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 49 
ABSTRACT 50 

The field of population genomics has grown rapidly with the recent advent of affordable, large-51 

scale sequencing technologies. As opposed to the situation during the majority of the 20th 52 

century, in which the development of theoretical and statistical population-genetic insights out-53 

paced the generation of data to which they could be applied, genomic data are now being 54 

produced at a far greater rate than they can be meaningfully analyzed and interpreted. With this 55 

wealth of data has come a tendency to focus on fitting specific (and often rather idiosyncratic) 56 

models to data, at the expense of a careful exploration of the range of possible underlying 57 

evolutionary processes. For example, the approach of directly investigating models of adaptive 58 

evolution in each newly sequenced population or species often neglects the fact that a thorough 59 

characterization of ubiquitous non-adaptive processes is a prerequisite for accurate inference. We 60 

here describe the perils of these tendencies, present our views on current best practices in 61 

population genomic data analysis, and highlight areas of statistical inference and theory that are 62 

in need of further attention. Thereby, we argue for the importance of defining a biologically 63 

relevant baseline model tuned to the details of each new analysis, of skepticism and scrutiny in 64 

interpreting model-fitting results, and of carefully defining addressable hypotheses and 65 

underlying uncertainties. 66 
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A brief introduction to population genomic inference 78 

Population genomic inference – the use of molecular variation and divergence data to infer 79 

evolutionary processes – has become widely embraced and highly utilized in fields ranging from 80 

evolutionary biology, to ecology, to anthropology, and to medicine. The underlying questions 81 

may be demographic in nature, be it estimating the timing of the peopling of the world (Nielsen 82 

et al. 2017) or of viral transmission in a congenitally infected newborn (Renzette et al. 2014); 83 

alternatively, they may concern the selective history of specific populations, be it identifying 84 

mutations that confer cryptic coloration in species adapting to major post-glacial climatic and 85 

geological changes (Harris et al. 2020) or viral drug-resistance to clinical therapeutics (Irwin et 86 

al. 2016).  87 

 The foundational work allowing for the dissection of these evolutionary processes from 88 

levels and patterns of variation and divergence was conducted by Fisher, Wright, and Haldane 89 

nearly a century ago (e.g., Fisher 1930; Wright 1931; Haldane 1932; for a historical overview, 90 

see Provine 1971). This work demonstrated the possibility of studying evolution at the genetic 91 

level, integrating the revolutionary ideas of Darwin (1859) with the turn-of-the-century 92 

appreciation of Mendel's (1866) research. However, as famously described by Lewontin (1974), 93 

this initial theoretical progress during the first half of the 20th century was "like a complex and 94 

exquisite machine, designed to process a raw material that no one had succeeded in mining". 95 

With the first 'mining' of population-level molecular variation in the 1960s (see Lewontin 1991), 96 

this machine was put to work. The next major steps forward were provided by Kimura and Ohta, 97 

who offered a comprehensive framework for studying DNA and protein sequence variation 98 

based on these fundamental theoretical insights – the Neutral Theory of Molecular Evolution 99 

(Kimura 1968, 1983; Ohta 1973) – an advance for which molecular biology also provided 100 
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support (King & Jukes 1969). Despite some claims to the contrary (Kern & Hahn 2018), Kimura 101 

and Ohta's initial postulates have since been largely validated (Walsh & Lynch 2018; Jensen et 102 

al. 2019), and have provided a means to interpret observed molecular variation and divergence 103 

within the context of constantly occurring evolutionary processes including mutation, genetic 104 

drift, and purifying selection. While ascribing an important role for positive selection on the level 105 

of phenotypic evolution (consistent with Darwin's initial notions), the Neutral Theory 106 

hypothesizes that at the genetic level beneficial mutations are rare compared to the much larger 107 

input of neutral, nearly neutral, and deleterious mutations constantly raining down on the 108 

genomes of all species. Accordingly, positive selection per nucleotide is rare compared to 109 

genetic drift and purifying selection. The significant effects on evolution at linked sites caused 110 

by fitness-altering mutations have been described in detail in the decades since Kimura's initial 111 

formulation (Maynard Smith & Haigh 1974; Charlesworth et al. 1993; reviewed in Charlesworth 112 

