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Summary 10 
Faster growing cells must make proteins more quickly. This occurs in part through increasing total 11 
ribosome abundance. However, the productivity of individual ribosomes also increases, almost 12 
doubling via an unknown mechanism. To investigate, we model both physical transport and 13 
chemical reactions among ensembles of individual molecules involved in translation elongation in 14 
Escherichia coli. We predict that the Damköhler number, the ratio of transport latency to reaction 15 
latency, for translation elongation is ~4; physical transport of individual ternary complexes 16 
accounts for ~80% of elongation latency. We also model how molecules pack closer together as 17 
growth quickens. Although denser cytoplasm both decreases transport distances and hinders 18 
motion, we predict that decreasing distance wins out, offering a simple mechanism for how 19 
individual elongating ribosomes become more productive as growth quickens. We also quantify 20 
how crowding imposes a physical limit on the performance of self-mixing molecular systems and 21 
likely undergirds cellular behavior more broadly. 22 
 23 
Keywords: Systems biology, colloidal physics, physics of life, molecular crowding, protein 24 
synthesis, translation elongation, cytoplasm structure 25 
 26 
Introduction  27 
Protein synthesis is essential for cell maintenance and reproduction. For example, Escherichia coli 28 
(E. coli) cells synthesize the majority of their dry mass as protein every cell doubling. Accordingly, 29 
cells that grow more quickly must produce proteins more quickly.  In quantitative detail, as E. coli 30 
growth speeds up five-fold protein synthesis across the entire cell increases 15-fold (Dennis & 31 
Bremer, 2008). Meanwhile, for the same growth rate increase, the quantity of ribosomes increases 32 
only nine-fold (Figure S1), suggesting that the absolute productivity of individual ribosomes must 33 
also somehow increase – almost doubling as growth quickens (Figure 1) (Bremer and Dennis, 34 
1996; Dalbow and Young, 1975; Dennis and Bremer, 2008; Forchhammer and Lindahl, 1971; 35 
Klumpp et al., 2013; Pedersen, 1984; Young and Bremer, 1976). While it is easy to understand 36 
why having more translation machinery increases total protein synthesis capacity, it is not obvious 37 
how faster growing cells achieve the translation elongation rates needed to sustain growth.  38 

 39 
Figure 1. Individual ribosomes make proteins more quickly as growth quickens. Total latency per peptide bond 40 
(left y-axis) or elongation rate (right y-axis) versus growth rate (x-axis). Experimental data from Bremer and Dennis, 41 
1996; Dalbow and Young, 1975; Dennis and Bremer, 2008; Forchhammer and Lindahl, 1971; Klumpp et al., 2013; 42 
Pedersen, 1984; and Young and Bremer, 1976. Solid line is a second-order polynomial fit of experimental elongation 43 
rates. 44 
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Bremer & Dennis hypothesized that individual ribosome activity speeds up at faster growth rates 45 
owing to increased tRNA charging and also due to shifts in codon distribution among mRNA 46 
(Bremer and Dennis, 1996). However, subsequent work has shown that overall tRNA charging 47 
remains relatively constant across growth rate indicating that other mechanisms are likely at play 48 
(Avcilar-Kucukgoze et al., 2016). Another possibility is that the intrinsic chemical kinetics of 49 
peptide bond formation by the ribosome accelerate with increasing growth rates. For example, in 50 
exploring how to adapt chemical kinetic rates obtained from in vitro experiments for use with in 51 
vivo models, Rodnina and co-workers fit parameter values to data and showed that faster chemical 52 
kinetic rate constants could account for increased rates of peptide bond formation (Rudorf et al., 53 
2014). However, the specific molecular mechanisms that might account for such parameter 54 
changes are unknown. As a third possibility, Hwa and co-workers hypothesized that physical 55 
processes could play a limiting role in determining the elongation rate of individual ribosomes 56 
(Klumpp et al., 2013). More specifically, by accounting for Brownian diffusion of ternary 57 
complexes via a growth-rate independent diffusion constant within a Michaelis-Menten kinetics-58 
based model of translation elongation, Hwa and co-workers inferred that physical changes in 59 
cytoplasm could lead to changes in growth rate. Taken together, such studies suggest that both 60 
chemistry and physics likely play a role in the speedup of translation elongation. 61 
However, understanding any potential speedup mechanism is challenging exactly because the 62 
chemistry and physics of translation elongation are complex and coupled. For example, the 63 
biochemical processes required are combinatorial: matching must take place between 42 unique 64 
ternary complexes and 64 possible triplet codons. Accordingly, any particular elongating ribosome 65 
may encounter numerous mismatching ternary complexes prior to a successful matching reaction. 66 
As a second example, the length- and time-scales of underlying processes span three and nine 67 
orders of magnitude, respectively; specifically, ternary complexes and ribosomes interact with 68 
surrounding biomolecules and each other over nanometers and nanoseconds but execute processes 69 
over microns and seconds. As a third example, while higher concentrations of ternary complexes 70 
might be expected to increase the frequency of encounters with ribosomes, the resulting increase 71 
in crowding might slow the physical search process. Such complexities are compounded by the 72 
fact that everything is happening in parallel among hundreds of thousands of self-mixing 73 
molecules in a growth-rate dependent and crowded cytoplasm. 74 

We address these challenges by modeling both the physics and chemistry of translation elongation 75 
in a combined framework. To do so, we adapted an open-source simulation tool (Andrews et al., 76 
2010) to more accurately represent transport and interactions among molecules comprising self-77 
mixing systems. In our framework we explicitly represent the transport dynamics of individual 78 
biomolecules as they physically interact and chemically react, with nanometer and nanosecond 79 
resolution, to simulate processes spanning minutes in time. A key aspect of our approach is the 80 
robust modeling of Brownian motion and colloidal-scale particle interactions such that these 81 
molecules undergo the inertialess physical encounters appropriate to the colloidal regime (Ermak 82 
and McCammon, 1977; Heyes and Melrose, 1993; Zia, 2018). When combined with a well-known 83 
multi-step kinetic model for the reactions leading to peptide bond formation (Kothe et al., 2004) 84 
our framework enables analysis of the combined physical and chemical dynamics underlying 85 
translation elongation. 86 

We employed our framework to explore how protein synthesis rates in E. coli should be expected 87 
to change with growth rate, directly representing the growth-rate dependent cytoplasm via first-88 
principles modeling of physical and chemical dynamics without parameter fitting. Starting from 89 
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well-established measurements of macromolecular composition and physical properties of E. coli 90 
cytoplasm at varying growth rates, we demonstrate how well-known changes in the composition 91 
of cytoplasm are entirely sufficient to account for the speedup of translation elongation by 92 
individual ribosomes. We also identify the detailed contributions of transport and reaction to total 93 
elongation latency by monitoring the trajectories of and reactions between ternary complexes and 94 
ribosomes in simulation, finding that transport is the dominant component defining elongation 95 
latency. We find that physiological cytoplasmic crowding speeds up the transport mechanism and 96 
thus elongation rates overall. We confirm that the expected speedup due to crowding is insensitive 97 
to changes in chemical kinetics needed to exactly match observed elongation rates. Finally, we 98 
explore how still-greater crowding, beyond naturally observed limits, should lead to a collapse of 99 
the colloidal-scale transport speedup mechanism that ultimately limits the performance of self-100 
mixing living systems. 101 
 102 
Results 103 
I. Embedding chemical kinetics within physical transport  104 
We constructed a spatially resolved chemical and physical framework to model the combined roles 105 
of reaction chemistry and transport physics in translation elongation (Figure 2A, 2B), tracking the 106 
time spent by ternary complexes unbound and in motion (transport latency,	𝜏!"#$%&'"!) as well as 107 
reacting with mismatching or matching ribosomes (reaction latency, 𝜏"($) until a matching 108 
reaction successfully completes. Together, transport latency and reaction latency make up 109 
elongation latency (𝜏)*'$+). 110 

To estimate reaction latencies we represented the molecular reactions between ribosomes and 111 
ternary complexes following the individual chemical steps of protein synthesis, accounting for 112 
differences due to reactions involving cognate, near-cognate, and non-cognate ternary complexes 113 
(Figure 2C). We used well-established in vitro kinetic measurements to parameterize our model 114 
(Table S5) and developed physiologically accurate distributions of expected reaction latencies via 115 
a Markov-process (Methods). We analyzed the resulting reaction latency distributions, finding 116 
that matching reactions between cognate ternary complexes and ribosomes take 42 ms on average 117 
when successful (68% probability) (Figure S2). We also found that cognate ternary complexes 118 
can be rejected (32% probability), in which case reactions take 1.4 ms on average. Mismatching 119 
reactions involving near-cognate or non-cognate ternary complexes take on average 4.6 ms and 120 
1.4 ms, respectively. We did not consider mis-incorporation events due to their low overall 121 
likelihood (<1% probability).  122 
Next, recognizing that translation elongation takes place within a crowded cytoplasmic milieu, we 123 
developed a molecular-mechanistic model for how protein synthesis occurs as a physical process. 124 
To start, we estimated the smallest volume of cytoplasm sufficient to enable protein synthesis. We 125 
assumed that the molecules required for protein synthesis are homogeneously distributed within 126 
the nucleoid-excluded cytoplasm. This volume is ultimately determined by the concentration of 127 
ternary complexes as the most-limiting species. So defined, each ‘translation voxel’ contains 128 
exactly one of each of 42 unique ternary complexes, one or more ribosomes, and many crowder 129 
proteins (average-sized molecules that represent all other surrounding proteins) (Figure 2D). 130 
Brownian diffusion allows each molecule to sample the voxel volume and encounter one another. 131 
We modeled diffusion explicitly as a random walk of each of the molecules throughout the voxel 132 
where, due to their finite size, they exclude one another entropically or, in the case of a ternary 133 
complex and unbound ribosome pair, initiate a reaction (Methods; Table S4).  134 
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Due to non-uniform codon usage and non-uniform relative abundance of each type of ternary 135 
complex (Table S6) as well as stochastic variation in the physical distribution of translation 136 
molecules in cytoplasm, for any given cell-wide condition, individual translation voxels should be 137 
expected to vary in the exact combinations of unique ternary complexes and elongating ribosomes. 138 
For example, a translation voxel might contain more than one of a highly abundant tRNA. 139 
Accordingly, starting from our basic translation voxel platform we constructed ensembles of 140 
thousands of translation voxels to capture the natural distribution of chemical identities and spatial 141 
configurations that, together, better represent the natural variation expected within cytoplasm. We 142 
used these more-accurate voxel ensembles to examine the physical and chemical mechanistic 143 
relationship between growth rate and elongation rate by simulation (below).  144 
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 145 
Figure 2. The physical context for translation elongation can be formalized. (A) Schematic of physical and 146 
chemical processes that contribute to translation elongation latency. Multiple transport and reaction steps (dashed line) 147 
may occur before a ternary complex (green/red) encounters and reacts with an unoccupied, matching ribosome 148 
(purple). The time ternary complexes spend unbound while searching for ribosomes is defined as transport latency 149 
(𝜏transport) and the time ternary complexes spend bound in either mismatching (red shaded circle) or matching reactions 150 
(green shaded circle) is defined as reaction latency (𝜏rxn). The time the entire process takes is defined as elongation 151 
latency (𝜏elong). (B) Mathematical definitions of translation elongation latencies. Elongation latency (𝜏elong) is the sum 152 
of transport latency (𝜏transport) and reaction latency (𝜏rxn), the latter of which is the sum of both mismatching (𝜏rxnmismatch) 153 
and matching (𝜏rxnmatch) reaction latencies. (C) Schematic of the kinetic mechanism of translation elongation within 154 
ribosomes (purple). Ternary complexes are either cognate (green), near-cognate (yellow), or non-cognate (red) to any 155 
particular ribosome, which determines kinetic rates. Mismatching reaction latency results from reversible reactions 156 
with non-cognate and near-cognate ternary complexes (red and yellow lines), while matching reaction latency results 157 
from cognate ternary complexes proceeding through the full kinetic process (green line). (D) Translation elongation 158 
is evaluated by constructing ensembles of statistically representative “translation voxels” that, in their minimal form, 159 
contain exactly 42 ternary complexes (cognate: green, non-cognate: red), at least one ribosome (purple), and numerous 160 
average-sized crowder proteins representing all other surrounding proteins (blue). Depiction of E. coli adapted with 161 
permission from Goodsell, 2009; molecular abundances adapted from literature (Main text and Methods). 162 
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II. Stoichiometric crowding accompanies faster protein synthesis 163 
We gathered and analyzed well-established experimental data for cell mass, cell volume, and the 164 
sizes and abundances of ternary complexes, ribosomes, and crowder proteins in cells across growth 165 
rates (Dennis and Bremer, 2008; Volkmer and Heinemann, 2011; Dong et al., 1996; Pedersen et 166 
al., 1978; Schmidt et al., 2015; Woldringh and Nanninga, 1985) (Methods, Figure S1, Tables S1-167 
S4). We noted that as growth rate increases (from µ = 0.6 to 3.0 dbl/hr) and translation elongation 168 
speeds up (from 12 to 21 aa/s), ternary complexes and ribosomes monotonically increase in 169 
number by nearly an order of magnitude, while crowder proteins monotonically increase by three-170 
fold (Figure 3A). We described the coupled abundances and volume fraction of each constituent 171 
biomolecule as the ‘colloidal stoichiometry’ of the translation voxel; mathematically, the 172 
abundances and volume fraction of each constituent biomolecule i is described as N, and 𝜙, =173 
𝑉,/𝑉-'(, respectively, where 𝑉, is the total volume occupied by a particular biomolecule species 174 
and 𝑉-'( is the total volume of the voxel. The colloidal stoichiometry of translation voxels – which 175 
captures both chemical and physical features of cytoplasm – changes with growth rate. Thus, we 176 
hypothesized that growth-rate dependent changes in colloidal stoichiometry might contribute to 177 
the speedup of translation elongation. 178 
More specifically, our modeling revealed changes in the colloidal stoichiometry of translation 179 
voxels as growth quickens (0.6 to 3.0 dbl/hr): voxels shrink three-fold (𝑉-'( = 10E5 nm3 to 3E5 180 
nm3) and become three-fold more crowded (𝜙-'( = 0.13	to	0.42). However, the growth in 181 
packing fraction is not uniform across species: as voxels shrink in size the number of ribosomes 182 
doubles while the number of crowder proteins halves (Figure 3B, 3D). That is, increased total 183 
crowding is dominated by ribosomes: the volume fraction of ribosomes increases by seven-fold, 184 
more than double that of ternary complexes (𝜙"./ = 0.03 to 0.22; 𝜙!)"$ = 0.04 to 0.12). Crowder 185 
proteins dominate the packing fraction at low growth rates but then plateau (𝜙0"'12)" = 0.06 to 186 
0.10 for µ = 0.6 to 2.0 dbl/hr; 𝜙0"'12)" = 0.10 to 0.09 for µ = 2.0 to 3.0 dbl/hr), thus contributing 187 
minimally to the overall increase in crowding (Figure 3C).  188 
We referred to this growth-rate dependent change in colloidal stoichiometry as ‘stoichiometric 189 
crowding,’ which we expected should impact both the interactions and motion of translation 190 
molecules at different growth rates. For example, in the growth-rate trends noted above, as growth 191 
quickens ternary complexes and ribosomes should encounter each other more frequently relative 192 
to encountering crowders. As a second example, the distribution of molecule sizes matters: for a 193 
fixed total volume fraction the diffusion of individual particles is faster in a suspension of large 194 
versus small particles and, as the most dominant particle size shifts from smaller to larger, diffusion 195 
of all particles speeds up (Farris, 1968; Gonzalez et al., 2021; Lionberger, 2002); since ribosomes 196 
increase in their relative volume fraction with growth rate, voxels should mix more quickly for 197 
any given total volume fraction as growth quickens. 198 
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 199 
Figure 3. The relative abundances, concentrations, and volume fractions of translation molecules change as 200 
growth quickens. (A) Colloidal stoichiometry. Experimental observations of active ribosomes, ternary complexes, 201 
and crowder protein abundances in E. coli, as well as E. coli cell volume, reveal varying levels of increase with 202 
increasing growth rate (gray bars highlight values at particular growth rates). (B) Stoichiometric crowding. An 203 
abstracted representation of translation voxels as a function of growth rate reveals that differential changes in 204 
molecular abundances are accompanied by an overall increase in crowding (i.e., stoichiometric crowding). The volume 205 
of translation voxels (𝑉vox, hatched gray circles) decreases while the total volume of constituent biomolecules 206 
(concentric pie charts) remains relatively constant. The total number of each particular type of biomolecule species 207 
(𝑁tern, 𝑁rib, and	𝑁crowder, shown within corresponding colors of the pie chart – red: ternary complexes, purple: 208 
ribosomes, blue: crowder proteins) in a given translation voxel as well as the total volume each biomolecule species 209 
occupies (𝑉!, the area of corresponding colors within the pie chart) change at different growth rates. (C) The volume 210 
fractions (𝜙! = 𝑉!/𝑉vox) of ribosomes (𝜙rib), ternary complexes (𝜙tern), and crowder proteins (𝜙crowder) change 211 
differently with increasing growth rate, leading to an overall increase in the total volume fraction of translation voxels 212 
(𝜙vox). (D) Representative snapshots of translation voxel simulations at increasing growth rates, along with their 213 
respective volumes (𝑉vox) and volume fractions (𝜙vox). 214 

