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Abstract

Expression quantitative trait loci (eQTLs), or single nucleotide polymorphisms (SNPs) that affect average gene
expression levels, provide important insights into context-specific gene regulation. Classic eQTL analyses use
one-to-one association tests, which test gene-variant pairs individually and ignore correlations induced by gene
regulatory networks and linkage disequilibrium. Probabilistic topic models, such as latent Dirichlet allocation,
estimate latent topics for a collection of count observations. Prior multi-modal frameworks that bridge
genotype and expression data assume matched sample numbers between modalities. However, many data sets
have a nested structure where one individual has several associated gene expression samples and a single
germline genotype vector. Here, we build a telescoping bimodal latent Dirichlet allocation (TBLDA) framework
to learn shared topics across gene expression and genotype data that allows multiple RNA-sequencing samples
to correspond to a single individual’s genotype. By using raw count data, our model avoids possible
adulteration via normalization procedures. Ancestral structure is captured in a genotype-specific latent space,
effectively removing it from shared components. Using GTEx v8 expression data across ten tissues and
genotype data, we show that the estimated topics capture meaningful and robust biological signal in both
modalities, and identify associations within and across tissue types. We identify 53,358 cis-eQTLs and 1,173
trans-eQTLs by conducting eQTL mapping between the most informative features in each topic. Our TBLDA
model is able to identify associations using raw sequencing count data when the samples in two separate data
modalities are matched one-to-many, as is often the case in biological data.
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Background
Genomic differences, such as single nucleotide poly-
morphisms (SNPs), among individuals are important
drivers of gene expression variability. Much previous
work has focused on discovering expression quantita-
tive trait loci (eQTLs), which capture associations be-
tween the number of copies of a minor allele present at
a given genomic locus and the expression level of a sin-
gle gene (GTEx Consortium 2017; GTEx Consortium
et al. 2020). However, a one-to-one mapping of genes
to SNPs is too simplistic given the reality of biological
interactions and the availability of many observations
per individual. Pleiotropy, gene regulatory networks
with biological redundancy and feedback loops, and
linkage disequilibrium (LD) blocks of highly-correlated
SNPs all contribute to a complex and dynamic biolog-
ical regulatory system.
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From a statistical perspective, performing genome-
wide one-to-one association tests yields an astronom-
ical multiple testing burden for trans-eQTLs, where
the agnostic approach examines every interchromoso-
mal gene and SNP combination. Statistical power is
further reduced because trans-eQTLs, or eQTLs where
the regulatory SNP is on a different chromosome than
the gene that it regulates, often have smaller effect
sizes than cis-eQTLs, or eQTLs where the regulatory
SNP is local to the gene that it regulates (Petretto
et al. 2006). One method to reduce the effective num-
ber of tests is to cluster correlated SNPs and genes,
and compare the averaged cluster signals, versus test-
ing for every possible marginal association.

Probabilistic topic models, such as latent Dirichlet
allocation (LDA), are unsupervised machine learning
methods that were initially introduced in natural lan-
guage processing (Blei et al. 2003) and in statistical
genetics as models of ancestry (Pritchard et al. 2000).
LDA finds latent topics via soft clustering of feature
counts over many samples while simultaneously esti-
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mating each sample’s topic membership proportions.
More recently, these types of models have been applied
to gene expression data with gene counts as features.
The topics estimated by these models represent inter-
pretable underlying biology such as cell type or devel-
opmental stage, and have been used in QTL mapping
as the quantitative traits themselves (Dey et al. 2017;
Hore et al. 2016).

We hypothesized that multi-modal topic modeling
could identify clusters of co-regulated genes and SNPs.
Existing methods have used Dirichlet process mixture
models to integrate two data modalities (Savage et al.
2010), but nonparametric Bayesian models tend to be
too computationally intense for larger data sets such
as modern genotype arrays, which capture millions of
SNPs. Argelaguet et al. (2018) designed a factor model
framework (MOFA) to jointly model multiple data
modalities, allowing various data likelihoods via link
functions. However, relevant methods assume that the
modalities are measured on the same samples such that
there is a single observation from each individual in
each modality (Argelaguet et al. 2018; Ash et al. 2021;
Li and Gaynanova 2018; Savage et al. 2010; Virtanen
et al. 2012; Zhao et al. 2016). Many earlier methods
also require gene expression data to be normalized, po-
tentially adulterating true signals or spuriously adding
false ones (Hicks et al. 2018; Hore et al. 2016; Love
et al. 2014; Robinson et al. 2010).