& Jensen 2021). 113 

 With this framework and the availability of datasets to which it could be applied, 114 

statistical approaches for analyzing molecular data began to proliferate, frequently employing 115 

some form of neutral expectation as a null model. A wide range of rather sophisticated statistical 116 

machinery is now available for reconstructing histories of population size change, population 117 

subdivision and migration (e.g., Ray & Excoffier 2009; Beichman et al. 2018), for identifying 118 

beneficial mutations based on patterns associated with selective sweeps (e.g., Booker et al. 2017; 119 

Stephan 2019), for quantifying the distribution of fitness effects (DFE) of newly arising 120 

mutations (e.g., Eyre-Walker & Keightley 2007; Bank et al. 2014a), as well as for estimating 121 

rates of mutation (e.g., Keightley & Halligan 2009; Keightley 2012; Lynch et al. 2016) and 122 

recombination (e.g., Stumpf & McVean 2003; Auton & McVean 2012; Spence & Song 2019). 123 
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These approaches operate in a variety of statistical frameworks (see Beaumont et al. 2002; 124 

Beaumont & Rannala 2004; Schraiber & Akey 2015), and utilize various aspects of the data – 125 

including the frequencies of variants in a sample (the site frequency spectrum, SFS), associations 126 

between variants (linkage disequilibrium, LD), and/or between-species levels and patterns of 127 

divergence at contrasted site classes (e.g., synonymous versus non-synonymous sites).   128 

 129 

Challenges of model-choice and parameter-fitting 130 

The growing variety of statistical approaches and associated software implementations presents a 131 

dizzying array of choices for any given analysis; although many approaches share the same aims, 132 

there also exist important differences. For example, some approaches require a relatively high-133 

level of coding ability to implement while others may be applied in easy-to-use software 134 

packages; while some are well-tested and justified by population-genetic theory, others are not. 135 

Moreover, even the process of translating raw sequencing data into the allele calls and genotypes 136 

used as input for these approaches is accompanied by uncertainty that depends on sequencing 137 

quality and coverage, availability of a reference genome, and choice of variant calling and 138 

filtering strategies (Han et al. 2014; Pfeifer 2021). Adding to this complexity, it has become 139 

increasingly clear that demographic estimation may be highly biased when selection and 140 

recombination-associated biased gene conversion are neglected (Ewing & Jensen 2016; Pouyet 141 

et al. 2018), whereas estimates of selection intensity and recombination rate may be highly 142 

biased when neglecting demographic effects (Dapper & Payseur 2018; Rousselle et al. 2018; 143 

Johri et al. 2020). This creates a circular problem when commencing any new analysis: one 144 

needs information about the demographic history to estimate parameters of recombination and 145 

selection, while at the same time one needs information about recombination and selection to 146 
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estimate the demographic history. An additional challenge, and a frustration for many, is that 147 

there is no single 'best approach'; the correct analysis tools to use, and indeed which questions 148 

can be answered at all, depend entirely on the details of the organism under study (Myers et al. 149 

2008). Specifically, biological parameters that vary among species – including evolutionary 150 

parameters (e.g., effective population size (Ne), mutation rates, recombination rates, and 151 

population structure and history), genome structure (e.g., the distribution of functional sites along 152 

the genome), and life history traits (e.g., mating system) – must all be considered in order to 153 

define addressable hypotheses and optimal approaches.  154 

 Beyond these initial considerations, a more difficult issue often emerges. Namely, very 155 

different models may be found to provide a good fit to the observed data (e.g., Harris et al. 2018; 156 

and see Louca & Pennell 2020 for a phylogenetic perspective on the topic). In other words, 157 

particular parameter combinations may be found under competing models that are all capable of 158 

predicting the observed patterns of variation. For example, assuming neutrality, one may match 159 

an empirical observation at a locus by fitting the timing, severity, and duration of a population 160 

bottleneck; or alternatively, assuming a constant population size, by fitting the rate and mean 161 

strength of selective sweeps. This fact alone implies a simple truism: the ability to fit the 162 

parameters of one's preferred model to data does not alone represent proof of biological reality. 163 

Rather, it suggests that this model is one – out of potentially very many – that represents a viable 164 

hypothesis, which should be further examined via subsequent analyses or experimentation. 165 