III. Physical transport of ternary complexes accounts for most of elongation latency  215 
We next sought to better understand and quantify any such impacts of crowding and composition 216 
on transport rates, reaction rates, and elongation rates overall. To do so we established a baseline 217 
quantification of the relative importance of physical transport to chemical reactions in setting 218 
elongation latency. We constructed translation voxels, from very simple to biologically faithful 219 
forms, and analyzed expected transport, reaction, and elongation latencies by simulation. From 220 
this we inferred the mechanisms by which colloidal stoichiometry regulates overall elongation 221 
latency as a function of growth rate. We used a slow growth rate (0.6 dbl/hr) as a benchmark, 222 
where bulk elongation takes about 87 ms on average (Figure 1). 223 
More specifically, we first studied transport and reaction dynamics in detail using an idealized case 224 
in which only a single cognate ternary complex interacts with one matching ribosome (Figure 225 
4A). Here, there is no competition with mismatching ternary complexes, no other molecules 226 
blocking the way, and the sought-after ribosome is unbound; rather, a lone ternary complex 227 
searches pure cytosolic fluid for a waiting matching ribosome, an idealized scenario often depicted 228 
in ‘textbook’ representations of translation elongation (e.g., Sannuga and Ramakrishnan, 2004). 229 
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As expected, we found that transport latency – the time a ternary complex spends not bound to a 230 
ribosome, diffusively searching for a match – is nearly instantaneous (𝜏!"#$%&'"! = 0.08	ms) and 231 
that nearly all of the elongation process is taken up by reaction latency – the time a ternary complex 232 
spends bound to ribosomes (𝜏"($ = 42	ms) (Figure 4A). While such a result seems to support the 233 
conclusion that chemistry alone determines translation elongation rate (Figure 2C), the notion of 234 
a two-molecule translation voxel operating at 3% volume fraction – far below physiological 235 
conditions – is unrealistic (Figure 3C).  236 
We next added a physiologically correct number of ternary complexes to the voxel (i.e., one 237 
cognate, 41 non-cognate) such that each ternary complex competes to reach and bind to the 238 
ribosome (Figure 4B). We found that the total reaction time remains the same (𝜏"($ = 42	ms). 239 
However, the transport latency of the cognate ternary complex increases markedly (𝜏!"#$%&'"! =240 
251 ms) and is greater than reaction latency, supporting arguments that translation elongation 241 
requires substantial reactant transport time. The increased transport time is also coupled to 242 
reactions: a cognate ternary complex must “wait” to bind with the ribosome while that ribosome 243 
is already bound to non-cognate ternary complexes; thus, there is an interplay between reactions 244 
and transport.  245 
We then added a physiologically correct number of ribosomes to the translation voxel, holding the 246 
ternary complex population fixed at one cognate and 41 non-cognates (Figure 4C). Only one 247 
ribosome was available for a matching reaction with the cognate ternary complex; the other 248 
ribosomes were mismatching for all ternary complexes. Having just one matching ribosome means 249 
we need track only the elongation events of a single ribosome, while simultaneously tracking 250 
mismatching events at other ribosomes; this approximation provides a lower-bound estimate for 251 
bulk elongation rates while allowing a more accurate accounting of transport and reaction effects 252 
(below). We found by simulation that transport latency remains similar to voxels containing a 253 
single ribosome (𝜏!"#$%&'"! = 248	ms) because the single matching ribosome remains bound for 254 
almost the same amount of time, indicating that the cognate ternary complex still needs to ‘wait’ 255 
nearly as long (i.e., the indirect impact of mismatching reactions). A slight decrease in transport 256 
latency can be attributed to some non-cognate ternary complexes being bound by mismatching 257 
ribosomes, meaning fewer non-cognate ternary complexes are available to occupy the matching 258 
ribosome. However, the reaction latency of the cognate ternary complex increases (𝜏"($ = 63	ms) 259 
due to the direct impact of mismatching reactions: cognate ternary complexes spend more time in 260 
futile interactions with the more abundant mismatching ribosomes. 261 
Next, we added a physiologically correct abundance of crowder proteins to the translation voxel 262 
resulting in further increases in both transport and reaction latencies (𝜏!"#$%&'"! = 396	ms, 𝜏"($ =263 
73	ms) (Figure 4D). These predicted increases arose because crowders increase the number of 264 
mismatching reactions by trapping non-cognate ternary complexes near ribosomes, which in turn 265 
both promotes repeated mismatch reactions and reduces cognate ribosome availability. 266 
Surprisingly, the direct impact of crowding on transport – slower diffusion – was minor compared 267 
to the effects of increased mismatching.  268 
Finally, we represented the expected statistical variation in cytoplasm by constructing thousands 269 
of different voxels that, together, capture the physiological distribution of relative abundances of 270 
translation molecules as reported in the literature (Methods). Specifically, in E. coli, there are 42 271 
unique ternary complexes, each with its own abundance, and 64 codons, each with its own usage 272 
rates, and these are present in many permissible combinatoric configurations in translation voxels 273 
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throughout cytoplasm (Figure 2D). We randomly sampled all permissible configurations using 274 
reported E. coli codon usage and whole-cell tRNA abundances (Methods, Table S6, Figure S4). 275 
Recognizing that bulk elongation measurements correspond to the time needed to complete as 276 
many successful reactions as ribosomes are in a voxel, we computed the transport, reaction, and 277 
elongation latencies of each translation voxel from the time taken for a single matching reaction 278 
within the voxel. A weighted average of the per-ribosome latency for all permissible translation 279 
voxels corresponds to the typical time for just one matching reaction to occur in a voxel and thus 280 
provides a lower-bound estimate of bulk experimental elongation time as obtained from cellular 281 
measurements (Methods). While our prior simulations (Figures 4A – 4D) included only non-282 
cognate and cognate ternary complexes, our calculations of the ensemble latencies (Figure 4E) 283 
also included the more detailed classification of some ternary complexes as near-cognate, which 284 
affects system dynamics further because near-cognates are well-known to have a slower rejection-285 
time than non-cognates (Table S5, Figure S2). We monitored transport, reaction, and elongation 286 
latency during simulation in each of these thousands of voxels, and computed a weighted-average 287 
value for transport, reaction, and elongation latency. We found that the weighted-average 288 
transport, reaction, and elongation latencies decrease in the ensemble representation (𝜏!"#$%&'"! =289 
242	ms, 𝜏"($ = 56	ms, 𝜏)*'$+ = 298) (Figure 4E), compared to the single-voxel simulation 290 
(Figure 4D). This across-the-board decrease in latencies emerges naturally from the majority of 291 
voxels in which there is more than one cognate ternary complex, partly a result of the biological 292 
phenomenon of more frequently used codons being associated with more abundant cognate tRNAs 293 
(Figure S8). 294 
Quantitatively, the Damköhler number – the ratio between the latency of transport and reaction 295 
(Da = 𝜏!"#$%&'"! 𝜏"($⁄ ) – highlights the dependency of translation elongation latency on physical 296 
transport relative to chemical reaction. In our simplest model, Da ∼ 0, suggesting that reaction 297 
latency dominates elongation latency. However, our increasingly accurate models estimate Da ∼298 
6, Da ∼ 4, Da ∼ 5, and Da ∼ 4 respectively (Figures 4B – 4E). We thus concluded that processes 299 
that modulate transport latency play a dominant mechanistic role in regulating the overall speed of 300 
translation elongation. 301 
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 302 
Figure 4. Most of the latency in translation elongation arises from physical transport of ternary complexes. (A-303 
E) Simulation snapshots, model schematics, and simulation results (top to bottom) for increasingly realistic (left to 304 
right) translation voxels at growth rate µ = 0.6 dbl/hr. In each plot the average latency is marked by a blue vertical line 305 
and displayed on the top right in milliseconds. (A) A highly simplified translation voxel containing only a single 306 
ribosome and cognate ternary complex. (B) A translation voxel containing a single ribosome and 42 ternary 307 
complexes. (C) A translation voxel with 42 ternary complexes and four ribosomes. (D) A translation voxel with 42 308 
ternary complexes, four ribosomes, and 1970 crowder proteins. (E) An ensemble of translation voxels that capture the 309 
expected natural variation in cognate, near-cognate, and non-cognate ternary complexes due to non-uniform ternary 310 
complex and codon abundances coupled with spatial stochasticity. 311 

IV. Stoichiometric crowding speeds up translation elongation 312 
We returned to the puzzle of what mechanism(s) might cause the productivity of individual 313 
ribosomes to increase with increasing growth rates. We first evaluated the impact of stoichiometric 314 
crowding on transport latency by considering both molecule proximity (i.e., how close molecules 315 
are to one another) and molecular mobility (i.e., how fast molecules move). We also evaluated the 316 
impact of stoichiometric crowding on reaction latency by considering both local availability (i.e., 317 
to what extent ternary complexes are free from repeated mismatching reactions) and global 318 
availability (i.e., to what extent ternary complexes are free from mismatching reactions generally). 319 
Taken together we determined if and how each of these coupled physico-chemical mechanisms 320 
might regulate elongation latency as a function of growth rate. 321 
We hypothesized that crowding should tend to reduce transport latency because ternary complexes 322 
need to search smaller volumes to find a matching ribosome. To explore this idea, we computed 323 
the average surface-to-surface distance between ternary complexes and their closest ribosomes 324 
(i.e., the shortest distance a ternary complex needs to travel to find a ribosome) across hundreds of 325 
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translation voxels at multiple growth rates (Methods). We found that stochiometric crowding 326 
brings ternary complexes and ribosomes five-fold closer on average (16 nm to 3 nm), which 327 
supports our hypothesis (Figure 5A, left axis). But stoichiometric crowding could also increase 328 
transport latency as ternary complexes become hindered in their motion and thus take longer to 329 
search. To explore this second idea, we examined the influence of stoichiometric crowding on 330 
molecule mobility by estimating the viscosity of cytoplasm as well as the hindered diffusivity of 331 
ternary complexes, ribosomes, and crowder proteins via simulation of hundreds of translation 332 
voxels at multiple growth rates (Figure 5A, right axis; Figure S3; Methods). We found that 333 
stochiometric crowding increases viscosity monotonically (1.0 to 2.4, normalized to viscosity at 334 
𝜇 = 0.6	dbl/hr) while reducing diffusivity monotonically for all biomolecules (e.g., the diffusivity 335 
of ternary complexes, 𝐷tern, slows from 35 µm2/s to 16 µm2/s), which would support the opposite 336 
conclusion: that crowding should hinder transport. Recognizing this competition between an 337 
increased proximity reducing transport latency and an increased viscosity increasing transport 338 
latency, we more systematically considered the contribution of each mechanism to transport as 339 
stoichiometric crowding increased due to increased cell growth rate. 340 
For example, we simulated ensembles of translation voxels representing the full statistical 341 
distribution of ternary complexes and codon abundances from low- to high-growth rates 342 
(Methods). We found that transport latency monotonically decreases with stoichiometric 343 
crowding (𝜏!"#$%&'"! =	242 ms to 83 ms) (Figure 5B). We deduced that, mechanistically, 344 
crowding drives faster transport because reducing the search distance between ternary complexes 345 
and ribosomes is more important than increased viscosity. However, while this net decrease in 346 
transport latency will decrease elongation latency overall, it could be that coupled changes in 347 
reaction latency either reverse or reinforce this trend. 348 
Thus, we examined two mechanisms that could modulate reaction latency. First, we recalled that 349 
crowder proteins can induce repeat reactions by trapping ternary complexes and ribosomes 350 
together (Section III). These repeat reactions should reduce the local availability of ternary 351 
complexes, making it more difficult for ternary complexes to find matching ribosomes, driving up 352 
reaction latency. To examine whether increased stoichiometric crowding amplifies this effect, we 353 
tracked the number of times ternary complexes consecutively re-react with the same ribosome 354 
following a mismatching reaction across hundreds of translation voxels at varying growth rates. 355 
We were surprised to find that repeated reactions decrease five-fold (from ~10 to ~2 repeat 356 
reactions per ribosome on average) as growth rate quickens and total crowding increases (Figure 357 
5C, left axis). We resolved this apparent paradox by recognizing that the increased crowding arises 358 
primarily due to tighter packing of ribosomes, while the volume fraction of crowder proteins hardly 359 
changes. We deduced that this provides more local ribosome alternatives (i.e., higher local 360 
availability) for ternary complexes but with no increase in trapping by crowders (Figure S6). 361 
However, having more ribosomes, regardless of how well packed they are, provides more 362 
opportunities to preoccupy ternary complexes in mismatch reactions, reducing ternary complex 363 
global availability, which should drive up reaction latency. We found that the number of 364 
mismatching ribosomes in a voxel first increases and then decreases with growth rate, which 365 
should contribute an initial increase and then decrease in reaction latency as growth rate increases 366 
(Figure 5C, right axis). Taken together, the total impact on reaction latency depends on the 367 
relative strengths of each of these effects. 368 
We next computed reaction latencies across our ensembles of translation voxels, capturing how 369 
physiological variation influences the competition between local and global availability. We found 370 
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that total reaction latency increases (𝜏"($ = 56	ms	to	70	ms) at low but increasing growth rates 371 
and then decreases monotonically thereafter (𝜏"($ = 70	ms	to 52	ms) (Figure 5D). Low global 372 
availability of ternary complexes dominates at low growth rates, slowing reaction latency as 373 
growth rate increases. However, at higher growth rates, the increase in both global and local 374 
availability combine to drive down reaction latency. Overall, the growth-rate trend in reaction 375 
latency (Figure 5D) follows ternary complex global availability (Figure 5C, right axis). 376 
Practically, even with a 25% increase that subsequently reverses, reaction latency changes only 377 
7% over low-to-high growth rates, suggesting that transport plays the more substantial role in 378 
speeding elongation. 379 
Indeed, the quantitative speedup of reaction latency with growth rate (Figure 5B) is minor 380 
compared to the corresponding speedup of transport latency (Figure 5D), indicating that transport 381 
mechanisms should be expected to dominate over reaction mechanisms in regulating the growth-382 
rate dependent productivity of individual ribosomes. Our ensemble simulations show that the 383 
dominance of transport manifests in the total elongation latency as a monotonic speedup of 384 
elongation with growth rate (𝜏)*'$+ = 298	ms	to	135	ms), recovering the experimental trend of 385 
faster elongation at higher growth rates (𝜏elong

