, p = 525 

1.0, p = 1.0, p = 1.0, p = 0.91. The asterisks indicate statistical significance (p < 0.05). N.S.: non-526 

significant (p > 0.05). 527 
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 529 

Fig. 4. Music-selectivity as a generalization of natural sounds 530 

(A) Illustration of network training to memorize the data by randomizing the labels. (B) Response of the 531 

units with the top 12.5% MSI values to music quilts in the networks trained with randomized labels (black, 532 

memorization) compared to that of the network in Fig. 3B (red, generalization). To normalize the two 533 

conditions, each response was divided by the average response to the original sound from each network. 534 

For memorization, from the top: p = 0.41, p = 0.69, p = 0.97, p = 1.0, p = 1.0, p = 0.94, Wilcoxon signed 535 

rank-sum test. N.S.: non-significant (p > 0.05). Error bars represent the standard deviation for different 536 

network initialization conditions. (C) Performance of the network after the ablation of specific units (red: 537 

ablation of music-selective units). From the top, from the left, p = 0.031, p = 0.031, p = 0.031, p = 0.031, 538 

Wilcoxon signed rank-sum test. The asterisks indicate statistical significance (p < 0.05). 539 
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Supplementary Materials 542 

Fig. S1. Distinct representation of music in deep neural networks trained for natural sound 543 

detection with music.  544 

Fig. S2. T-SNE embedding of the feature vectors obtained by linear methods. 545 

Fig. S3. Correlation of music-selectivity and network performance. 546 

Fig. S4. T-SNE embedding of the feature vectors of the network trained to memorize 547 

natural sounds with randomized labels. 548 

Table S1. Summary of the network architecture. 549 
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 551 

Fig. S1. Distinct representation of music in deep neural networks trained for natural sound detection 552 

with music.  553 

(A) Performance of the trained network for music-related categories (left, red bars) and other categories 554 

(right, blue). (B) Density plot of the t-SNE embedding of feature vectors obtained from the trained 555 

network. The lines represent iso-proportion lines at 80%, 60%, 40%, and 20% levels. 556 
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 558 

Fig. S2. T-SNE embedding of the feature vectors obtained by linear methods. 559 

(A) Example PCA components obtained from the data. (B) Density plot of the t-SNE embedding of feature 560 

vectors obtained from PCA. The lines represent iso-proportion lines at 80%, 60%, 40%, 20% levels. (C) 561 

Example spectro-temporal Gabor filters. MF: modulation frequency. (D) Density plot of the t-SNE 562 

embedding of feature vectors obtained from Gabor filters. 563 
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 565 

Fig. S3. Correlation of music-selectivity and network performance. 566 

(A) Density plots of the t-SNE embeddings of music (red) and non-music (blue) over the training epochs. 567 

(B) SI vs. training epoch, and (C) average precision vs. SI, showing that the segregation index and task 568 

performance are strongly correlated. Error bars represent the standard deviation for different network 569 

initialization conditions. 570 
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 572 

Fig. S4. T-SNE embedding of the feature vectors of the network trained to memorize natural sounds 573 

with randomized labels. 574 

(top) Illustration of network training to memorize the data by randomizing the labels. (left) Density plot of 575 

the t-SNE embedding of the feature vectors obtained from the network trained with randomized labels and 576 

(right) with the original labels. 577 
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 579 

Table S1. Summary of the network architecture. 580 

The network consists of four convolutional layers for feature extraction (Conv1 – Conv4) and two fully 581 

connected layers for natural sound detection (FC1 – FC2). We note that the specific choice of 582 

hyperparameters does not significantly change the results in the main text.  583 

Layer Type Output Shape Kernels Activations 

Input Log-Mel spectrogram 
input 

64 × 802 x 1 
(height x width x channel)   

Conv1 Convolution 30 × 200 x 32 
Size: 5 × 5 × 1 × 32 

Stride: 2 x 4 Batch normalization and ReLU  

Pool1 Max pooling 15 × 100 x 32 
Size = 2 x 2 
Stride = 2 Dropout (p = 0.2) 

Conv2 Convolution 11× 96 x 64 
Size: 5 × 5 × 32 × 64 

Stride: 1 Batch normalization and ReLU 

Pool2 Max pooling 10 × 95 x 64 
Size = 2 x 2 
Stride = 1  

Conv3 Convolution 6 × 91 x 128 Size: 5 × 5 × 64 × 128 
Stride = 1 Batch normalization and ReLU 

Pool3 Max pooling 5 × 90 x 128 Size: 2 x 2 
Stride: 1 Dropout 

Conv4 Convolution 1 × 86 x 256 Size: 5 × 5 × 192 × 256 
Stride: 1 

Batch normalization, ReLU, and 
dropout 

AvgPool1 Global average pooling 1 × 1 x 256   

FC1 Fully Connected 256 Weights: 256 × 256 
Bias: 256 × 1 ReLU and dropout 

FC2 (Output) Classification Output 527 Weights: 527 × 256 
Bias: 527 × 1 

Sigmoid 
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