In this work, we create a probabilistic model to find
shared structure between gene expression and geno-
type data. Our model uses raw sequencing read counts
and works with a nested data structure where, al-
though samples are paired, modalities may have dif-
ferent numbers of samples from each subject. This is
often the case when we have many samples of gene
expression from a particular donor—as in the GTEx
data with multiple tissue samples per donor, and also
for single-cell RNA-sequencing samples with multiple
cells per subject—but a single germline genotype vec-
tor. We apply our model to GTEx v8 data, and use
known sample tissue labels and cell type enrichment
scores to interpret the biological context of the esti-
mated components (GTEx Consortium et al. 2020). To
demonstrate the model’s ability to find shared varia-
tion between data modalities, we conduct eQTL map-
ping using the most informative features in each topic
to find both known and novel—and tissue-specific and
general— cis- and trans-eQTLs.

Methods
Given a genotype matrix and an RNA-sequencing ex-
pression matrix, our goal is to find latent factors that
capture groups of SNPs and genes that covary across
samples. Assume that we have two matrices as inputs:

a RNA-seq count matrix X ∈ RL×F g

for F g genes
across L samples and a genotype matrix Y ∈ RN×F s

in
minor allele dosage format (0, 1, 2) for F s SNPs across
N individuals. Our model assumes that there are K
latent topics where (i) each sample ` ∈ {1, . . . , L}
has membership proportion φi`k, (ii) each individual
i ∈ {1, . . . , N} has membership proportion θik such

that
∑K

k=1 θik =
∑K

k=1 φi`k = 1, and (iii) each sample
has a known mapping to exactly one of the individu-
als (Fig. 1, S1). Topics are modeled as distributions
over features, where, similar to LDA, gene expres-
sion topics λg are located on the simplex (Blei et al.
2003), while genotype topics λs are modeled indepen-
dently over SNPs j ∈ {1, . . . , F s} as in the Structure
model (Pritchard et al. 2000). The formal model is as
follows:

λg
k ∼ Dirichlet(ξ) (1)

φi` ∼ Dirichlet(σi) (2)

πg
i` = Λgφi` (3)

xg
i` ∼ Multinomial(Ci`,π

g
i`) (4)

λsjk ∼ Beta(ζjk, γjk) (5)

θi =
1∑L

`=1 ωi

Φωi (6)

α ∼ Uniform(δ, µ) (7)

πs
ij = α

Ks∑
m=1

βjmτjm + (1− α)
( K∑
k=1

λsjkθik
)

(8)

ysij ∼ Binomial(2, πs
ij), (9)

where Cl is the total gene count in sample `, and ωi ∈
RL is an indicator vector for individual i, where ωi` = 1
if sample l originates from individual i. Here, we denote
the matrices Φ, Λs, and Λg as concatenated column
vectors φi`, λ

s
k, and λg

k. We use stochastic variational
inference to compute posterior estimates for Φ, Λs, and
Λg (see Methods for details).

In this multi-modal version of LDA, the same latent
factors are shared across data modalities, allowing fea-
tures of each modality to be directly linked together.
We include a modality-specific (private) subspace for
genotype, βτ , to control for ancestral structure in
mixed-population samples. The weight of the private
versus shared genotype subspaces is determined by 0 <
α < 1. The model does not include a gene expression-
specific latent space to avoid losing any broad reg-
ulatory signal that is genotype-dependent (Rakitsch
and Stegle 2016), as is often the case with trans-
eQTLs (GTEx Consortium 2017). Critically, because
our framework directly models count data, we avoid
spurious or distorted signals through data normaliza-
tion (Hicks et al. 2018; Love et al. 2014; Robinson
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Figure 1 TBLDA model plate diagram. Shaded nodes
represent observed variables, empty nodes represent latent
variables, and striped nodes represent latent variables inferred
prior to running the model. The K plate contains loadings for
topics shared across modalities, while the Ks plate surrounds
genotype-specific topics.

et al. 2010), and due to the non-negative factors, the
components capture parts-based patterns instead of
global patterns (Lee and Seung 1999; Townes and En-
gelhardt 2021). The multinomial distribution allows
us to separate out variation due to library-size effects
from the underlying compositional variation, which is
more biologically-relevant.