bulk = 83	ms	to 48	ms) (Figure 5E).  386 

Finally, although our model correctly predicts and recovers the qualitative behavior and overall 387 
trend (i.e., an increase in ribosome productivity with increasing growth rate), we noted that our 388 
unfitted bottom-up modeling and simulations result in absolute predictions of translation 389 
elongation latencies that are ~3-fold too slow compared to experimental observations (Figure 5E).  390 
Thus, we conducted sensitivity analyses in which chemical kinetic rates were fitted to match 391 
observed overall translation elongation latency (Supplement). We found that the speedup in 392 
translation elongation is insensitive to changes in the chemical kinetics of translation elongation 393 
(Figure S13). 394 
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 395 
Figure 5. Stoichiometric crowding reduces both intermolecular distances and transport latency resulting in 396 
increasingly productive ribosomes as growth rate increases. (A) As crowding and growth rate increase (x-axes) 397 
ternary complexes become closer to their nearest ribosome (left y-axis) and translation voxel viscosity increases (right 398 
y-axis). Distance is reported as a surface-to-surface estimate. Viscosity is reported normalized to viscosity at µ = 0.6 399 
dbl/hr. (B) Simulation results showing that transport latency (y-axis) decreases with increased crowding and growth 400 
rate (x-axes). (C) As crowding and growth rate increase (x-axes) the average number of repeat reactions between 401 
ternary complexes and ribosomes decreases (left y-axis) while the absolute number of mismatching ribosomes in a 402 
translation voxel first increases then decreases (right y-axis). (D) Simulation results showing that reaction latency (y-403 
axis) first increases then decreases with increased crowding and growth rate (x-axes). (E) Simulation results showing 404 
that the predicted absolute elongation latency (filled circles, solid line) decreases with increased crowding and growth 405 
rate (x-axes). Experimentally measured per-ribosome elongation latency (solid line upon green area; replotting of 406 
Figure 1) also speeds up with growth rate but is faster than predicted across all growth rates. The standard errors in 407 
the estimate of the mean for all model results (A-E) are shown (error bars).  408 
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Discussion 409 
The observed increase in individual ribosome activity as growth quickens has not been explained 410 
mechanistically (Figure 1). While many have focused attention on how translation initiation 411 
contributes to protein synthesis latency, we were intrigued by how the individually fast steps of 412 
translation elongation add up during translation elongation and should dominate overall process 413 
latency (Supplement). In the context of translation elongation, while prior studies of protein 414 
synthesis rates focused on chemical kinetic measurements or kinetics-based modeling, there have 415 
been persistent signals that Brownian diffusion of translation molecules plays a role in setting 416 
elongation rates.  417 
With this in mind, we explored the idea that either chemistry or physics, or both, contribute to the 418 
speedup of translation elongation utilizing dynamic simulations. We proposed that reactions 419 
between ternary complexes and ribosomes are nontrivially coupled to their physical transport and 420 
that understanding this coupling is essential to explaining increased ribosome productivity at faster 421 
growth rates. To systematically interrogate the role of coupled physico-chemical processes in 422 
translation elongation, we adapted an open-source simulation tool to accurately represent transport 423 
of and interactions between translation molecules in cytoplasm. A key aspect of our approach is 424 
the robust modeling of Brownian motion and colloidal-scale particle interactions such that these 425 
molecules undergo the inertialess physical encounters appropriate to the colloidal regime. We 426 
defined translation voxels as naturally emergent from the constituent biomolecules required for 427 
translation and captured the natural distribution of chemical identities and spatial configurations 428 
of translation molecules in cytoplasm by constructing ensembles of thousands of voxels. We 429 
monitored in simulations the reactions and transport of molecules in these voxel ensembles to 430 
study the physical and chemical mechanistic relationships between growth rate and elongation rate 431 
(Figure 2). 432 
We found that transport latency – the time ternary complexes spend searching for cognate 433 
ribosomes – is an essential component of elongation latency. Furthermore, we predict that transport 434 
latency dominates over reaction latency – the time ternary complexes spend reacting with 435 
ribosomes (Figure 4). By examining the elongation process as growth rate increases, we identified 436 
two competing mechanisms that underlie transport latency – proximity between ternary complexes 437 
and ribosomes that sets search distance, and cytoplasmic crowding that sets diffusive speed. 438 
Additionally, we observed that translation molecules become three-fold more crowded with 439 
increasing growth rate, suggesting that, beyond any absolute increase in the abundance of 440 
translation machinery, the machinery itself becomes packed closer together. The abundance and 441 
packing are physical as well as chemical (i.e., colloidal stoichiometry) and their changing due to 442 
changes in growth rate is a phenomenon we call stoichiometric crowding (Figure 3). We 443 
determined that the stoichiometric crowding associated with faster growth rates produces increased 444 
ribosome activity by reducing transport latency, revealing a mechanistic explanation for why 445 
individual ribosomes can produce proteins more quickly in faster-growing cells. In more detail, 446 
we predict that stoichiometric crowding reduces transport latency by increasing proximity: ternary 447 
complexes are closer to ribosomes, a change that outcompetes concomitant increases in viscosity 448 
and reaction latency to realize faster elongation (Figure 5). 449 
We stress-tested our model and confirmed that the speedup of elongation requires physical 450 
transport, and that our prediction of speedup is robust to changes in the values of the input chemical 451 
parameters. We also found that increasing three-fold the values for all nine in vitro literature values 452 
for chemical kinetics parameters closes the quantitative gap between predicted and observed 453 
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elongation rates (Figure S13). This suggests the rather straightforward chemistry-only explanation 454 
for the gap: in vitro measurements being “off” by ~300%, uniformly across all nine parameters. 455 
But, interestingly, we also found a 30-fold increase in only the ternary complex unbinding rate 456 
(𝑘1r) – the only reaction that takes place exclusively outside the ribosome – could also close the 457 
quantitative gap (Figure S13, Figure S9), suggesting there may be a mechanism involved in vivo 458 
that quickens ternary complex exchange or one that obviates the need for fast rejection (i.e., a 459 
mechanism for favoring matching reactions near to the ribosome).  460 
Overall, our model reveals new opportunities for discovery. For example, better representation of 461 
electrostatic and hydrodynamic interactions or detailed molecular shape and orientation for site-462 
specificity may be useful. More specifically, attractive interactions between the ribosomal L7/L12 463 
domain and ternary complexes (Mustafi and Weisshaar, 2018) or between cognate ternary 464 
complexes and mRNA (Grosjean and Chantrenne, 1980) could have the effect of pre-loading or 465 
pre-sorting ternary complexes. As a second example, hydrodynamic models of small and large 466 
particles confined in a cavity show that both types of particles tend to concentrate near the cavity 467 
surface with minor impact on the mobility of small particles (Gonzalez et al., 2021), indicating 468 
that ternary complexes and ribosomes may concentrate by the cell membrane (not currently 469 
represented in our model) and effectively improve in proximity to each other. 470 
More generally, our work supports exploration of the role of coupled, colloidal-scale physico-471 
chemical interactions in cytoplasm. For example, we predicted that ternary complexes and 472 
ribosomes should be up to five-fold closer together in faster growing cells (Figure 5A), a major 473 
shift in the colloidal-scale structure of cytoplasm that can be expected to modulate molecular 474 
interactions broadly across the cytoplasm. Such colloidal-scale structure is being increasingly 475 
measured experimentally (e.g., ribosome spatial positioning via cryo-electron tomography of 476 
entire cells) and merits increased attention for its role in cytoplasm behavior (Ortiz et al. 2006, 477 
Robinson et al. 2007). As a second example, the phenomenon of repeat reactions we found critical 478 
to the speedup of protein synthesis has also been identified as critical to efficient activation of 479 
Mitogen-Activated Protein (MAP) Kinases (Takahashi et al., 2010), suggesting a wider role for 480 
repeat reactions in cell functions. One can also infer the possibility that stoichiometric crowding 481 
with changing growth rate may impact cell signaling in general. As a third example, using our 482 
model we predicted that the viscosity of the nucleoid-excluded cytoplasm increases up to 2.5-fold 483 
with growth rate, which indicates a decrease in the mobility of all constituent molecules. Such a 484 
broad growth-rate dependent shift in colloidal-scale dynamics may suggest currently 485 
unappreciated forms of physical regulation in cells and motivates a renewed analysis of diffusive 486 
processes in cells with consideration to volume fraction and growth rate. 487 
Advances in both computational modeling and experimental technique are needed to improve the 488 
accuracy of our predictions and promote broader exploration for how coupled colloidal-scale 489 
physics and chemistry in cytoplasm might regulate cellular behaviors. For example, dynamic 490 
simulation of the motion of solvent-suspended particles requires discretization of the time domain, 491 
where equations of motion are integrated forward in time. The selection of time step size impacts 492 
not only computational expense but also the fidelity of particle encounters where, for example, 493 
too-large timesteps can produce pathological displacements in response to steeply attractive or 494 
repulsive forces (e.g., the hard-sphere repulsion that represents entropic exclusion is singular at 495 
particle contact), a phenomenon that becomes more severe as crowding increases. Here, we 496 
performed a careful study to prioritize physical accuracy first and then optimize efficiency by, for 497 
example, developing a kinetic scaling method that leveraged the natural disparity between 498 
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diffusive and reactive timesteps (Figures S3, S5, S10). Even so, further capturing the complexity 499 
of cytoplasm (e.g., general protein-protein interactions, polysome dynamics, or cell-cycle 500 
dependency) will ultimately require modeling other microscopic forces at play in cytoplasm, 501 
including electrostatic or hydrodynamic interactions or membrane confinement, all of which lead 502 
to many-body interactions that increase computational expense. Modeling such forces, in addition 503 
to other molecular details like shape, softness, flexibility, and site-specificity, is becoming possible 504 
with other algorithms such as Stokesian dynamics for large or confined systems (Aponte-Rivera 505 
et al., 2018; Gonzalez et al., 2021; Maheshwari et al., 2019; Ouaknin et al., 2021; Zakhari et al., 506 
2017), but will require substantial integration and iteration with experiments as well as 507 
improvements in computational efficiency to achieve accurate simulations over the timescales of 508 
cellular behavior (Endy and Brent, 2001). Capturing detailed molecular dynamics, such as those 509 
involved with ternary complex-ribosome binding and reactions, will also necessitate multi-scale 510 
modeling and experimentation from atomic to cellular scales. 511 
In closing, we note that protein synthesis is inextricably tied to growth rate and fitness; cells cannot 512 
grow more quickly than they can reproduce their proteome, including the proteins that remake the 513 
proteome. Since stoichiometric crowding facilitates faster protein synthesis, could further 514 
crowding enable still-faster growth or, conversely, limit how fast cells can grow? To speculate, as 515 
a simple extension to our modeling, we projected what cytoplasm of faster-than-observed growing 516 
E. coli would look like (Figure S11, Methods). We found that E. coli would eventually reach 517 
maximum packing (i.e., with little to no space for molecular mixing) as growth rate continues to 518 
increase (Figure 6A). That such hypothetical growth rates are not observed suggests, among other 519 
possibilities, that as growth rate increases beyond the maximum observed, the beneficial effects of 520 
increased crowding (e.g., increased proximity) become outpaced by the deleterious effects of less 521 
available free volume (e.g., further increased viscosity) (Figure 6B). This hints that stoichiometric 522 
crowding may be linked to fitness and evolutionary fine tuning. If so, then we would expect that 523 
genes encoding currently unknown functions may serve to establish a physical, as well as 524 
chemical, basis for fitness (e.g., proteome polydispersity) undergirding cellular behavior broadly. 525 
 526 