 Examples abound of enthusiastic promotion of a single preferred model, only to be 166 

tempered by subsequent demonstrations of the fit of alternative and often simpler / more 167 

biologically realistic models. For example, the view that segregating alleles may be commonly 168 

maintained by balancing selection (Ford 1975) was tempered by the realization that genetic drift 169 
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is often a sufficient explanation (Kimura 1983), and the view that genome-wide selective sweeps 170 

on standing variation are pervasive (Garud et al. 2015; Schrider & Kern 2017) was tempered by 171 

the realization that neutral population histories can result in similar patterns (Harris et al. 2018). 172 

While one may readily find such examples of using episodic or hypothesized processes to fit 173 

large-scale data patterns by neglecting to define expectations arising from common and certain-174 

to-be-occurring processes, determining which models to evaluate, and how to interpret the fit of 175 

a model and its alternatives, are challenges for all researchers. To better illustrate this point, 176 

Figure 1 presents three scenarios (constant population size with background selection, constant 177 

population size with background selection and selective sweeps, and a population bottleneck 178 

with background selection and selective sweeps), and provides the fit of each of those scenarios 179 

to two incorrect models (population size change assuming strict neutrality, and recurrent 180 

selective sweeps assuming constant population size). As shown, each scenario can be well-fit by 181 

both incorrect models, with selective sweeps and population bottlenecks generally being 182 

confounded, as well as background selection and population growth, as has been described 183 

several times before (e.g., Barton 2000; Poh et al. 2014; Ewing & Jensen 2016; Johri et al. 184 

2021). 185 

 186 

Constructing an appropriate baseline model for population genomic analysis 187 

The somewhat disheartening exercise depicted in Figure 1 naturally raises the questions of 188 

whether, and if so how, accurate evolutionary inferences can be extracted from DNA sequences 189 

sampled from a population. The first point of importance in this regard is that the starting point 190 

for any genomic analysis should be the construction of a biologically-relevant baseline model, 191 

which includes the processes that must be occurring and shaping levels and patterns of variation 192 
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and divergence across the genome. This model should include mutation, recombination, 193 

reassortment, and gene conversion (as applicable), purifying selection acting on functional 194 

regions and its effects on linked variants (i.e., background selection: Charlesworth et al. 1993, 195 

1995; Charlesworth 2013), as well as genetic drift as modulated by, amongst other things, the 196 

demographic history and geographic structure of the population. Depending on the organism of 197 

interest, there may be other significant biological components to include based on mating 198 

system, progeny distributions, ploidy, and so on. It is thus helpful to view this baseline model as 199 

being built from the ground up for any new data analysis. Importantly, the point is not that these 200 

many parameters need to be fully understood in a given population in order to perform any 201 

evolutionary inference, but rather that they all require consideration, and that the effects of 202 

uncertainties in their underlying values on downstream inference can be quantified.  203 

 However, even prior to considering any biological processes, it is important to investigate 204 

the data themselves.  Firstly, there exists an evolutionary variance associated with the myriad of 205 

potential realizations of a stochastic process, as well as the statistical variance introduced by 206 

finite sampling. Secondly, it is not advisable to compare one's empirical observation which may 207 

include missing data, variant calling or genotyping uncertainty (e.g., effects of low coverage), 208 

masked regions (e.g., regions in which variants were omitted due to low mappability and/or 209 

callability), and so on, against either an analytical or simulated expectation that lacks those 210 

considerations and thus assumes optimal data resolution (Pfeifer 2017). The dataset may also 211 

involve a certain ascertainment scheme, either for the variants surveyed (Nielsen 2004), or given 212 

some pre-defined criteria for investigating specific genomic regions (e.g., regions representing 213 

genomic outliers with respect to a chosen summary statistic; Thornton & Jensen 2007). For the 214 

sake of illustration, Figure 2 follows the same format as Figure 1, but considers two scenarios: 215 
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population growth with background selection and selective sweeps, and the same scenario 216 

together with data ascertainment (in this case, an under-calling of the singleton class). As shown, 217 

due to the changing shape of the frequency spectra, neglecting to account for this ascertainment 218 

can greatly affect inference, considerably modifying the fit of both the incorrect demographic 219 

and incorrect recurrent selective sweep models to the data. Hence, if sequencing coverage is such 220 

that rare mutations are being excluded from analysis, due to an inability to accurately 221 

differentiate genuine variants from sequencing errors, the model used for subsequent testing 222 

should consequently also ignore these variants. Similarly, if multiple regions are masked in the 223 

empirical analysis due to problems such as alignment difficulties, the expected patterns of LD 224 

that are observable under any given model may be affected. Furthermore, while the added 225 

temporal dimension of time-series data has recently been shown to be helpful for various aspects 226 

of population genetic inference (Malaspinas et al. 2012; Foll et al. 2015; Ferrer-Admetlla et al. 227 