Features that have higher weights within a topic (λg
k

, λsjk) have a larger relative contribution. However, the
proportion of total counts for each gene varies widely.
Genes with higher counts may dominate certain topics
merely due to their high expression levels, overshad-
owing lower-expressed genes that are actually more
informative for that topic compared to others. Conse-
quently, instead of using the raw expected loadings, we
determine the importance of each feature across topics
by ranking the average 2-Wasserstein distance between
the posterior variational distributions. This allows us
to control for both average feature counts and vary-
ing uncertainty in model estimation by using the full
information provided by the posterior estimates. SNP
minor allele frequency (MAF) is much less variable
than gene total counts. To control for allele counts, we
rank SNPs after regressing out the coded MAF in each
loading (see Methods for details).

Results
We applied our telescoping bimodal LDA (TBLDA)
model to gene expression data for the ten tissues with
the highest number of samples from the v8 GTEx data

release, and to the genotypes from all individuals who
contributed to at least one of the samples (Table 1). We
took advantage of the known GTEx covariates to inter-
pret biological variation captured in the model factors
and ensure relevant signal was found.

First, we checked that ancestral structure, using re-
ported ancestry as a proxy, was not associated with
the estimated shared factors. As expected, ancestral
structure was largely controlled for since it is captured
in the genotype-specific portion of the model (median
absolute value factor-ancestry point biserial correla-
tion coefficient < 0.01).

Next, we looked for signal from one of the top sources
of known variation in the dataset, tissue of origin, by
identifying factors active in specific tissues. We found
15,439 tissue-factor associations via the inner product
of each factor and a tissue indicator vector, considering
inner products greater than 40 to be tissue-associated
(Fig. S2, Table 1). Tissue sample size was strongly
correlated with the number of tissue-associated fac-
tors (Kendall’s rank correlation τ = 0.64, p < 0.01),
which suggests that certain tissues may have under-
powered downstream analyses. Over all runs, whole
blood and skeletal muscle had the most associated fac-
tors (2, 599 and 2, 649 respectively) while tibial nerve
had the fewest (905). Skin (sun-exposed), skin (not
sun-exposed), lung, subcutaneous adipose, and thyroid
had the weakest associations (median inner products
between 60.7 and 69.7); whole blood, tibial nerve, and
esophagus mucosa have the strongest (median inner
products between 88.6 and 109.6). Accordingly, whole
blood and skeletal muscle samples allocate a majority
of their topic membership into tissue-specific factors
(Fig. 2).

In order to explore the robustness of these tissue-
associated factors, we compiled sets of the top-ranked
features that frequently appeared across factors asso-
ciated with a common tissue (see Methods). Taken to-
gether, the two skin tissues had the largest group with
6,515 genes, while whole blood had the largest num-
ber of unique genes considering the other sets (1,983).
All tissue-associated robust gene sets were enriched for
functionally-relevant biological process Gene Ontology
(GO) sets (Benjamini Hochberg (BH) FDR < 0.1, Ta-
ble S1). Further, all relevant robust tissue gene sets
(except for tibial artery) contained a majority of the
tissue-specific transcription factors (TFs) present in
the overall analysis (whole blood 10/12, thyroid 6/8,
esophagus 7/8, skins 12/14, lung 3/4, nerve 3/3, skele-
tal muscle 12/12, tibial artery 0/2, subcutaneous adi-
pose 2/2; see Methods). This demonstrates that our
model consistently found topics that captured impor-
tant tissue-specific biological variation including func-
tional pathways and tissue-specific regulatory activity.
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Figure 2 The estimated TBLDA topics capture
tissue-specific signal. Each row depicts the expected
sample-topic proportion (φl, eqn. 2) for one sample for the
model fit using genes on chromosome 19 and SNPs on
chromosome 22; samples are sorted by tissue.
Tissue-associated topics are colored in a tissue-wise family
color scheme. The remaining topics are drawn using a random
gray scale.

Next, we used a compilation of 63 SNP classes from
the LDSC (Bulik-Sullivan et al. 2015) data repos-
itory to explore functional regulatory enrichments
among tissue-associated SNPs. The union of all ro-
bust tissue-associated SNPs was enriched for 20 SNP
classes (Fisher’s exact test, BH FDR < 0.1) includ-
ing TFBS ENCODE (BH FDR < 0.016), SuperEn-
hancer Hnisz (BH FDR ≤ 3.4 × 10−3) and active
enhancer-associated H3K27ac Hnisz (BH FDR ≤ 9.8×
10−5) and H3K4me1 Trynka (BH FDR ≤ 2.6× 10−5).
In particular, several single tissue-associated SNP sets

are associated with DGF ENCODE, DHS Trynka.extend.500,
H3K4me1 Trynka, H3K27ac Hnisz, and Enhancer Hoffman
(eight, six, five, five, and three tissues respectively out
of the ten total; BH FDR < 0.1; Table S2). These SNP
set enrichments from our model show that TBLDA
identifies functional connections between genotype and
gene transcription; these enrichments are intriguing
because trans-eQTLs are known to be associated with
enhancer activity (GTEx Consortium 2017).