 527 
 528 

 529 
 530 
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 531 
Figure 6. Stoichiometric crowding has diminishing returns that may impose a physical limit on 532 
growth rate. (A) Volume fraction of translation voxels at observed growth rates and projected growth rates 533 
compared to theoretical maximum random close packing (maximum packing changes with size 534 
polydispersity (Farr and Groot, 2009) and size polydispersity changes with growth rate). Bounds for volume 535 
fraction at projected growth rates are shown (gray dashed line and shading). Maximum packing increases 536 
across observed growth rates (green shading). The volume fraction for the most-crowded observed voxel 537 
(ϕ"#$ = 0.42, µ = 3.0 dbl/hr) is shown (right axis, bottom schematic). For reference, the volume fractions at 538 
which long-term molecular motion in monodisperse suspensions is hindered or halted due to random close 539 
packing (ϕ = 0.64) or crystallization (ϕ = 0.74), respectively, are also shown (right axis, top and middle 540 
schematic). (B) The product of voxel volume fraction (ϕ"#$) and remaining available volume fraction 541 
(ϕ%&$ −ϕ"#$) increases across observed growth rates (green shading) before decreasing across faster-than-542 
observed growth rates.   543 
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Methods 544 
I. Construction of a representative translation voxel 545 
We developed computational representations of translation voxels by analyzing the abundances 546 
and sizes of molecules comprising E. coli cytoplasm in relation to overall cell volume and mass. 547 
Where needed we inferred abundances across growth rates by fitting polynomials to reported 548 
measurements (described below). 549 
I.1. Calculation of biomolecular abundances in cells 550 
We computed the average abundances of ribosomes (𝑁rib) and ternary complexes (𝑁tern) in single 551 
cells across physiological growth rates using existing data from literature (Table S1). We first 552 
calculated the total dry mass of crowder proteins in cytoplasm, 𝑀cytoplasm,crowder (Equation 1). 553 
Crowder protein mass encompasses the mass of all biomolecules in cytoplasm other than 554 
ribosomes, ternary complexes, mRNA, and DNA: 555 
𝑀cytoplasm,crowder = 𝑀cytoplasm −𝑀tern ∗ 𝑁tern −𝑀rib ∗ 𝑁rib −𝑀cytoplasm, mRNA −𝑀cytoplasm,DNA	. (1)	 556 

The masses of ternary complexes (𝑀tern) and ribosomes (𝑀rib) were specified using known 557 
molecular structures and the total mass of mRNA, DNA, and cytoplasm 558 
(𝑀cytoplasm,mRNA, 𝑀cytoplasm,DNA,	and 𝑀cytoplasm, respectively) were taken from literature (Tables S4, 559 
S1). We then calculated the average effective spherical radius of crowder proteins (𝑅crowder), as 560 
well as the mass of resulting average-sized crowder proteins F𝑀crowderG, using single-cell E. coli 561 
mass spectrometry data and average protein density (𝜌crowder) (CrowderProteinComputation.py): 562 

𝑉crowder,, 	=
𝑀crowder,,

ρcrowder
	 , (2) 563 

 564 

𝑅crowder 	= I
𝑁crowder,,

𝑁crowder,

	 J
3𝑉crowder,,

4𝜋
'

	 , (3) 565 

 566 

𝑀crowder 	=
4
3
𝜋(𝑅crowder

6
)(𝜌crowder). (4) 567 

We obtained the mass and abundances of each protein in the E. coli cytoplasm (𝑀crowder,, and 568 
𝑁crowder,, respectively), as well as the total number of proteins (𝑁crowder), from the mass 569 
spectrometry measurements of Heinemann and colleagues (Schmidt et al., 2016). We also 570 
computed the volume of each protein in the E. coli cytoplasm (𝑉crowder,,) using these measurements. 571 
We then determined the abundance of crowder proteins in a cell as the ratio of total mass occupied 572 
by crowder proteins in cytoplasm (Equation 1) and the mass of average-sized crowder proteins 573 
(Figure S1B), 574 

𝑁crowder =
7cytoplasm,crowder

7crowder
	 . (5)  575 

I.2. Calculation of translation voxel size and biomolecular abundances in translation voxels 576 
On a relative basis amino-acid specific ternary complexes are the least-concentrated molecules 577 
involved in translation elongation and thus their concentration determines the minimum volume 578 
of cytoplasm capable of supporting protein synthesis. Therefore, we determined the size of 579 
translation voxels from our estimates of ternary complex abundances (𝑁tern) and E. coli volume 580 
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(𝑉cell) across growth rates (Figure S1, Tables S1, S2). More specifically, we defined a translation 581 
voxel to be the volume of cytoplasm that contains 42 ternary complexes (𝑁tern,vox = 42), assuming 582 
a spatially homogeneous distribution of ternary complexes within cytoplasm: 583 

𝑉vox =
𝑁tern,vox ∗ 𝑉cell

𝑁tern
	 . (6) 584 

We then calculated the average number of crowder proteins (𝑁crowder, vox) and ribosomes (𝑁rib, vox) 585 
within the translation voxel volume (𝑉vox) assuming a homogeneous distribution of both species, 586 
but with ribosomes excluded by the nucleoid (Figure S1C): 587 

𝑁crowder, vox =
𝑁crowder ∗ 𝑉vox

𝑉cell
	 , (7)	588 

𝑁ribosome, vox =
𝑁ribosome ∗ 𝑉vox

𝑉cell(1 − 𝜙nucleoid)
	 . (8) 589 

We estimated the volume fraction of the nucleoid (𝜙nucleoid) based on published values (Table 590 
S3). 591 
 592 
I.3. Polynomial regression fitting 593 
We computed polynomial fits for ribosome abundances, ternary complex abundances, cell mass, 594 
cell volume, and nucleoid volume using a bootstrapping method that minimized the mean absolute 595 
error (Figure S1A, TranslationVoxelParameterization.py); we used mean absolute error instead of 596 
mean squared error to penalize all variation equally.  597 
 598 
II. Calculation of translation voxel volume fractions and polydispersity 599 
We calculated the volume fraction of ribosomes, ternary complexes, and crowder proteins (Figure 600 
3C) using ribosome, ternary complex, and crowder protein abundances in translation voxels; 601 
ribosome, ternary complex, and crowder protein single-molecule volumes; and translation voxel 602 
volume:  603 

𝜙rib =
𝑁rib, vox ∗ 𝑉rib

𝑉vox
	 , (9) 604 

𝜙tern =
𝑁tern, vox ∗ 𝑉tern

𝑉vox
	 , (10) 605 

𝜙crowder =
𝑁crowder, vox ∗ 𝑉crowder

𝑉vox
	 . (11) 606 

The abundances of ribosomes, ternary complexes, and crowder proteins 607 
(𝑁rib,vox, 𝑁tern,vox, 𝑁crowder,vox) in translation voxels as well as the translation voxel volume (𝑉vox) 608 
are as described in Equations 6, 7, and 8. The volume of a single average-sized crowder protein 609 
(𝑉crowder) is defined as its mass divided by average protein density (Equation 4). We computed 610 
the volume of single ribosomes (𝑉rib) and ternary complexes (𝑉tern) based on their longest length 611 
(i.e., estimating the molecules as spheres with diameters equal to the longest length of the 612 
molecules), which we measured from their detailed atomic resolution structures (PDB 4V4Q and 613 
PDB 1B23, respectively) (Table S4). 614 

We calculated the size polydispersity, 𝑠, of translation voxels as in Fairhurst, 1999: 615 
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	𝑠 = J
∑𝑁,,	vox ∗ ∑𝑁,,vox𝑅,9

F∑𝑁,,vox𝑅,G
9 − 1	. (12) 616 

Here, 𝑁,,vox and 𝑅, correspond to the translation voxel abundances and effective spherical radius 617 
of each biomolecule type, denoted by the subscript 𝑖, respectively (Table S4). 618 
 619 
III. Simulation of translation voxels  620 
We simulated transport and reaction of biomolecules within translation voxels using Brownian 621 
dynamics and single-molecule reaction kinetics, respectively. We implemented our simulations 622 
using “Colloidal Smoldyn”, our adaptation of the open-source simulation software Smoldyn 623 
(Andrews et al., 2010). Colloidal Smoldyn accurately represents single-molecule resolution 624 
colloidal transport dynamics and reaction dynamics as described below.  625 
III.1. Simulating colloidal transport dynamics  626 
Here, we briefly describe the theoretical framework that underlies Colloidal Smoldyn and then 627 
provide simulation implementation details. The transport dynamics of water-suspended particles 628 
of size ~ 1.5 nm to O(10) microns (colloids) have been thoroughly studied and characterized in the 629 
microhydrodynamics and colloid physics literature. Fluid motion generated by particle motion at 630 
these length scales is governed by the Stokes equations, while particle motion is described by the 631 
N-particle Langevin equation (Langevin, 1908), 632 

𝒎 ∙
𝑑𝑼
𝑑𝑡

= 	𝑭: + 𝑭; + 𝑭<=> + 𝑭? , (13) 633 

a stochastic force balance, where particle momentum 𝒎 ∙ 𝑑𝑼/𝑑𝑡 equates the sum of the forces 𝑭 634 
that act on the particles. Here 𝒎 is a diagonal tensor containing the details of the mass of the 635 
particles and 𝑼 is the particles’ velocity vector. The forces 𝑭 represent the stochastic forces 𝑭: 636 
that give rise to Brownian motion, the deterministic interparticle forces 𝑭; that here arise from a 637 
hard-sphere potential, the external forces 𝑭<=> that could represent either active motion or 638 
externally induced motion, and hydrodynamic drag forces 𝑭? that arise due to the difference 639 
between the particle velocity 𝑼 and imposed fluid motion 𝒖@. Each of the vectors (𝑼 and 𝑭) has 640 
dimensions 3N describing the three-dimensional space in which all N particles move. In our system 641 
there are no external forces on the particles, thus 𝑭<=> = 0. 642 

The Brownian force 𝑭,: on a given particle “𝑖” arises from collisions between the colloidal particle 643 
and the solvent molecules as the fluid fluctuates thermally and follows Gaussian statistics,  644 

𝑭A:WWWW = 𝟎
𝑭A:(0)𝑭A:(𝑡)WWWWWWWWWWWWWWW = 2𝑘𝑇(6	𝜋𝜂𝑎,)𝑰𝛿(𝑡), (14)

 645 

where 𝑘 is the Boltzmann constant, 𝑇 is the absolute temperature, 𝜂 is the solvent viscosity, 𝑎, is 646 
the particle radius, 𝑰 is the identity tensor, and 𝛿(𝑡) is the Dirac delta function. The overbar 647 
considers averages over times long compared to the solvent molecule timescale, such that a 648 
colloidal particle has undergone many random and decorrelated impacts from solvent molecules. 649 
Although the mean Brownian force is zero, its covariance, 2𝑘𝑇(6	𝜋𝜂𝑎,)𝑰, has an amplitude set by 650 
the fluctuation-dissipation theorem, which dictates that colloidal motion due to thermal forces is 651 
dissipated viscously back into the solvent. In our system, we approximated the drag force on the 652 
colloid, (6	𝜋𝜂𝑎,)𝑰, to be constant, where each particle experiences solvent drag and excludes other 653 
particles entropically with finite size, but coupled hydrodynamic interactions are neglected. This 654 
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common simplification, the “freely draining model” is appropriate for gaining understanding of 655 
the basic colloidal physics of a suspension (Hoh and Zia, 2016a, 2016b; Russel, 1984; Russel et 656 
al., 1989; Zia and Brady, 2010) and is accurate in many physiological conditions. Incorporating 657 
hydrodynamic interactions in such models is routine (Banchio and Brady, 2003; Durlofsky et al., 658 
1987; Ouaknin et al., 2021; Sierou and Brady, 2001) although computationally expensive and will 659 
be discussed in future work. 660 
Interactions between colloidal particles can be attractive or repulsive and range from short- to long 661 
interparticle distances. In the present work, biomolecules are represented as hard spheres: they 662 
interact only at contact at which point we stipulate that they may not overlap. This can be 663 
represented mathematically via a hard-sphere potential that enforces an infinite penalty for overlap. 664 
The gradient of this entropic exclusion gives rise to a deterministic interparticle force between two 665 
particles of radius 𝑎, and 𝑎B 666 

𝑭,; =
𝑎B

𝑎B + 𝑎,
𝑘𝑇𝛿^𝑟,B − F𝑎B + 𝑎,G`𝒓b,B , (15) 667 

where 𝑟,B is the interparticle distance between the particles’ centers, 𝒓b,B is the unit vector along the 668 
line that connects the particle centers, and the delta function 𝛿 enforces the infinite penalty for 669 
overlap. 670 

Finally, the hydrodynamic drag forces are given by the Stokes drag on each particle according to  671 

𝑭,? = 6𝜋𝜂𝑎,(𝑼, − 𝒖@). (16) 672 

Overall, the fluid motion is governed by Stokes’ equations; hence, particle dynamics operate in 673 
the “overdamped limit” of the Langevin equation, where integrating twice over a time interval	Δ𝑡 674 
large enough for a colloid to have received many uncorrelated solvent molecule impacts and to 675 
have relaxed their momenta (Δ𝑡 ≫ 𝑚/6𝜋𝜂𝑎,) results in the displacement equation (see Ermak and 676 
McCammon, 1977 for further details)  677 

Δ𝒙, =	𝑿,(Δ𝑡) +
𝑭,;

6𝜋𝜂𝑎,
Δ𝑡 + 𝒖@Δ𝑡. (17) 678 

Here, Δ𝒙, is the change in position over a time step Δ𝑡, owing to the combined contributions of 679 
the Brownian force, the interparticle potential, and the imposed flow. In Equation 17, the 680 
Brownian displacement 𝑿,(Δ𝑡) obeys Gaussian statistics given by 681 

𝑿h, = 𝟎
𝑿A(Δ𝑡)𝑿A(Δ𝑡)WWWWWWWWWWWWWWWWW = 2𝑫,Δ𝑡, (18)

 682 

where the amplitude of the co-variance in this freely draining model is set by the diffusion 683 
coefficient of a single particle defined by the familiar Stokes-Einstein relation, 𝑫, =684 
𝑘𝑇/6𝜋𝜂𝑎,𝑰	(Einstein, 1905; Stokes, 1850). In other approaches, the diffusion coefficient used to 685 
compute Brownian displacements is sometimes obtained from in vivo measurements in order to 686 
implicitly encode the effects of crowding but limits the applicability of the model to a specific 687 
temperature or crowding condition of the cell (among other issues). In our approach, the effects of 688 
crowding on particle motion emerge naturally from the excluded volume interactions enforced by 689 
the interparticle force (Equation 15): each particle undergoes a Brownian displacement 690 
commensurate with Equation 18, reflecting the dissipation of a thermal kick via its own solvent 691 
drag. However, over many displacements, a particle will encounter other particles and must “wait” 692 
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for them to move in order to sample that space, leading naturally to a slow-down of diffusion over 693 
longer distances through a crowded suspension. Changes in volume fraction thus seamlessly lead 694 
to changes in particle dynamics and interactions. 695 
The hard-sphere interparticle force (Equation 15) imposes a singular force between particles at 696 
contact. The modeling of singular forces in dynamic simulation is intractable; at best, very steep 697 
repulsions can be captured. To overcome this limitation, rather than to impose a singularity, we 698 
utilized a “potential-free” algorithm (Foss and Brady, 2000; Heyes and Melrose, 1993), where 699 
once Brownian and imposed flow displacements are made, particles are permitted tiny overlaps 700 
which are then corrected. A pair of particles do not interact at all unless they come into direct 701 
contact or overlap and once they do interact, the hard-sphere displacement of each corrects any 702 
overlap:  703 
 704 