2016; Lynch & Ho 2020), such data in no way sidestep the need for an appropriate baseline 228 

model, but simply requires the development of a baseline that matches the temporal sampling. In 229 

sum, as these factors can greatly affect the power of planned analyses and may introduce biases, 230 

the precise details of the dataset (e.g., region length, extent and location of masked regions, the 231 

number of callable sites, and ascertainment) and study design (e.g., sample size and single time-232 

point versus time-series data) should be directly matched in the baseline model construction. 233 

 With these concerns having been satisfied, the first biological addition will logically be 234 

the mutation rate and mutational spectrum. For a handful of commonly studied species, both the 235 

mean of, and genomic heterogeneity in, mutation rates have been quantified via mutation-236 

accumulation lines and/or pedigree studies (Pfeifer 2020a). However, even for these species, 237 

ascertainment issues remain complicating (Smith et al. 2018), variation amongst individuals may 238 
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be substantial (Ness et al. 2015), and estimates only represent a temporal snapshot of rates and 239 

patterns that are probably changing over evolutionary time-scales and may be affected by the 240 

environment (Lynch et al. 2016; Maddamsetti & Grant 2020). In organisms lacking experimental 241 

information, often the best available estimates come either from a distantly related species or 242 

from molecular clock-based approaches. Apart from stressing the importance of implementing 243 

either of the experimental approaches in order to further refine mutation-rate estimates for such a 244 

species of interest, it is noteworthy that this uncertainty can also be modeled. Namely, if proper 245 

estimation has been performed in a closely related species, one may quantify the expected effect 246 

on observed levels of variation and divergence of higher and lower rates. The variation in 247 

possible data observations induced by this uncertainty is thus now part of the underlying model. 248 

The same logic follows for the next parameter addition(s): crossing over / gene conversion, as 249 

applicable for the species in question. For example, for a subset of species, per-generation 250 

crossing rates in cM per Mb have been estimated by comparing genetic maps based on crosses or 251 

pedigrees with physical maps (e.g., Kong et al. 2002; Cox et al. 2009; Comeron et al. 2012). In 252 

addition, recombination rates scaled by the effective population size have also been estimated 253 

from patterns of LD (e.g., Auton et al. 2012; Pfeifer 2020b) – though this approach typically 254 

requires assumptions about evolutionary processes that may be violated (e.g., Dapper & Payseur 255 

2018). As with mutation, the effects on inference of changing the recombination rate – whether 256 

estimated for the species of interest or a closely related species – can be modeled. 257 

 The next additions to the baseline model construction are generally associated with the 258 

greatest uncertainty – the demographic history of the population, and the effects of direct and 259 

linked purifying selection effects. This is a difficult task given the virtually infinite number of 260 

potential demographic hypotheses (e.g., Chikhi et al. 2010); furthermore the interaction of 261 
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selection with demography is inherently non-trivial and difficult to treat separately (e.g., Peischl 262 

et al. 2013, 2015; Johri et al. 2021). This realization continues to motivate attempts to jointly 263 

estimate the parameters of population history together with the DFE of neutral, nearly neutral, 264 

weakly deleterious and strongly deleterious mutations – a distribution which is often estimated in 265 

both continuous and discrete forms. One of the first important advances in this area used 266 

putatively-neutral synonymous sites to estimate changes in population size based on patterns in 267 

the SFS and conditioned on that demography to fit a DFE to non-synonymous sites, which 268 

presumably experience considerable purifying selection (Keightley & Eyre-Walker 2007; Eyre-269 

Walker & Keightley 2009; Schneider et al. 2011). This step-wise approach may become 270 

problematic, however, for organisms in which synonymous sites are not themselves neutral 271 