We then investigated whether the SNP sets are
clustered together in particular genomic regions. The
union of all tissue-associated SNPs was not enriched in
any chromosomal regions using a bin size of 250,000 bp
and a sliding window of 100,000 bp, but there were 143
tissue-specific genomic bin enrichments (Fisher’s exact
test, FDR < 0.1; Fig. 3, Table S3). Notably, 48 regions
on chromosome four were enriched for the robust SNP
set associated with subcutaneous adipose (BH FDR
< 0.05). This highlights the ability of TBLDA to iden-
tify jointly functional genomic regions even when the
SNP data have been LD-pruned.

Although the GTEx data provide the ground truth of
each sample’s origin tissue, this is not the case across
all data sets. Thus, we next evaluated whether our
model could recover robust components across relevant
runs in an unsupervised manner. To do this, we ran our
model 484 times, once for each pair of chromosomes in
the GTEx v8 data, and identified shared components
across these runs (see Methods). Across all runs, we
recovered 197 clusters of robust genotype factors and
1,799 groups of robust gene expression factors. Load-
ings that were well-correlated with each other across
runs tended to cluster by tissue; 81 of the robust geno-
type clusters and 468 of the robust gene expression
clusters included factors that were associated with the
same tissue (Fig. 4). Only 14 and 75 of the robust
genotype and expression clusters, respectively, did not
include tissue-associated factors. The presence of these
tissue-associated robust genotype components demon-
strates that TBLDA identifies interactions between the
data modalities versus separate structure within each
modality.

Due to the nature of bulk RNA-seq expression data,
the GTEx samples average expression over hetero-
geneous tissue samples containing various cell types.
We computed the Kendall correlation between cell-
type enrichment scores and factor values to determine
whether factors capture sample cell-type composition
(Fig. S3). We use estimated enrichment scores for bulk
cell deconvolution across five cell types (adipocytes,
keratinocytes, epithelial cells, myocytes, and neu-
trophils) in eight tissues for a total of 11 tissue- and
cell-type pairs (Table 1) (GTEx Consortium et al.
2020). Enrichment scores for 8/11 pairs of tissue and
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Figure 3 Robust tissue-associated SNP sets are enriched for DNA markers and localized throughout the genome. Left:
Enrichment via Fisher’s exact test of eight of the 63 LDSC SNP classes across all robust tissue-associated SNP sets. Right: Each
tissue’s associated SNP set was tested for genomic localization via Fisher’s exact test. The blue and green dotted lines are drawn at
p-value thresholds of 0.1 and 0.05 respectively. The colors mark the division between ordered chromosomes, with chromosome one
on the far left.

cell-types were well captured by at least one factor
(maximum abs(Kendall τ) > 0.5). This suggests that
the TBLDA components often represent cell-type spe-
cific processes within tissue samples.

To test whether traditional eQTLs ascertained using
univariate tests are captured by TBLDA, we ran a lin-
ear model for association between the top 10% most
informative SNPs and genes on common factors for
each tissue separately using MatrixEQTL (Shabalin
2012) (further referred to as the multivariate testing
approach; Fig. 5). Out of 10,855,277 total tests, we
found 53,358 cis-eQTLs at BH FDR < 0.1 across all
ten tissues including 14,971 unique eVariants and 8,913
unique eGenes (Table S4). The majority of these cis-
eQTLs (46,351) affect protein-coding genes, with a mi-
nority (7,007) acting on linc-RNA genes (Fig. 5). Thy-
roid had the most cis-eQTLs, 6,590, followed by tibial
nerve with 6,182.

We also discovered 1,173 trans-eQTLs at BH FDR
< 0.1, which include 961 unique trans-eGenes and
1,074 unique trans-eVariants (Table S4). In contrast
to both the data, which consist of 86% protein-coding
genes, and the cis-eQTLs, trans-eQTLs have an almost

equal number of linc-RNA and protein-coding eGenes
(581 and 592, respectively; Fig. 5). Tibial nerve had
the highest number of trans-eQTLs (153), followed by
tibial artery with 124. Not surprisingly (GTEx Consor-
tium 2017), the cis-eQTL enrichment is much stronger
and more consistent than the trans-eQTL enrichment
(Fig. 5). These eQTL mapping results highlight the as-
sociations between SNPs and genes loaded onto a com-
mon factor, and suggest that eQTL candidates may be
identified using the TBLDA factors.