Δ𝒙,?C =	
𝑎B

𝑎B + 𝑎,
^Δ𝑟,B − F𝑎B + 𝑎,G`𝐻F𝑎B + 𝑎, − Δ𝑟,BG𝒓b,B . (19) 705 

Here, Δ𝑟,B−(𝑎B+𝑎,) is the overlap being corrected, the Heaviside step function 𝐻 ensures that 706 
particles are displaced only when they overlap, and 𝒓b ,B is the unit vector along the line that connects 707 
the particle centers, giving the hard-sphere displacement along the line of centers. This approach 708 
is equivalent to applying to each particle an interparticle force 𝑭,; that is proportional to the overlap 709 
to ensure entropic exclusion. The physical consequence of the hard-sphere interaction and the 710 
overlap correction is a contribution to the osmotic pressure that arises from the finite volume 711 
particles occupy in the suspension (Brady, 1993). 712 
Incorporating in Equation 17 the potential-free algorithm and considering that in our system there 713 
are no imposed flows 𝒖@ gives a displacement equation of the form  714 

Δ𝒙, = 	Δ𝒙,?C + 𝑿,(Δ𝑡), (20) 715 

where Δ𝒙,?C is the displacement that enforces the hard-sphere potential. Equations 18 – 20 716 
constitute the framework underlying dynamic simulations in Colloidal Smoldyn, our adaptation of 717 
the original Smoldyn. 718 

In our simulations, we chose a timestep Δ𝑡 =	62 picoseconds empirically by testing the temporal 719 
resolution necessary to recover expected mean-squared displacements over long timescales, which 720 
we computed using the open-source LAMMPS Molecular Dynamics Simulator, across the levels 721 
of crowding we modeled (Figure S3) (Plimpton, 1995). Practically, this timestep corresponds to 722 
an average Brownian displacement per-timestep of 0.1 nm for ribosomes, 0.14 nm for ternary 723 
complexes, and 0.25 nm for crowders (Equation 18, Table S4).  724 
At each time step all particles have a Brownian displacement, after which the algorithm checks for 725 
overlaps between particles. In Colloidal Smoldyn, overlapping biomolecules are separated along 726 
their line of centers and placed at contact according to Δ𝒙?C (Equation 19) and in accordance with 727 
well-established and experimentally validated models of colloidal physics (Heyes and Melrose, 728 
1993). Our implementation is a direct modification to the physics represented by the original 729 
Smoldyn algorithm; the prior method over-corrects the overlap by separating the pair’s surfaces 730 
by the full distance, meaning a gap is introduced almost as though the collision was being modeled 731 
as inertial (Andrews, 2017). In addition, the particles were moved not along their line of centers in 732 
the original algorithm but rather at a reflected angle again reminiscent of an inertial collision which 733 
is not appropriate for colloids in the overdamped dynamics limit. The original method of Smoldyn, 734 
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although intuitive, is physically incorrect for systems in which fluid motion is governed by Stokes 735 
equations, and a strong drag force is exerted on the approaching molecules. In such systems inertia 736 
is irrelevant, meaning that when two particles approach after receiving a Brownian kick they will 737 
simply slow down until another Brownian displacement sets them in a different direction. Placing 738 
particles at contact along the line of centers upon overlap approximates this entropic exclusion 739 
interaction and the interparticle forces associated with this displacement contributes to the osmotic 740 
pressure of the suspension. The Heyes and Melrose algorithm has been shown to recover 741 
suspension osmotic pressure as predicted by statistical mechanics models (Foss and Brady, 2000; 742 
Zia and Brady, 2012).  743 
In simulations of crowded systems, correcting a set of overlaps typically produces additional new 744 
overlaps, necessitating additional iterations of overlap correction. Two strategies are applied to 745 
accurately process overlaps: first, utilizing short, discretized time steps to generate smaller and 746 
fewer overlaps; second, executing several overlap-correction cycles. For computational efficiency, 747 
the original Smoldyn algorithm executed only one round of overlaps, leaving many still-748 
overlapping particles. Only in dilute systems is such an approximation physically accurate. In 749 
colloidal Smoldyn, we conducted an optimization study to identify an appropriate balance of 750 
efficiency and accuracy, from which we devised an algorithm with three iterations of overlap 751 
resolution at the chosen timestep of Δ𝑡 =	62 picoseconds. 752 
In all our simulations, we avoided finite-size and boundary effects by implementing periodic 753 
boundary conditions. 754 
III.2. Simulating reaction dynamics 755 
In our simulations, after a ternary complex and unbound ribosome interact both biomolecules are 756 
converted to form a single bound-ribosome that either disassociates or forms a peptide bond 757 
following single-molecule rate kinetics. In the native Smoldyn algorithm, the distance at which 758 
chemical interactions are initiated between molecules is set a priori to be different than contact 759 
(e.g., molecules may be set to only react when halfway overlapping or conversely while still 760 
separated by several molecule diameters). In particular, the initiating distance is computed such 761 
that the overall reaction rate of all molecules in simulation is equal to experimentally-measured 762 
kinetic rates set for individual reactions (Andrews and Bray, 2004). This approximation is based 763 
on the Smoluchowski model for reactions and is only reasonable for dilute systems (or systems of 764 
point particles). To achieve a more physical representation for crowded colloidal systems (as in 765 
our modeling of transport) that allows ab initio estimates of latency without fitting, we further 766 
modified the Smoldyn algorithm in Colloidal Smoldyn to only allow for initiation of chemical 767 
reactions upon the physical (entropic) interaction of reactant biomolecules. We did not consider 768 
factors such as binding site orientation that would restrict reactions to only certain interactions or 769 
reaction activation energies that may need to be overcome prior to reaction. Instead, we made the 770 
approximation that all physical interactions between ternary complexes and ribosomes lead to 771 
reactions. Ribosomes and ternary complexes that disassociate following a reaction are placed at 772 
contact, congruent to the Brownian dynamics underlying our modeling of transport. This was a 773 
final modification to the Smoldyn algorithm, which places biomolecules at a distance following 774 
disassociation to artificially reduce repeat reaction probability based on fitting of experimental 775 
single molecule reaction kinetic parameters (an approximation that, as before, is reasonable only 776 
for dilute systems) (Andrews and Bray, 2004).  777 
We computed the time a ternary complex spends bound to a ribosome via a Markov process 778 
consisting of well-defined intra-ribosomal states and transition kinetic rates (𝑘,) (Kinz-Thompson 779 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

et al., 2016). Specifically, the algorithm we used to model biochemical reactions involving ternary 780 
complex-bound ribosomes is: 781 

1. For each state transition 𝑖 →	𝑗 out of the current state 𝑖, draw a transition dwell time, 782 
𝜏,→B ← exp p E

F(→*
q; 783 

2. Transition to state 𝑗 corresponding to the fastest transition time, argminBF𝜏,→BG; 784 
3. Draw an updated dwell time for the transition to state 𝑗, 𝜏,→B ← exp vargminBF𝜏,→BGw; 785 
4. Add the updated dwell time, 𝜏,→B, to total dwell time	𝜏!'!; 786 
5. Repeat until either the ternary complex dissociates from the ribosome or a peptide bond 787 

is successfully formed. 788 
Using our algorithm and reported kinetic rates, we computed the distributions of latencies for non-789 
cognate, near-cognate, and cognate ternary complexes reacting with ribosomes (Figure S2, Table 790 
S5, ReactionKineticsCalculations.ipynb). We did not consider the unlikely events of incorrect 791 
reactions leading to mis-incorporated amino acids (≤	1%) or cognate ternary complexes being 792 
rejected following successful codon recognition (0.04%).  793 
 794 
IV. Simulation of translation voxels with varying composition 795 
To measure the relative contributions of transport and reactions to protein synthesis rate, we 796 
simulated translation voxels with increasingly accurate composition (µ = 0.6 dbl/hr) (Results 797 
section III, ColloidalStoichiometryEffects.py). Specifically, we simulated five progressively 798 
accurate scenarios: (i) a single ribosome & cognate ternary complex matching pair; (ii) a matching 799 
pair surrounded by a physiological number of ternary complexes; (iii) a matching pair surrounded 800 
by physiological number of ternary complexes and ribosomes; (iv) a matching pair surrounded by 801 
physiological numbers of ternary complexes, ribosomes, and crowder proteins; and (v) a 802 
statistically representative ensemble of translation voxels each with a physiological number of 803 
ternary complexes, ribosomes, and crowder proteins. We performed 900 simulation replicates each 804 
for the first three cases and 100 simulation replicates for case (iv); we detail case (v) in the next 805 
section. Replicates were assigned random initial conditions, chosen using a Mersenne Twister 806 
random number generator with seeds set at multiples of five (i.e., 0, 5, 10, …). For each replicate, 807 
we further randomly sampled 30,000 matching reaction latencies using a seed of zero. 808 
 809 
V. Construction of statistically representative translation voxel ensembles 810 
To construct statistically representative ensembles of translation voxels (used in Results sections 811 
III, IV, and V), we incorporated reported relative abundances of different types of ternary 812 
complexes and frequencies of codons among mRNA in E. coli at different growth rates (Table 813 
S6). We computationally constructed 100,000 translation voxels for cells in each of six different 814 
growth conditions (0.6, 1.0, 1.5, 2.0, 2.5, and 3.0 dbl/hr), sufficient to represent the statistical 815 
distribution of translation voxels across each condition. Individual translation voxels comprise 816 
different types of ternary complexes and codon-specific elongating ribosomes, randomly chosen 817 
using a Mersenne Twister random number generator with a seed of zero. 818 
For each translation voxel, we randomly picked a single ribosome to track. We then classified 819 
ternary complexes in each translation voxel as either non-cognate or cognate to the chosen 820 
ribosome, leading to a growth-rate dependent distribution in the abundance of cognate ternary 821 
complexes (between zero to forty-two) across translation voxels (Figure S4, 822 
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CognatetRNADistributionCalculation.ipynb). For each of our six modeled growth conditions, we 823 
used the distribution of cognate ternary complexes calculated at the closest growth rate (measured 824 
at 0.4, 0.7, 1.07, 1.6, 2.5 dbl/hr). The speed with which the single chosen ribosome in a translation 825 
voxel successfully finds and reacts with a cognate ternary complex provides a good lower bound 826 
for the bulk translation elongation rate; the bulk elongation rate corresponds to the speed with 827 
which as many peptide bonds are formed as number of ribosomes, and the speed with which a 828 
single ribosome finds and successfully reacts with a cognate ternary complex will typically be 829 
faster than the speed of as many successful reactions as ribosomes in the voxel. 830 
 831 
VI. Simulation of statistically representative translation voxels ensembles 832 
To compute the transport, reaction, and elongation latencies of statistically representative 833 
ensembles of translation voxels (Results sections III, IV and V), we simulated translation voxels 834 
across the six different growth conditions (0.6, 1.0, 1.5, 2.0, 2.5, and 3.0 dbl/hr). Statistically 835 
representative ensembles of translation voxels correspond to the full set of possible translation 836 
voxels, meaning translation voxels can contain between zero to forty-two cognate ternary 837 
complexes for a single chosen ribosome (distributed as in Figure S4). For translation voxels 838 
containing between one to forty-two cognate ternary complexes belonging to cells growing at each 839 
of the six growth rates, we simulated 100 replicates starting from different random initial 840 
conditions (42 x 6 x 100 = 25,200 total simulations). We set conditions for each replicate using 841 
the Mersenne Twister random number generator with seeds set as multiples of five (i.e., 0, 5, 10, 842 
…, 495). Simulations were terminated when the ribosome being tracked successfully reacted with 843 
a cognate ternary complex. 844 
VI.1. Post-simulation analysis of statistically representative translation voxel ensembles 845 
For each translation voxel simulation (𝑖), we computed the elongation latency (𝜏elong,,), transport 846 
latency (𝜏transport,,), and reaction latency (𝜏rxn,,) of the cognate ternary complex that successfully 847 
reacted with the ribosome being tracked 848 
(StatisticallyRepresentativeTranslationVoxelAnalysis.ipynb). We incorporated the impact of 849 
near-cognate ternary complexes by scaling the time taken by a statistically accurate portion of non-850 
cognate reactions at the tracked ribosome. Specifically, we leveraged our calculation that 851 
translation voxels have eight near-cognate ternary complexes and 32 non-cognate ternary 852 
complexes, on average (Figure S4), and that near-cognates have an average latency of 4.6 ms 853 
while non-cognates have an average latency of 1.4 ms (Figure S2), to randomly scale non-cognate 854 
reaction times 3.3-fold with 20% probability. We note that this representation of near-cognates 855 
does not capture the impact of near-cognate ternary complexes on other ribosomes in the voxel; 856 
near-cognates could slightly reduce overall latencies by occupying mismatching ribosomes for 857 
longer than noncognate ternary complexes, allowing cognate ternary complexes to find their match 858 
more quickly. 859 

We subsequently computed an overall transport latency (𝜏transport), reaction latency (𝜏rxn), and 860 
elongation latency (𝜏elong) for each growth rate. We did so by calculating weighted averages of 861 
each of transport latency, reaction latency, and elongation latency acquired from translation voxel 862 
simulations for each particular growth rate (𝜇), averaging over replicates:  863 

𝜏elong(𝜇) =
1
100II𝑝,𝜏elong,,

EGG

B

H9

,

, (21) 864 
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𝜏transport(𝜇) =
1
100II𝑝,𝜏transport,,