(Lynch 2007; Singh et al. 2007; Zeng & Charlesworth 2010; Choi & Aquadro 2016; Long et al. 272 

2018), or when the SFS of synonymous sites is affected by background selection, which is 273 

probably the case generally given their close linkage to directly selected non-synonymous sites 274 

(Pouyet et al. 2018; and see Comeron 2014, 2017).   275 

 In an attempt to address some of these concerns, Johri et al. (2020) recently developed an 276 

approximate Bayesian computation (ABC) approach that relaxes the assumption of synonymous 277 

site neutrality and accounts for background selection effects by simultaneously estimating 278 

parameters of the DFE alongside population history. The posterior distributions of the 279 

parameters estimated by this approach in any given data application (i.e., characterizing the 280 

uncertainty of inference), represent a logical treatment of population size change and purifying / 281 

background selection for the purposes of inclusion within this evolutionarily relevant baseline 282 

model. That said, the demographic model in this implementation is highly simplified, and 283 

extensions are needed to account for more complex population histories. While such simulation-284 
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based inference (see Cranmer et al. 2020), including ABC, provides one promising platform for 285 

joint estimation of demographic history and selection, progress on this front has been made using 286 

alternative frameworks as well (Williamson et al. 2005; Ragsdale et al. 2018), and developing 287 

analytical expectations under these complex models should remain as the ultimate, if distant, 288 

goal. Alternatively, in functionally-sparse genomes with sufficiently high rates of recombination, 289 

such that assumptions of strict neutrality are viable for some genomic regions, multiple well-290 

performing approaches have been developed for estimating the parameters of much more 291 

complex demographic models (e.g., Gutenkunst et al. 2009; Excoffier et al. 2013; Kelleher et al. 292 

2019; Steinrücken et al. 2019). In organisms for which such approaches are applicable (e.g., 293 

certain large, coding-sparse vertebrate and land-plant genomes), this intergenic demographic 294 

estimation assuming strict neutrality may helpfully be compared to estimates derived from data 295 

in or near coding regions that account for the effects of direct and linked purifying selection 296 

(Pouyet et al. 2018; Torres et al. 2018; Johri et al. 2020). For newly studied species lacking 297 

functional annotation and information about coding density, following the joint estimation 298 

procedure would remain as the more satisfactory strategy in order to account for possible 299 

background selection effects. 300 

 301 

Quantifying uncertainty in model-choice and parameter estimation, investigating potential model 302 

violations, and defining answerable questions 303 

One of the useful aspects of these types of analyses is the ability to incorporate uncertainty in 304 

underlying parameters under relatively complex models, in order to determine the impact of such 305 

uncertainty on downstream inference. The computational burden of incorporating variability in 306 

mutation and recombination rate estimates, or drawing from the confidence- or credibility-307 
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intervals of demographic or DFE parameters, may be met with multiple highly-flexible 308 

simulation tools (Thornton 2014; Kelleher et al. 2018; Haller & Messer 2019). These are also 309 

useful programs for investigating potential model violations that may be of consequence. For 310 

example, if a given analysis for detecting population structure assumes an absence of gene flow, 311 

it is possible to begin with one's constructed baseline model, add migration parameters to the 312 

model in order to determine the effects of varying rates and directions of migration on the 313 

summary statistics being utilized in the empirical analysis, and thereby quantify how a violation 314 

of that assumption may affect the subsequent conclusions. Similarly, if an analysis assumes the 315 

Kingman coalescent (e.g., a small progeny distribution such that at most one coalescent event 316 

occurs per generation), but the organism in question may violate this assumption (i.e., with the 317 

large progeny number distributions associated with many plants, viruses, and marine spawners), 318 

these distributions may too be modeled in order to quantify potential downstream mis-inference.  319 

 To illustrate this point, Figure 3 considers two scenarios of constant population size and 320 

strict neutrality but with differing degrees of progeny skew, to demonstrate that a violation of 321 

this sort that is not corrected for may result in severely under-estimated population sizes as well 322 

as the false-inference of high rates of strong selective sweeps. In this case, the mis-inference 323 

arises from the reduction in contributing ancestors under these models, as well as to the fact that 324 

neutral progeny skew and selective sweeps may both generate multiple-merger events (Durrett & 325 