Next, we restricted our analysis within each tissue
to the respective tissue’s associated factors. We found
7,968 cis-eQTLs (4,282 unique eGenes, 5,922 unique
eVariants) and 1,081 trans-eQTLs (983 unique trans-
eGenes, 1,073 unique trans-eVariants) at BH FDR
< 0.1 (Table S5). Whole blood had the most cis-eQTLs
while skin (not sun-exposed) had the most trans-
eQTLs. Similarly to the full analysis above, the trans-
eQTLs have an approximately equal split of linc-RNA
and protein-coding eGenes whereas the cis-eGenes are
mostly protein-coding (Fig. S4). Of the discoveries, 962
(89.0%) of the trans-eQTLs and 2,025 (25.4%) of the
cis-eQTLs were novel, meaning not below significance
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Figure 4 The TBLDA model estimates robust factors across independent runs. Cluster maps of the pairwise Pearson correlations
between loadings from all runs that used features from chromosome two. The color bars associated with the axes label the topic’s
strongest tissue association, if any. Left: Correlations calculated using the residuals after regressing coded MAF out from the
expectation of the genotype loadings (λsk). Right: Correlations between the expected value of gene expression loadings (λgk).

threshold in the unrestricted multivariate test. The
fact that 1,054 (89.9)% of the trans-eQTLs found by
the full multivariate test were not found in the tissue-
associated factors indicates that most of the trans as-
sociations found by the model are not in specific tissue-
factor pairs.

Thus, to increase power to find trans-eQTLs shared
across tissues, we next limited association tests to fea-
tures in general factors that were not linked to any
tissue. This approach yielded 1,065 trans-eQTLs (895
unique trans-eGenes, 1,007 unique trans-eVariants)
and 23,965 cis-eQTLs (5,111 unique eGenes, 7,229
unique eVariants; Fig. S4, Table S6). Here, skin (sun-
exposed) had the most trans-eQTLs (124) while thy-
roid produced the most cis-eQTLs (2,883). The reduc-
tion in test numbers allowed 578 new trans-eQTLs and
2,393 cis-eQTLs to move below the significance thresh-
old relative to the unrestricted multivariate test.

Inferred covariates such as PEER factors are known
to capture and thus inadvertently control for broad
regulatory effects that potentially have a true ge-
netic basis, potentially removing broad trans-eQTL
signals (GTEx Consortium 2017; Rakitsch and Stegle
2016). To test whether factors in our model find these
kinds of regulatory hotspots, we ran the same eQTL
mapping as before except excluding all PEER factors
from the covariate matrix. This resulted in fewer total
cis- and trans-eQTLs (16,731 and 1,004, respectively

at BH FDR < 0.1; Table S7). However, the proportion
of unique eVariants to trans-eQTLs versus including
PEER factors was lower (0.80 versus 0.92), suggest-
ing that, to some extent, PEER factors do remove
trans-acting pleiotropic signals that are captured by
our model. In line with their supposed mechanisms of
action, 95.7% (16,019) of these cis-eQTLs overlapped
with our prior analysis controlling for PEER factors,
while only 11.0% (110) of these trans-eQTLs were also
found when controlling for PEER factors in the asso-
ciation analysis.

Next, we explored the overlap of our eQTLs and
the GTEx consortium cis- and trans-eQTL list, pro-
duced by the consortium through an exhaustive tissue-
specific testing approach (GTEx Consortium et al.
2020). All except for three of the multivariate TBLDA
cis-eQTLs were in the GTEx cis-eQTL list. Of the mul-
tivariate trans-eQTLs, 15 overlapped with the 2,629
genome-wide GTEx trans-eQTLs in the top ten tis-
sues. However, 712 (27.1%) of the GTEx trans-eQTLs
included one of those 15 eGenes. That number is
largely driven by four eGenes in three tissues that are
associated with hundreds of SNPs in an LD block with
the relevant eVariant in our analysis. Notably, 284/428
(66.4%) of lung trans-eQTLs had LAMA2 as a trans-
eGene, 176/795 (22.1%) of thyroid trans-eQTLs act on
the protein-coding gene TMEM253, 59/439 (13.4%)
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Figure 5 Characterization of cis- and trans-eQTLs between top-ranked features in each factor. Left: For each of the 484 model
runs, the ordered true MatrixEQTL association -log10(p-values) (y-axis) are plotted against ordered -log10(p-values) from tests
using the same features but permuted expression and covariate data (x-axis). Clear cis-eQTL enrichment is present across all
intrachromosomal runs. Points at which the ordered true -log10(p-value) is greater than the maximum permuted -log10(p-value) are
colored in red to highlight deviation. Right: Histograms depicting the numbers of trans- (top) and cis- (bottom) eQTLs mapped
per-tissue, split by gene type.