EGG

B

H9

,

, (22) 865 

𝜏rxn(𝜇) =
1
100II𝑝,𝜏rxn,,

EGG

B

H9

,

. (23) 866 

The probability of each translation voxel configuration (𝑝,) is conditional on both the number of 867 
cognate ternary complexes in the particular translation voxel as well as growth rate (Figure S4). 868 
We did not consider the latency of translation voxels that contained zero cognate ternary 869 
complexes (~22% of translation voxel instances), since such voxels would have infinite latency 870 
and are an artifact of constraining translation voxels to 42 total ternary complexes. In particular, if 871 
larger voxels with more than 42 ternary complexes are considered, the resulting proportion of 872 
cognate ternary complexes is similar but with fewer instances of zero cognates (e.g., we found that 873 
voxels with 42, 84 or 168 ternary complexes have the same number of average cognates when 874 
normalized by number of total ternary complexes, but have 22%, 10%, and 3% of instances with 875 
zero cognates respectively). Not considering the zero cognate ternary complex voxels thus 876 
provides a lower bound estimate of elongation, transport, and reaction latency. 877 
 878 
VII. Event-based stochastic simulations of statistically representative translation voxel 879 
ensembles 880 
To measure the effect of removing transport physics from our simulations (Supplement), we 881 
developed an event-based stochastic simulation algorithm of statistically representative translation 882 
voxel ensembles (EventBasedStochasticSimulation.py). As in our other simulations, the ensemble 883 
of voxels captures the relative abundances of ternary complexes and frequencies of codons among 884 
mRNA, but unlike our other simulations, physical space is not represented. 885 
In our stochastic simulation algorithm, all ribosomes in translation voxels are initialized as bound 886 
to randomly chosen ternary complexes. Each reacting ternary complex-ribosome pair is then 887 
assigned a time until either disassociation or successful amino acid incorporation, drawn from the 888 
distribution of non-cognate, near-cognate, and cognate reaction latencies we computed as in 889 
Methods Section III.2. (Figure S2). The simulation proceeds in an event-based fashion, iteratively 890 
transitioning to the next event that occurs in the translation voxel (i.e., the timestep of simulation 891 
is not fixed). Following a disassociation event, the disassociated ternary complex joins the 892 
available (unbound) ternary complex population, and the newly available ribosome instantly binds 893 
to a randomly chosen ternary complex. The simulation ends when a cognate ternary complex 894 
successfully reacts with a matching ribosome.  895 
We computed the elongation latency at particular growth rates by simulating the statistical 896 
distribution of possible translation voxels (i.e., with the full permissible range of cognate ternary 897 
complexes, distributed as in Figure S4) and then averaging their resulting elongation latencies. 898 
For each growth rate and permissible number of cognate ternary complexes, we simulated 5000 899 
replicate translation voxels with different random initial conditions. Conditions were set for each 900 
replicate using the Mersenne Twister random number generator with seeds set as multiples of five 901 
(i.e., 0, 5, 10, …, 24995). 902 
 903 
 904 
 905 
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VIII. Computational tools and costs 906 
All fixed time-step simulations of translation voxels were performed using Colloidal Smoldyn 907 
(based on Smoldyn v2.61) deployed on Amazon Web Services. Simulations required ~300,000 908 
CPU-hours in total. Our longest simulations, for translation voxels at a growth rate of 0.6 dbl/hr, 909 
took up to ~3 weeks for some replicates, while our shortest simulations took seconds. The cost of 910 
all our simulations was approximately US $10,000. Output file sizes for most simulation runs were 911 
small (<1 MB). All measurements and validation with LAMMPS were performed using the 912 
Sherlock High Performance Computing Cluster at Stanford University. Modeling, analysis, and 913 
event-based simulations were performed using Python 3.7.  914 
 915 
IX. Acceleration of translation voxel simulations to reduce runtime and cost 916 
Simulations of translation voxels were originally forecast to cost US $6 million with the longest 917 
simulations taking ~36 years, making them intractable. To achieve feasible costs and run times, 918 
we implemented a procedure for accelerating our fixed-timestep simulations ~600-fold, reducing 919 
costs and run times as detailed above. In our acceleration procedure, kinetic rates of unbinding and 920 
codon recognition (i.e., the possible exits to the initially bound state) are increased 600-fold during 921 
simulations (𝑘E = 717	sIE	to 430200	sIE, and 𝑘2f = 1474 sIE to 884400 sIE). Simulations are 922 
run until completion following a successful match between a cognate ternary complex and 923 
matching ribosome. Subsequently, during post-simulation analysis, the time spent by ternary 924 
complexes in the initially bound state is re-scaled to be 600-fold slower, and re-scaled times are 925 
used to compute reaction, transport, and elongation latencies. Reaction latency is calculated as the 926 
time the cognate ternary complex spends bound in reactions; elongation latency is calculated as 927 
the total time the matching ribosome spends unbound or bound in reactions; and transport latency 928 
is calculated as the difference between elongation latency and reaction latency. 929 
Our estimates of overall reaction, transport, and elongation latencies are not sensitive to this 930 
scaling procedure at the ~600-fold acceleration used (Figure S5A-C). This insensitivity is a result 931 
of unbinding kinetics remaining slow enough that, for a certain range of kinetic scaling, ternary 932 
complexes mix within the translation voxel in between unbinding events to a sufficiently similar 933 
extent (Figure S5D). 934 
 935 
X. Calculation of long-time self-diffusivity 936 
We tracked the motion of individual biomolecules as they wandered far from their original 937 
positions, executing a random walk through cytoplasm. This sampling of many configurations in 938 
a voxel is termed the long-time self-diffusion (𝐷@L ) (referred to as diffusivity in the Results) and is 939 
a monotonically decreasing function of volume fraction at fixed molecule size polydispersity. We 940 
computed the long-time self-diffusion of particular biomolecule species (denoted by subscript 𝑖) 941 
at different growth rates by tracking the absolute position of biomolecules and computing their 942 
mean squared displacement over time (Results section IV): 943 

𝐷@,,L =
1
6
𝑑
d𝑡
〈Δ𝐱,Δ𝐱,〉	. (24) 944 

Here, the angle brackets signify an ensemble average over the motion of every biomolecule of a 945 
given species in a translation voxel. 946 
 947 
 948 
 949 
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XI. Calculation of viscosity 950 
We calculated the viscosity of translation voxels at different growth rates (Results section IV) by 951 
performing shear rheology simulations in LAMMPS. For each growth rate, we initialized 952 
suspensions representative of multiple contiguous translation voxels. We imposed a simple shear 953 
flow on the suspensions at a constant shear rate in the x-direction (�̇�=) and measured the resulting 954 
interparticle stress (𝜎WM=N). The shear rate imposed was chosen to be small enough to remain in the 955 
linear-response regime (i.e., with insignificant deformation), allowing measurement of the intrinsic 956 
or so-called zero-shear viscosity (𝜂G) (ViscosityCalculation.py) (Batchelor, 1977): 957 

𝜂G
𝜂
= 1 +	

5
2
𝜙 +

𝜎WM=N	
𝜂𝛾=̇

	 . (25) 958 

Here, the first two terms on the right-hand side of the equation are the Einstein viscosity that 959 
approximate the hydrodynamic contribution of particles to viscosity at equilibrium. The third term 960 
describes the interparticle contribution to viscosity and is equivalent to the Green-Kubo 961 
equilibrium interparticle contribution at the small shear rates used here. 𝜎WM=N is computed as the 962 
𝑥𝑦-component of the interparticle stress 〈𝒙𝑭𝒑〉, where 𝒙 corresponds to the position vectors of the 963 
particles and 𝑭𝒑 is the (negative of) the gradient of a nearly hard-sphere, spherically symmetric 964 
repulsive potential. 965 
 966 
XII. Calculation of molecular proximity 967 
We computed the proximity between ternary complexes and ribosomes at different growth rates 968 
(Results section IV). For each growth rate, we initialized 100 translation voxels with random initial 969 
spatial configurations, chosen using a Mersenne Twister random number generator with seeds set 970 
at multiples of five (i.e., 0, 5, 10, …, 495). Following a brief equilibration period, we measured 971 
the distance from each ternary complex to its closest ribosome. Our reported values of proximity 972 
for any particular growth rate are an average of the minimal distance for all ternary complexes 973 
across all corresponding 100 replicate translation voxels. 974 
 975 
XIII. Calculation of repeat reactions 976 
We computed the average number of repeat reactions between ternary complexes and ribosomes 977 
at different growth rates (Results section IV). For each growth rate, we initialized 100 translation 978 
voxels with random initial spatial configurations, chosen using a Mersenne Twister random 979 
number generator with seeds set at multiples of five (i.e., 0, 5, 10, …, 495). We subsequently 980 
tracked the number of times a ternary complex consecutively re-reacted with the same ribosome 981 
following a mismatching reaction within each translation voxel. Our reported values for repeat 982 
reactions for any particular growth rate are an average across all corresponding 100 replicates for 983 
the given growth rate. 984 
 985 
XIV. Chemical kinetics sensitivity analysis 986 
To measure the sensitivity of our predicted elongation latencies to changes in chemical kinetics, 987 
we simulated the impact of slowing down or speeding up intra-ribosomal kinetic rates on 988 
elongation latency. To do so, we simulated ensembles of translation voxels as in Methods section 989 
VI while varying kinetic rates individually or all together and measuring the resulting elongation 990 
latency (Figure S9). Since the kinetic rate 𝑘1r impacts the mix time of voxels (Figure S5), we 991 
varied the level of kinetic acceleration in our simulations for different 𝑘1r, ensuring that our 992 
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translation voxels were simulated in regimes in which elongation latency is insensitive to changes 993 
in kinetic acceleration (our kinetic acceleration scheme is described in Methods section IX). 994 
 995 
XV. Calculation of maximum packing and projected growth rate voxel parameters  996 
We computed the theoretical maximum packing for translation voxels between observed growth 997 
rates, µ = 0.6 dbl/hr to 3.0 dbl/hr, as well as faster hypothetical growth rates, µ=3.0 dbl/hr to 8.0 998 
dbl/hr, using the theoretical calculations of maximum packing for tridisperse systems from Farr 999 
and Groot, 2009. Our translation voxels are comprised of molecules having a 1:3:6.5 size ratio, 1000 
which differs from the particle size ratio used by Far and Groot (1:3:9), giving an overprediction 1001 
of our computed maximum packing of less than 10%. 1002 
To estimate ribosome abundances, ternary complex abundances, cell mass, cell volume, and 1003 
nucleoid volume at hypothetical growth rates between 3.0 dbl/hr and 8.0 dbl/hr, we extrapolated 1004 
from observed growth rates (Figure S1), guided by observed trends below 3.0 dbl/hr and allowing 1005 
uncertainty while rejecting unphysical projections (e.g., negative cell mass and nucleoid volume 1006 
fraction) (Figure S11, Figure 6). We calculated bounds by perturbing the extrapolated fits while 1007 
still maintaining all expected trends (e.g., the lower bound of ribosome abundances never 1008 
decreases with increasing growth rate). We computed volume fractions for translation voxels at 1009 
hypothetical growth rates as in Methods Section II, setting upper and lower bounds by considering 1010 
all permutations of fits for ribosome abundances, ternary complex abundances, cell mass, cell 1011 
volume, and nucleoid volume fraction (ProjectedGrowthRateCalculations.ipynb). 1012 

1013 
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Supplemental Information  1182 

Molecular transport and packing underlie increasing ribosome productivity in faster 1183 
growing cells 1184 
  1185 
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Note S1. Sensitivity analysis and the impact of parameter values 1186 
We sought to understand if our prediction that the productivity of individual ribosomes increases 1187 
due to stoichiometric crowding is sensitive to the fact that our unfitted model does not exactly 1188 
match observations of absolute elongation latencies. One natural place to start is to make a change 1189 
in the values of the chemical kinetic parameters used in our model, which are taken from in vitro 1190 
measurements (Table S5). The rationale for modulating these parameters is that in vitro kinetic 1191 
rates may differ from their in vivo values due to, for example, differences in salt concentrations in 1192 
vitro compared to in vivo (Figure S13A). To test this idea, we implemented a uniform three-fold 1193 
increase of all intra-ribosomal chemical kinetic rates in our model (Figure S13C). We then 1194 
simulated ensembles of translation voxels at varying growth rates and measured the resulting 1195 
elongation rates. This chemical-parameter change closed the quantitative gap: elongation latency 1196 
(𝜏elong = 100	ms at 0.6 dbl/hr to	45	ms at 3.0 dbl/hr) now matched experimental latency (𝜏elong

bulk =1197 
83	ms at 0.6 dbl/hr	to 48	ms at 3.0 dbl/hr) (Figure S13B). Importantly, the speedup in elongation 1198 
as growth quickens occurs even with the higher chemical kinetic rates used to fit the bulk 1199 
experimental observations. 1200 
We also sought to test if our predicted increase in ribosome productivity requires physical 1201 
transport. To do so we stress-tested the sensitivity of elongation to changes in transport by 1202 
modeling instantaneous transport within our voxel ensembles (Methods). We found that the 1203 
growth-rate dependence of elongation latency is lost when transport is modeled as an instantaneous 1204 
process (triangles in Figure S13B, Figures S6, S7), demonstrating the essential role of transport 1205 
physics in the growth-rate dependence of elongation rate, and also demonstrating the criticality of 1206 
accurate chemical parameters in establishing absolute quantitative prediction of elongation 1207 
latency.  1208 
Note S2. Translation initiation latency relative to translation elongation latency 1209 
Translation initiation is slow compared to a single elongation step. Therefrom, one 1210 
might naively expect initiation to be rate limiting to protein synthesis overall and, thus, expect that 1211 
any increase in protein synthesis rates should mostly arise due to increases in the rate of initiation. 1212 
However, clues to the contrary are apparent. For example, there is overwhelming experimental 1213 
evidence from work to optimize expression of heterologous proteins (Welch et al., 2009). 1214 
Specifically, synonymous changes in coding sequences that require ribosomes to make the same 1215 
protein via coding-sequence unique elongation processes produce dramatic changes in protein 1216 
synthesis rates and abundances. That is, codon usage changes alone can result in changes in gene 1217 
expression levels, ranging from undetectable to majority of cell protein. This strong impact on 1218 
protein synthesis rate is solely due to impacts on translation elongation, not translation 1219 
initiation. Studies of natural living systems further reveal a literature that advances how both 1220 
translation initiation and elongation can limit protein synthesis rates, depending on conditions 1221 
(Subramaniam et al., 2014; Vieira et al., 2016). 1222 
Nevertheless, it is important to consider initiation more formally and explain why elongation is 1223 
most likely to underlie increases in overall protein synthesis rates. To this end, we return to the 1224 
conventional view of translation elongation in which the correct ternary 1225 
complex instantaneously presents itself to the ribosome exactly when needed (i.e., they appear 1226 
instantaneously in exactly the right order).  That is, a situation in which there is no additional 1227 
latency due to physical transport, nor combinatorial sampling by and among competing ternary 1228 
complexes (i.e., setting aside the fact that our work shows that most elongation latency arises from 1229 
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transport, not kinetics). In these unrealizable conditions, the rate of peptide bond formation is 1230 
entirely determined by chemical kinetics and is about 42 ms per amino acid.  By comparison, 1231 
translation initiation should be much slower, taking about 1-12 seconds. But protein synthesis 1232 
requires not just one elongation step but hundreds in series (i.e., the average protein in E. coli is 1233 
~333 amino acids). Considering elongation of the entire protein, we estimate ~14 seconds total 1234 
just from chemical kinetic latency alone (42 ms per amino acid). Thus, it becomes apparent that, 1235 
while the chemical kinetics of a single initiation event might be relatively slow, most of the time 1236 
is spent in the elongation phase (e.g., 12 seconds for initiation vs. at least 14 seconds for 1237 
elongation). 1238 
Note S3. Estimating the evolutionary impact of increasing ribosome productivity 1239 
To explore the potential evolutionary impact of increasing ribosome productivity, we estimated 1240 
how much slower bacterial growth would be if ribosome productivity did not increase (i.e., 1241 
remained fixed) and only the abundances of translation machinery increased.  1242 
For a cell to replicate, it must replicate all its protein machinery. Since a fraction of peptide bonds 1243 
formed during cell replication belong to translation machinery, as individual cells grow, increased 1244 
translation machinery should enable more total peptide bonds to be formed per unit time. We can 1245 
estimate the lower and upper bounds of total peptide bond formation in the time cells typically 1246 
take to double, and thus growth rate, by assuming that this fraction is 0 (i.e., a lower bound in 1247 
which no new peptide bonds enable more translation) and by assuming this fraction is 1 (i.e., an 1248 
upper bound in which all new peptide bonds are incorporated into ribosomes that enable more 1249 
translation). 1250 
As a lower bound estimate, 1251 

