Abstract
Aquatic and terrestrial ecosystems are tightly connected via spatial flows of organisms and resources. Such land-water linkages integrate biodiversity across ecosystems and suggest a spatial association of aquatic and terrestrial biodiversity. However, knowledge about this spatial extent is limited. By combining satellite remote sensing (RS) and environmental DNA (eDNA) extraction from river water across a 740-km2 mountainous catchment, we identify a characteristic spatial land-water fingerprint. Specifically, we find a spatial association of riverine eDNA diversity with RS spectral diversity of terrestrial ecosystems upstream, peaking at a 400 m distance yet still detectable up to a 3.3 km radius. Our findings testify that biodiversity patterns in rivers can be linked to the functional diversity of surrounding terrestrial ecosystems and provide a dominant scale at which these linkages are strongest. Such spatially explicit information is necessary for a functional understanding of land-water linkages and provides a reference scale for adequate conservation and landscape management decisions.
Competing Interest Statement
The authors have declared no competing interest.