of skeletal muscle trans-eQTLs involve the protein-
coding gene PARP10, and 97/795 (12.2%) of thyroid
trans-eQTLs have MAPRE3 as a trans-eGene. Al-
though we fail to capture this extended signal because
we use an LD-pruned SNP set, our model still groups
these genes and their genomic hotspots together. To
more directly evaluate the impact of LD-pruning, we
looked for GTEx trans-eQTLs that matched ours in
tissue and eGene but included an eVariant within 100
Kb upstream or downstream of ours. We found that
30.8% (810) of the GTEx trans-eQTLs overlap ours
in terms of this LD-proxy test. Taken together, these
results suggest that our approach finds overlapping
cis-eQTL signals but expands our ability to identify
broad-acting trans-eQTLs in these bulk data.

One interesting example is the trans eVariant rs4297160,
which is associated with both MAPRE3 (p-value p ≤
6.6× 10−11) and ARFGEF3 (p-value p ≤ 2.2× 10−16)
in thyroid and sits in the 9q22 locus (Fig. 6). Specif-

ically, rs4297160 is located within the lincRNA gene
PTCSC2, which has been linked to a predisposition
for papillary thyroid cancer (He et al. 2015). The 9q22
locus, home of thyroid-specific TF FOXE1, was pre-
viously found associated in trans with ARFGEF3 in
thyroid (GTEx Consortium 2017). Notably, PEER fac-
tors were shown to capture and therefore control for
broad regulatory signals from that locus (GTEx Con-
sortium 2017); in line with this, in our association tests
run without PEER factors as covariates, rs4297160
was a trans-eVariant for 34 different genes in thyroid,
including HECW1 (regulates the degradation of thy-
roid transcription factor 1 (Liu et al. 2019)), COL-
GALT2 (downregulated in patients with thyroid or-
bitopathy (Khong et al. 2015)), and FMO5 (expressed
in endocrine cells that produce hormones that regulate
metabolism (Xu 2017)); Fig. 6).

We evaluated the increase in statistical power com-
pared to the univariate approach due to our reduced
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Figure 6 Example trans-eQTLs stemming from a single
locus in thyroid. Gene expression counts from thyroid samples
have been quantile normalized.

multiple testing burden. The cis-eQTL p-values with
BH FDR < 0.1 from our method have a different dis-
tribution from the GTEx cis-eQTLs found via exhaus-
tive search (Kolmogorov–Smirnov test statistic 0.37,
p-value p ≤ 2.8 × 10−14). Although our cis-eQTLs
found via TBLDA are a subset of all true associations,
they tend to have stronger associations than the set of
GTEx cis-eQTLs (Fig. 7).

Figure 7 Empirical CDF comparison between our cis-eQTL
p-values and those found via the exhaustive GTEx search.
Cis-eQTL p-values are trimmed to double machine precision,
and then used for the Kolmogorov-Smirnov test.

Discussion
In this paper, we present a probabilistic telescoping
bimodal latent Dirichlet allocation (TBLDA) model
that uncovers shared latent factors between bulk RNA-
seq expression and genotype data when there is not a

one-to-one mapping among the samples for each data
modality. The model takes raw counts as input, which
avoids any potential data skewing due to normaliza-
tion. We fit the model using gene expression data from
ten tissues in the GTEx v8 release and matched donor
genotypes. Using known GTEx covariates, we estab-
lished that the recovered topics reflected meaningful
biology such as sample cell-type proportion (Fig. S3).
Robust gene sets in tissue-associated factors were en-
riched for functionally-relevant pathways (Table S1).
Causal eVariants identified by our method are known
to be enriched in a variety of genomic regulatory re-
gions (Albert and Kruglyak 2015); top-ranked robust
tissue-associated SNP sets in our model were like-
wise enriched, demonstrating motifs of known eVari-
ants (Table S2).