Lower	bound	total	bond	formation = 𝑁rib ∗ 𝑡dbl ∗ 𝑘. (S1)	  1252 

As an upper bound estimate, 1253 

Upper	bound	total	bond	formation = aarib ∗ 𝑁rib ∗ [exp p𝑡dbl ∗
𝑘

aarib
q − 1]. (S2) 1254 

Here, 𝑡dbl = µ/3600 is the time in seconds per cell doubling and aarib = 7336 amino 1255 
acids/ribosome is the number of amino acids in a ribosome. 1256 

At µ = 3.0, there are on average 𝑁rib =	62000 actively elongating ribosomes per cell elongating 1257 
at a rate of 𝑘 = 21 amino acids/s, leading to:  1258 
Lower bound total bond formation = 1,562,400,000 bonds, and 1259 

Upper bound total bond formation = 13,660,863,648 bonds. 1260 
As a sanity check, we can estimate the total bonds in a cell at µ = 3.0 dbl/hr from the total bonds 1261 
composing crowder proteins and total (active and non-active) ribosomes (Table S1, S4): 7.78 x 1262 
106 crowder proteins * 264 aa/crowder protein + 73000 total ribosomes * aarib = 2,589,448,000 1263 
bonds, which lies between the lower and upper bounds as expected. 1264 
We can next consider the hypothetical case in which ribosome productivity at µ = 3.0 dbl/hr does 1265 
not increase and instead remains fixed at that of µ = 0.6 dbl/hr, 𝑘′ = 12 amino acids/s. In this 1266 
case, we can estimate the lower bound and upper bound time needed for total bond formation by 1267 
solving for 𝑡dbl in equations S1 and S2. 1268 

In the lower bound case, 1269 
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Lower	bound	𝑡dblT =
𝑁rib ∗ 𝑘T

Lower	bound	total	bond	formation	 .
(S3) 1270 

In the upper bound case, 1271 

Upper	bound	𝑡dbl′ =
𝑎𝑎U,V
𝑘T

∗ ln	(
Upper	bound	total	bond	formation

aarib ∗ 𝑁rib
+1). (S4) 1272 

This gives us, 1273 

Lower bound 𝑡dbl′ = 2100 s, giving an effective µ’ = 1.7 dbl/hr 1274 

Upper bound 𝑡dbl′ = 2100 s, giving an effective µ’ = 1.7 dbl/hr 1275 
Thus, we estimate that maximum observed cell doubling would proceed at ~1.7 dbl/hr instead of 1276 
3.0 dbl/hr in the hypothetical case in which ribosome productivity did not increase and remained 1277 
fixed at that of µ = 0.6 dbl/hr. 1278 
What would this difference mean practically from an evolutionary perspective? We can compare 1279 
the expected growth of microbes with these different growth rates: 1280 

Fold-difference	microbes	 = 	2WXIX+Y> . (S5) 1281 

After 𝑡 = 6 hours there would be ~200-fold more of the microbes with increased ribosome 1282 
productivity, after 12 hours ~50,000-fold more, and after 24 hours 2.5 billion-fold more. 1283 
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 1284 

Figure S1. Cell and translation voxel parameters vary with growth rate. (A) Polynomial fits 1285 
of reported cell parameter measurements (data points are taken from Tables S1, S2, and S3). (B) 1286 
Estimate of crowder protein abundances in cells across growth rates. (C) Estimate of ribosome, 1287 
ternary complex, and crowder protein abundances in translation voxels across growth rates. (D) 1288 
Estimate of the polydispersity of translation voxels across growth rates.  1289 
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 1290 

Figure S2. Ribosomal kinetics are dependent on whether a ternary complex is cognate, near-1291 
cognate, or non-cognate. (A-D): Distribution of time spent by tRNA within ribosomes, computed 1292 
by sampling tRNA-ribosome reaction trajectories. (A) Cognate ternary complexes that 1293 
successfully react (probability shown). (B) Cognate ternary complexes that are rejected 1294 
(probability shown). (C) Near-cognate ternary complexes that are rejected (only rejections are 1295 
considered). (D) Non-cognate ternary complexes that are rejected (only rejections are considered). 1296 
In each plot, average latency is marked by a blue line and displayed on the top right.  1297 
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 1298 

Figure S3. The long-time self-diffusivity of ternary complexes is dependent on crowding and 1299 
growth rate. (A) Measurements of ternary complex mean squared displacement in translation 1300 
voxels without crowder proteins using Smoldyn. (B) Measurements of ternary complex mean 1301 
squared displacement in complete translation voxels (i.e., with crowder proteins) using Smoldyn. 1302 
(C) Measurements of ternary complex mean squared displacement in complete translation voxels 1303 
using LAMMPS. For all plots, in the dilute limit, ternary complex long-time diffusivity should 1304 
equal its short-time diffusivity (𝐷 = 56 μm2/s, Table S4).  1305 
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 1306 

Figure S4. The number of cognate and near-cognate ternary complexes in a translation voxel 1307 
follows a slightly growth-rate dependent probability distribution. (A) Distribution of cognate 1308 
ternary complexes in translation voxels. (B) Distribution of near-cognate ternary complexes in 1309 
translation voxels. Insets highlight the distribution between values of zero to ten cognate ternary 1310 
complexes. 1311 

1312 
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 1313 
Figure S5. Predictions of translation latencies are insensitive to low and intermediate kinetic 1314 
rate scaling due to differences in unbinding and mixing timescales. (A-C) Elongation latency, 1315 
transport latency, and reaction latency are insensitive to kinetic rate scaling at a scaling of less than 1316 
~2000. Data shown for a translation voxel with growth rate μ = 3.0 dbl/hr. (D) The average time 1317 
ternary complexes take to unbind from ribosomes (unbinding time) remains slower than the typical 1318 
time ternary complexes take to diffuse their radius within a voxel (mix time, calculated using 1319 
Equation 18 in the Methods). The mix time plotted is computed for the most crowded growth 1320 
condition (𝜙vox= 0.42, μ = 3.0 dbl/hr).   1321 
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 1322 

Figure S6. Repeat reactions between mismatching ternary complexes and ribosomes are 1323 
sensitive to crowding and instantaneous transport. Average number of repeat reactions 1324 
following initial reaction in complete translation voxels (black curve, filled circles), translation 1325 
voxels with no crowder proteins (blue curve, x’s), and translation voxels with instantaneous 1326 
transport (red curve, triangles). Inset shows that simulations with instantaneous transport produce 1327 
repeat reactions with uniform random likelihood across all growth rates.  1328 
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  1329 

Figure S7. Growth rate dependence of transport and reaction latency is lost when transport 1330 
is modeled as an instantaneous process. Simulations with instantaneous transport (red curve, 1331 
triangles) produce (A) transport latencies and (B) reaction latencies that are uniform across growth 1332 
rates. Original simulation results are shown for comparison (black curve).  1333 
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 1334 

Figure S8. The frequency of a given codon and their corresponding tRNA are weakly 1335 
correlated. Frequency data from Table S6.  1336 
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 1337 

Figure S9. Our chemical kinetics sensitivity analysis shows that only changes in unbinding 1338 
rate (𝒌1r) or all kinetic rates together can speed up elongation to experimentally predicted 1339 
latencies. Each plot shows the elongation latencies (solid blue line) that result from scaling one or 1340 
more intra-ribosomal kinetic rates (specified in top right) to be faster or slower compared to 1341 
baseline (dashed blue line). All simulations were for translation voxels at µ = 3.0 dbl/hr. 1342 
Experimentally measured elongation latency at µ = 3.0 dbl/hr is shown for reference (green line). 1343 
Scales are identical across plots except for the 𝑘1r and All rates plots.  1344 
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 1345 

Figure S10. (A-C) Our simulation timestep sensitivity analysis shows that elongation latency, 1346 
transport latency, and reaction latency each converge near our chosen timestep at the most 1347 
crowded growth rate (µ = 3.0 dbl/hr). Experimentally measured elongation latency at µ = 3.0 1348 
dbl/hr is shown for reference in panel A (green line). (D) Numerical accuracy, computed as the 1349 
percentage of entropic interactions between particles that are resolved, converges to 100% near 1350 
our chosen timestep. All simulations were for translation voxels at µ = 3.0 dbl/hr. The dashed line 1351 
corresponds to the timestep used for simulations throughout the paper (Δ𝑡 =	62 picoseconds). 1352 
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 1353 

Figure S11. Cell and translation voxel parameters can be projected to faster-than-observed 1354 
growth rates. (A) Extrapolated cell parameter fits (bolded dashed lines) projecting beyond 1355 
observed growth rates (solid lines) for ribosomes (circle values from Table S1), ternary complexes 1356 
(circle values from Table S1), cell mass (circle values from Table S1), cell volume (circle values 1357 
from Table S2), nucleoid volume fraction (circle values from Table S3), and crowders. 1358 
Perturbations to primary fits provide bounds (dashed lines and grey shaded region). (B) 1359 
Extrapolated volume fractions (bolded dashed lines) projecting beyond observed growth rates 1360 
(solid lines) for ribosomes (purple curve, triangles), ternary complexes (red curve, circles), and 1361 
crowder proteins (blue curve, x’s). Volume fractions are computed from cell parameter fits 1362 
(Methods). Bounds for extrapolated volume fractions at hypothetical growth rates (light dashed 1363 
lines and shading) are derived from permutations of the bounds for all cell parameters in panel A. 1364 
  1365 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 51 

 1366 
 1367 
Figure S12. Whether or not literature-determined values for ternary complex abundances 1368 
account for peptidyl-tRNA does not impact voxel composition or trends. (A) Key growth-rate 1369 
dependent trends in translation voxel composition resulting from the modeling used throughout 1370 
our manuscript (solid line), in which we interpret ternary complex abundance measurements as 1371 
not including peptidyl-tRNA, are equivalent to those resulting from assuming that ternary complex 1372 
abundance measurements do include peptidyl-tRNA (dashed line). (B) The volume fraction of 1373 
ribosomes (purple curve, triangles), ternary complexes (red curve, circles), and crowder proteins 1374 
(blue curve, x’s), as well as total volume fraction (black curve, squares) are negligibly different 1375 
for voxels constructed with the assumption that ternary complex measurements do not include 1376 
peptidyl-tRNA (solid line) and the assumption that they do (dashed line).  1377 
  1378 
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 1379 
Figure S13. Faster elongation due to stoichiometric crowding is insensitive to changes in 1380 
chemical kinetic parameters while sensitive to changes in transport physics. (A) Accuracy of 1381 
chemical kinetics: cartoon schematic illustrating how differences in salt concentrations between in 1382 
vitro conditions in which chemical kinetic rates were measured and in vivo conditions being 1383 
modeled could lead to different and perhaps faster kinetic rates than used in our simulations. (B) 1384 
Impact of faster chemistry, instantaneous physics: our simulations with three-fold faster kinetic 1385 
rates produce elongation latency (open circles) that closes the quantitative gap between our original 1386 
elongation latency prediction using published in vitro kinetic rates (solid circles) and in vivo 1387 
measurements of per-ribosome elongation time (solid black line). The essentiality of physics in 1388 
this agreement is demonstrated by the lack of faster elongation in simulations with instantaneous 1389 
transport (red triangles). Depiction of E. coli in (A) adapted with permission from Goodsell, 2009.  1390 
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Table S1. Estimation of elongating ribosome, ternary complex, and crowder protein 1391 
abundances at varying growth rates 1392 

 1393 
Estimation of elongating ribosome abundance 
Doublings/hr µ = 0.6 µ = 1.0 µ = 1.5 µ = 2.0 µ = 2.5 µ = 3.0 
Ribosomes/cella 8000 15000 26000 44000 61000 73000 
Elongating 
Ribosomes/cellb 

7000 13000 c 22000 37000 52000 62000 

 
Estimation of ternary complex abundance 
Doublings/hr µ = 0.4 µ = 0.7 µ = 1.07 µ = 1.6 µ = 2.5 µ = 3.0 
tRNA:ribosome 
ratiod 

12.5 9.5 7.5 7.5 7.0 7.0  

Ribosomes/cell 5000e 8000f 15000f 26000f 61000 73000 
tRNA/cellg  64000 76000 110000 190000 430000 510000 
Charged 
tRNA/cellh 