Running linear association tests on top-ranked fea-
tures from each factor using MatrixEQTL (Shabalin
2012), we found 53,358 cis-eQTLs and 1,173 trans-
eQTLs at BH FDR 0.1, including four trans-eGenes
that accounted for 66%, 22%, 13%, and 12% of the
trans-eQTLs in their respective tissues in the GTEx v8
trans-eQTL analysis. By restricting association tests
to the top features per factor in our model, we de-
crease the multiple testing burden and increase power
for mapping trans-eQTLs. This is demonstrated by the
fact that 1,158 of our trans-eQTLs were not identi-
fied in the exhaustive genome-wide GTEx analysis. A
critical caveat of our approach is that, with a finite
number of topics, we do not expect the model to cap-
ture all true eQTLs; however, we show that it does
reproducibly identify novel and functionally-relevant
eQTLs. Taken together, though, these results demon-
strate that our method successfully learns biologically
meaningful shared topics across gene expression and
genotype data.

There are several potential points of contention in
our model. First, although the model’s probabilistic
nature provides important measures of uncertainty for
noisy genomic data, due to our inference procedure the
posterior should be interpreted with caution since vari-
ational inference is known to underestimate the pos-
terior variance (Giordano and Broderick 2015). Sec-
ond, because we do not include a private subspace for
gene expression, true latent components that reflect
expression-specific variation such as batch effects will
be forced to contribute to the modality-shared factors.
We believe this is important in order to retain signal
for broad regulatory effects that especially affect trans-
eQTL discovery. Nevertheless, if the model is used in
a context such as single-cell RNA-sequencing, where
there are known and strong expression-specific covari-
ates such as batch effects, this design choice should
be reconsidered. Furthermore, a natural question that
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arises for all parametric latent factor models is how to
determine the number of topics. We stress that there
is no ‘correct’ topic number, and the user will want
to make a reasonable trade-off between computational
speed for inference and the granularity of signal cap-
tured. In practice, we recommend anywhere from 20
to 150 factors depending on the size of the data set.
Given these qualities, natural extensions to the model
include adding latent or semi-supervised expression-
specific topics and extending it to a nonparametric
framework.

Extended Methods
Feature Selection
Following (Jo et al. 2016), we used plink 1.9 (Pur-
cell et al. 2007) to trim the GTEx v8 Whole Genome
Sequencing SNP sets such that no two SNPs within
a 200 Kb window have a Pearson correlation ≥ 0.2.
SNPs with imputed genotypes were removed, yielding
202,111 remaining SNPs across 831 individuals. All
gencode v26 autosomal lincRNA and protein-coding
genes from the 5,781 samples with genotypes were con-
sidered. We retained the 19,534 autosomal genes with
a median RNASeQC v1.1.9 (Graubert et al. 2021) read
count of at least five in at least one tissue. SNPs and
genes were split into 22 groups by chromosome.

Ancestry Structure
We ran terastructure (Gopalan et al. 2016) on the
202,111 LD-trimmed SNPs with the following op-
tions: -rfreq=40222 and -K=5. The resulting beta
and theta output matrices were assigned to β and τ
(eqn. 8) to produce the genotype-specific portion of
the model.

Model Runs
We used Pyro v1.4.0 (Bingham et al. 2019)’s stochas-
tic variational inference framework to fit the model,
using pyro.poutine.scale(scale=1.0× 10−6) for nu-
merical stability, an Adam optimizer, and a learning
rate of 0.05. ξ and σi were set to one, δ to 0.05, and
µ to 0.85. The model was fit separately for feature
sets from each chromosome combination, for a total of
22 × 22 = 484 runs. Let x be the average ELBO over
the latest 1000 epochs and y be the average ELBO
over the 1000 epochs prior to those. Runs were termi-
nated when y−x

y ≤ 1 × 10−4. Code to run TBLDA is

available at https://github.com/gewirtz/TBLDA.

Feature Ranking
After regressing out allele frequency, we take the top
10% of features from each loading with the highest
absolute value residuals. The 10% of genes from each
loading with the highest 2-Wassterstein distances are

considered the top gene features. Because the fea-
ture numbers vary by chromosome, runs have differing
numbers of top features associated with their factors.

Functional Enrichment Data
The tissue-specific TF list originated from Table S3
in (Sonawane et al. 2017). To conduct GSEA, we used
all biological process terms from GO v6.2 that had at
least three genes in common with our analysis feature
set. We used LDSC’s baselineLD v2.1 (Bulik-Sullivan
et al. 2015; 2021) genome annotations to compute
SNP set enrichments. We did not consider MAF bin
classes.

Tissue-Associated SNPs
We computed the inner product between tissue indi-
cator vectors and the expectation of the variational
posterior for phi. The top-ranked SNPs in topics with
an inner product > 40 were considered associated with
a specific tissue within each run. For each tissue, we
calculated the 75th percentile of the distribution of to-
tal tissue-associated factors across all runs that each
top-ranked SNP is associated with. SNPs that are top-
ranked in at least the 75th percentile of each tissue’s
associated factors across all runs comprise the set of
robust tissue-associated SNPs.

eQTL Pipeline
We used MatrixEQTL v2.3 (Shabalin 2012) with mod-
elLINEAR to run the eQTL testing. Expression for all
genes that passed a 0.8 mappability filter was quantile-
normalized as input. Sex, PCR, platform, the top five
genotype principal components, and the top 60 PEER
factors per tissue were included as covariates. FDR
was computed using the Benjamini-Hochberg proce-
dure over each run for protein-coding and lincRNA
genes separately.

Robust Components
We computed the correlation of each factor loading
with all other loadings from runs on the same chromo-
some. Any factor with more than two loading Kendall
τ > 0.15 for SNPs and three Pearson r2 > 0.95 for
genes was flagged—along with the highly-correlated
factors—as a robust component. For each robust com-
ponent, we averaged the constituent loadings to pro-
duce a representative factor loading. All components
whose representative loadings exceeded r2 > 0.95 were
further collapsed into a single robust component.

Data Access
All raw sequencing and genotype data from GTEx v8
used in this study can be found in dbGaP under ac-
cession number phs000424.v8.p2.
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Tables

Additional Files

Additional file 5 — Supplemental Table S1. Gene set enrichment analysis of

tissue-associated robust gene sets.

All KEGG, Biocarta, GO biological process, and Reactome gene sets with

BH FDR < 0.1 in at least one tissue-associated robust gene set.
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Tissue Sample Size Num. Tissue-Associated Factors Cell Type Enrichment Scores

Subcutaneous Adipose 581 1,536 Adipocytes

Tibial Artery 584 1,504

Esophagus Mucosa 497 1,254 Keratinocytes, Epithelial Cells

Lung 515 1,095 Epithelial Cells

Skeletal Muscle 706 2,649 Myocytes

Tibial Nerve 532 905

Skin (Not Sun-exposed) 517 1,225 Keratinocytes, Epithelial Cells

Skin (Sun-exposed) 605 1,390 Keratinocytes, Epithelial Cells

Thyroid 574 1,282 Epithelial Cells

Whole Blood 670 2,599 Neutrophils

Table 1 Overall summary statistics and available data for each of the ten tissues included in the analysis.

Figure 8 Supplemental Figure S1. Model visualization. Explicit representation of the model with dimensions drawn out. Each
portion of the model is color-coded according to modality. Gray represents the known mapping between samples and individuals. The
ancestry portion is striped because while it is learned, that occurs prior to fitting the shared model portion.

Additional file 6 — Supplemental Table S2. LDSC SNP class enrichment

among tissue-associated robust SNP sets.

Additional file 7 — Supplemental Table S3. Genomic regions enriched for

tissue-associated robust SNP sets (BH FDR < 0.1).

Additional file 8 — Supplemental Table S4. Cis- and trans-eQTLs mapped

using the multivariate testing approach (BH FDR < 0.1).

Additional file 9 — Supplemental Table S5. Cis- and trans-eQTLs mapped

using only tissue-associated topics (BH FDR < 0.1).

Additional file 10 — Supplemental Table S6. Cis- and trans-eQTLs mapped

using general topics (not associated to any tissue; BH FDR < 0.1).

Additional file 11 — Supplemental Table S7. Cis- and trans-eQTLs mapped

using the multivariate testing approach, without including PEER factors as

covariates (BH FDR < 0.1).
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Figure 9 Supplemental Figure S2. Histogram of tissue-factor inner products. The vertical line depicts the inner product threshold
for determining tissue association. The bottom figure presents the same data as the top figure, but zoomed in to lower counts to
illustrate the long tail. Both histograms are drawn using 100 bins.

Figure 10 Supplemental Figure S3. Relationships between factors and cell type enrichment scores. Left and center: Histograms
depicting the maximum absolute value Kendall’s tau coefficient in each of the 11 available tissue-cell type pairs (Table 1) Right:
Scatter plots of the expected factor values (φlk) and cell type enrichment scores for two strongly correlated examples.
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Figure 11 Supplemental Figure S4. Significant eQTL counts from restricted tests. Per-tissue, the number of eQTLs found when
limiting association tests by using only non-tissue-associated factors (left) and restricting by tissue with only tissue-associated factors
(right).
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