48000 57000 83000 143000 323000 383000 

Ternary complex 
abundancei 

48000 57000 83000 143000 323000 383000 

 
Estimation of crowder protein abundance 
Doublings/hr µ = 0.6 µ = 1.0 µ = 1.5 µ = 2.0 µ = 2.5 µ = 3.0 
𝑀cytoplasm

j 167 267 383 530 628 659 
𝑀mRNA

j	 0.5 0.9 1.5 2.6 3.6 4.3 
𝑀DNA

j 7.6 9.5 12.0 14.7 17.2 19.4 
𝑁rib

k	 4000 14000 26000 38000 50000 62000 
𝑁tern

k 57000 86000 138000 208000 295000 399000 
𝑁crowder

 k 2.66 x 106 4.30 x 106 5.90 x 106 7.02 x 106 7.65 x 106 7.78 x 106 
 1394 
aValues obtained from Dennis and Bremer, 2008. 1395 
bCalculated from ribosomes/cell using fraction of elongating ribosomes = 0.85 as reported in 1396 
Dennis and Bremer, 2008. 1397 
cAs a secondary check, we used single cell mass spectrometry data from Schmidt et al., 2016 to 1398 
calculate the abundance of ribosomes at µ = 0.83/hr. We estimated ~17,000 ribosomes 1399 
(RibosomeAbundanceEstimation.ipynb) by log averaging the reported abundances of fifty-four 1400 
ribosomal proteins. Using the value of ~77% of ribosomes elongating at steady state as reported 1401 
by Forchhammer and Lindahl, 1971, our estimated ~17,000 ribosomes corresponds to ~13,000 1402 
elongating ribosomes, matching the value reported from Dennis and Bremer, 2008 at µ = 1.0 1403 
dbl/hr. 1404 
dValues obtained from Dong et al., 1996. The value at µ = 3.0 dbl/hr was inferred via extrapolation 1405 
of their reported data. In our modeling, we interpreted these measurements as representing only 1406 
ternary complexes that are free or within the A-site; this interpretation does not impact our 1407 
modeling results (Figure S12). 1408 
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eWe estimated the number of ribosomes at µ = 0.4 dbl/hr using the reported measurements of tRNA 1409 
and tRNA:ribosome ratios from Dong et al., 1996. Dong et al. performed six replicates of 1410 
measurements at 0.4 dbl/hr, and so six data points were included in our fitting shown in Figure S1. 1411 
fWe estimated the number of ribosomes at each given growth rate using the number of ribosomes 1412 
at the closest reported growth rate from the data of Dennis and Bremer, 2008. 1413 
gCalculated as the product of the tRNA:ribosome ratio and the number of ribosomes/cell 1414 
hApproximately 75%-80% of tRNA are typically charged with amino acids (Sørensen, 2001; 1415 
Stenum et al., 2017). We assumed uniform charging of 75% across all growth rates and types of 1416 
tRNA.  1417 
iWe assumed that all charged tRNA are found in ternary complexes (i.e., bound to GTP bound EF-1418 
Tu) based on the excess abundance of EF-Tu in cells reported by Schmidt et al., 2016 and the fast 1419 
kinetic rates of EF-Tu binding to GTP and EF-Tu-GTP binding to charged tRNA reported by 1420 
Burnett et al., 2013, 2014. 1421 
jValues obtained from Dennis and Bremer, 2008. Units of fg/cell. 1422 
kDerived from the regression fit shown in Figure S1.  1423 
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Table S2. Estimation of cell volume at varying growth rates 1424 
 1425 

Doublings/hr µ = 
 0.25 

µ =  
0.42 

µ =  
0.56 

µ =  
0.58 

µ =  
0.68 

µ =  
0.71 

Mediaa Gal Ac GluN Pyr Fum Suc 
Volume (fL)b 1.9 2.4 2.9 2.1 2.4 2.3 
Adjusted 
volume (fL)c 

1.14 1.44 1.74 1.26 1.11 1.38 

 1426 
 1427 
 1428 
 1429 
 1430 
 1431 
 1432 

 1433 
aGal = Galactose; Ac = Acetate; GluN = Glucosamine; Pyr = Pyruvate; Fum = Fumerate; Suc = 1434 
Succinate; Glc = Glucose; Gly+AA = Glycerol + all amino acids; Man+AA = Mannose + all 1435 
amino acids; Glc+AA = Glucose + all amino acids; LB = Lysogeny broth. 1436 
bValues obtained from Volkmer and Heinemann, 2011 using fluorescence microscopy. 1437 
cIn Radzikowski et al., 2016, a subset of measurements from Volkmer and Heinemann, 2011 1438 
were redone at higher resolution using super-resolution imaging and found to be 30-50% smaller 1439 
than estimated by Volkmer et al., 2011. We thus adjusted volume measurements by Volkmer and 1440 
Heinemann, 2011, as discussed in Schmidt et al., 2016, to either the higher-fidelity 1441 
measurements if the conditions were explicitly tested or reduced measurements by 40% if not.  1442 

Doublings/hr µ =  
0.87 

µ =  
1.81 

µ =  
1.85 

µ =  
2.15  

µ =  
2.3 

Mediaa Glc Gly+AA Man+AA Glc+AA LB 
Volume (fL)b 2.4 3.2 3.9 4.1 4 
Adjusted 
volume (fL)c 

1.44 2.15 2.34 2.46 2.4 
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Table S3. Estimation of nucleoid volume fraction at varying growth rates 1443 
 1444 
Doublings/hr µ = 0.4 µ = 1.36 µ = 2.85 
Media Alanine Glucose Tryptone 
Nucleoid volume (fL) a 0.08 0.14 0.30 
Cell volume (fL) a 0.46 1.06 2.72 
Nucleoid volume fractionb 0.17 0.13 0.11 

 1445 
aValues obtained from Woldringh and Nanninga, 1985. 1446 
bCalculated by dividing the reported nucleoid volume by the reported cell volume.  1447 
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Table S4. Parameters not varying with growth rate 1448 
 1449 
𝑀"./

 2300 kDa 
𝑀!)"$ 69 kDa 
𝑀!Z[\

 25 kDa 
𝑀#].$'	#0.2

 110 Da 
𝑀^_I`a

 43.2 kDa 
𝑀b`c

 523 Da 
𝑀0"'12)"

a 28.5 kDa 
𝑉0"'12)"b 3.35 µm3 

𝜌0"'12)"c 1.410 g/cm3 
𝑅0"'12)"d 2.0 nm 
𝑅"./de 13 nm 
𝑅!)"$df 5.9 nm 
𝑘: 1.380649×10−23 J/K 
𝑇 37 C 
𝜂 0.6913 mPa*s 
𝐷tern 56 µm2/s 
𝐷rib 25 µm2/s 
𝐷crowder 165 µm2/s 

 1450 
aWe computed the mass of individual crowder proteins as described in the methods. Given an 1451 
average amino acid mass of 108 Da, as reported by Bremer and Dennis, 2008, the crowder mass 1452 
corresponds to 264 amino acids on average. This protein length corresponds well to estimates in 1453 
the literature of the average and median number of amino acids for a protein, 309 and 252 amino 1454 
acids respectively (Ishihama et al., 2008), supporting our calculations. 1455 
bThe volume of a crowder protein was calculated as described in the methods. 1456 
cValue obtained from Fischer et al., 2004. 1457 
dBiomolecule radius was calculated as described in the methods. Note that we use 𝑅 and 𝑎 1458 
interchangeably. 1459 
eMeasured using PDB 4V4Q from Schuwirth et al., 2005 as described in the methods. 1460 
fMeasured using PDB 1B23 from Nissen et al., 1999 as described in the methods.  1461 
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Table S5. tRNA-ribosome reaction kinetic parameters for non-cognate, near-cognate, and 1462 
cognate tRNA 1463 
 1464 

 1465 
aMeasurements from Gromadski and Rodnina, 2004 1466 
bMeasurements from Gromadski et al., 2006 1467 
cMeasurements from Kothe and Rodnina, 2006 1468 
dMeasurements from Wohlgemuth et al., 2010 1469 
eBorg and Ehrenberg, 2015 made several measurements in varying buffer conditions. We chose 1470 
their measurement that most corresponds to cell-like conditions (Polymix buffer with 1 mM free 1471 
Mg2+ and 10µM EF-G). 1472 
*Kinetic rates were adjusted from 20 C to 37 C using the methods from Rudorf et al., 2014 and 1473 
measurements of 𝑘d,cog at both 20 C and 37 C from Wohlgemuth et al., 2010.  1474 

Kinetic 
Rates (s-1) 𝑘Er

a* 𝑘9f,cog,nr
b* 𝑘9r,cog

b* 𝑘9r,nr
b* 𝑘6,cog

b* 𝑘6,nr
b* 𝑘H,cog

c* 𝑘d,cog
d 𝑘e,cog

e 

Data 

 1458 1.5 837 994 6.6    
 1535 2.7 837 2064 4.5    
 1535  837  2.4    
 2214  1305  0.8    
 837  1914  9.7    
 1535  994  13.8    
 1150        
 1535        

Average 718 1475 2.1 1120 1529 6.3 209 200 32 
Standard 
deviation 226 392 0.9 429 757 4.9 11 40 - 
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Table S6. Frequency of tRNA and codon usage at varying growth rates 1475 
 1476 
Frequency of tRNAa 

Doublings/hr µ = 0.4 µ = 0.7  µ = 1.07  µ = 1.6 µ = 2.5 

Ala1B 0.051 0.054 0.060 0.056 0.059 
Ala2 0.009 0.010 0.010 0.010 0.010 
Arg2 0.074 0.068 0.065 0.076 0.072 
Arg3 0.010 0.012 0.007 0.008 0.006 
Arg4 0.013 0.011 0.012 0.010 0.010 
Arg5 0.006 0.007 0.007 0.008 0.006 
Asn 0.019 0.018 0.018 0.019 0.020 
Asp1 0.037 0.037 0.035 0.038 0.042 
Cys 0.025 0.022 0.022 0.023 0.020 
Gln1 0.012 0.012 0.016 0.010 0.012 
Gln2 0.014 0.014 0.014 0.017 0.018 
Glu2 0.073 0.072 0.070 0.078 0.082 
Gly2 0.033 0.033 0.033 0.036 0.031 
Gly3 0.068 0.071 0.072 0.064 0.070 
His 0.010 0.010 0.012 0.010 0.012 
Ile1 0.054 0.054 0.056 0.060 0.069 
Leu1 0.069 0.069 0.072 0.069 0.061 
Leu2 0.015 0.016 0.017 0.015 0.016 
Leu3 0.010 0.011 0.012 0.010 0.009 
Leu4 0.030 0.029 0.030 0.031 0.026 
Leu5 0.018 0.016 0.017 0.011 0.010 
Lys 0.030 0.031 0.031 0.028 0.029 
Met f1 0.019 0.022 0.025 0.020 0.028 
Phe 0.016 0.017 0.018 0.015 0.015 
Pro1 0.014 0.011 0.014 0.009 0.007 
Pro2 0.011 0.012 0.009 0.013 0.010 
Pro3 0.009 0.009 0.009 0.008 0.007 
Sec 0.003 0.004 0.004 0.004 0.003 
Ser1 0.020 0.025 0.023 0.022 0.020 
Ser2 0.005 0.005 0.005 0.004 0.004 
Ser3 0.022 0.020 0.020 0.018 0.016 
Ser5 0.012 0.012 0.012 0.011 0.012 
Thr1 0.002 0.002 0.003 0.001 0.001 
Thr2 0.009 0.009 0.009 0.009 0.009 
Thr3 0.017 0.017 0.017 0.015 0.016 
Thr4 0.014 0.014 0.014 0.015 0.019 
Trp 0.015 0.013 0.014 0.013 0.015 
Tyr1+Tyr2 0.031 0.029 0.027 0.032 0.026 
Val1 0.060 0.055 0.047 0.061 0.057 
Val2A+2B 0.020 0.020 0.022 0.020 0.019 
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Frequency of codon usage (1x10-3)b 

Doublings/hr µ = 0.4 µ = 0.7  µ = 1.07  µ = 1.6 µ = 2.5 
GGG 4.81 4.26 3.57 2.79 2.36 
GGA 2.71 2.49 2.21 1.79 1.26 
GGU 38.29 39.18 40.49 42.27 45.55 
GGC 35.62 35.58 35.54 35.49 34.17 
GAG 16.57 16.78 17.04 17.31 16.97 
GAA 53.1 53.94 55.1 56.68 57.86 
GAU 24.25 23.43 22.4 21.08 19.27 
GAC 28.72 29.65 30.93 32.35 33.74 
GUG 21.4 20.34 18.93 17.74 14.98 
GUA 15.87 17.05 18.65 19.95 22.31 
GUU 31.31 33.1 35.63 38.14 43.18 
GUC 11.25 10.58 9.71 8.86 7.67 
GCG 30.33 29.55 28.45 27.29 24.11 
GCA 22.13 22.19 22.38 23.07 24.87 
GCU 28.85 30.31 32.41 34.79 39.49 
GCC 19.8 18.5 16.81 14.67 11.81 
AGG 0.09 0.07 0.05 0.03 0.03 
AGA 1.12 0.99 0.84 0.65 0.63 
AGU 3.99 3.55 3.01 2.38 2.19 
AGC 11.97 11.4 10.69 9.88 9.31 
AAG 12.08 12.76 13.74 14.89 17.22 
AAA 44.43 46.41 49.07 51.99 55.01 
AAU 9.79 8.88 7.79 6.43 5.61 
AAC 27.95 28.22 28.64 29.02 29.21 
AUG 22.37 22.36 22.34 22.3 21.67 
AUA 0.93 0.85 0.75 0.61 0.52 
AUU 21.38 20.45 19.26 17.72 15.79 
AUC 36.68 37.72 39.15 41.38 43.86 
ACG 7.53 6.95 6.21 5.2 4.17 
ACA 3.48 3.25 2.99 2.63 2.61 
ACU 13.88 15.1 16.76 18.31 20.64 
ACC 26.51 26.77 27.1 27.47 26.7 
UGG 9.76 9.28 8.69 8.01 7.03 
UGA 0.31 0.27 0.23 0.17 0.19 
UGU 4.23 3.97 3.64 3.24 2.76 
UGC 5.29 5.06 4.77 4.35 3.81 
UAU 10.68 9.9 8.9 7.85 6.72 
UAC 16.2 16.41 16.71 16.9 16.52 
UUG 6.63 6.22 5.72 4.93 4.27 
UUA 6.13 5.46 4.64 3.56 2.73 
UUU 12.55 11.54 10.3 8.72 7.92 
UUC 22.68 22.55 22.44 22.68 23.25 
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UCG 6.05 5.41 4.58 3.75 2.51 
UCA 3.89 3.54 3.09 2.55 1.98 
UCU 13.12 13.54 14.14 14.84 16.33 
UCC 11.15 11.57 12.09 12.34 11.68 
CGG 1.75 1.52 1.23 0.9 0.62 
CGA 1.32 1.17 0.99 0.75 0.67 
CGU 31.12 33.46 36.61 39.6 43.82 
CGC 22.25 22.31 22.39 21.76 20.59 
CAG 29.24 28.8 28.33 27.69 27.28 
CAA 10.19 9.65 8.98 7.99 7.01 
CAU 9.23 8.72 8.11 7.23 6.78 
CAC 13.9 13.9 13.91 14.08 14.21 
CUG 60.13 60.62 61.29 61.59 60.75 
CUA 2.15 1.87 1.53 1.09 0.82 
CUU 5.7 5.22 4.64 4.01 3.86 
CUC 6.19 5.91 5.52 5.03 4.09 
CCG 29.51 29.22 28.88 28.91 28.82 
CCA 6.52 6.47 6.4 6.08 5.18 
CCU 4.99 4.9 4.79 4.62 4.38 
CCC 3.32 2.77 2.1 1.4 1.09 
 

 1477 
aCalculated by renormalizing the molar ratio measurements reported in Dong et al., 1996 for each 1478 
growth rate 1479 
bMeasurements from Dong et al., 1996 1480 
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