Schweinsberg 2004; Hallatschek 2018; Matuszewski et al. 2018; Sackman et al. 2019). 326 

Similarly, one may investigate the assumptions of constant mutation or recombination rates 327 

when they are in reality variable. As shown in Figure 4, when these rates are assumed constant as 328 

is common practice, but in reality vary across the genomic region under investigation, the fit of 329 

the (incorrect) demographic and selection models considered may again be substantially 330 
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modified. Notably, this rate heterogeneity may inflate the inferred strength of selective sweeps. 331 

While Figures 3 and 4 serve as examples, the same investigations may be made for cases such as 332 

a fixed selective effect when there is in reality a distribution, neutral and unlinked variants when 333 

there is in reality linkage disequilibrium, and so on. Simply put, even if a particular biological 334 

process / parameter is not being directly estimated, its consequences can nonetheless be 335 

explored. 336 

 As detailed in Box 1, with such a model incorporating both biological and stochastic 337 

variance as well as statistical uncertainty in parameter estimates, and with an understanding of 338 

the role of likely model violations, one may investigate which additional questions / hypotheses 339 

can be addressed with the data at hand. By using a simulation approach starting with the baseline 340 

model and adding hypothesized processes on top, it is possible to quantify the extent to which 341 

models, and the parameters underlying those models, may be differentiated and which result in 342 

overlapping or indistinguishable patterns in the data (e.g., Lapierre et al. 2017). For example, if 343 

the goal of a given study is to identify recent beneficial fixations in a genome – be they 344 

potentially associated with high-altitude adaptation in humans, crypsis in mice, or drug-345 

resistance in a virus – one may begin with the constructed baseline model and simulate selective 346 

sweeps under that model. As described in Box 2, by varying the strengths, rates, ages, dominance 347 

and epistasis coefficients of beneficial mutations, the patterns in the SFS, LD, and/or divergence 348 

that may differentiate the addition of such selective sweep parameters from the baseline 349 

expectations can be quantified. Moreover, any intended empirical analyses can be evaluated 350 

using simulated data (i.e., the baseline, compared to the baseline + the hypothesis) to define the 351 

power and false-positive rates associated. If the differences in resulting patterns cannot be 352 

distinguished from the expected variance under the baseline model (in other words, if the power 353 
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and false-positive rate of the analyses are not favorable), the hypothesis is not addressable with 354 

the data at hand (e.g., Poh et al. 2014). If the results are favorable, this analysis can further 355 

quantify the extent to which the hypothesis may be tested; perhaps only selective sweeps from 356 

rare mutations with selective effects greater than 1% and that have fixed within the last 0.1 Ne 357 

generations are detectable (see Kim & Stephan 2002; Przeworski 2002), and any others could not 358 

be statistically distinguished from expected patterns under the baseline model. Hence, such an 359 

exercise provides a critically essential key for interpreting the resulting data analysis. 360 

 In this regard, it is worth mentioning two common approaches that may be viewed as 361 

alternatives to the strategy that we recommend. The first tactic concerns identifying patterns of 362 

variation that are uniquely and exclusively associated with one particular process, the presence of 363 

which could support that model regardless of the various underlying processes and details 364 

composing the baseline. For example, Fay & Wu's (2000) H-statistic, capturing an expected 365 

pattern of high-frequency derived alleles generated by a selective sweep with recombination, was 366 

initially proposed as a powerful statistic for differentiating selective sweep effects from 367 

alternative models. Results from the initial application of the H-statistic were interpreted as 368 

evidence of widespread positive selection in the genome of Drosophila melanogaster. However, 369 

Przeworski (2002) subsequently demonstrated that the statistic was characterized by low power 370 

to detect positive selection, and that significant values could readily be generated under multiple 371 

neutral demographic models. The composite likelihood framework of Kim & Stephan (2002) 372 

provided a significant improvement by incorporating multiple predictions of a selective sweep 373 

model, and was subsequently built upon by Nielsen et al. (2005) in proposing the SweepFinder 374 

approach. However, Jensen et al. (2005) similarly described low power and high false-positive 375 

rates under certain neutral demographic models. The particular pattern of LD generated by a 376 
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beneficial fixation with recombination described by Kim & Nielsen (2004) and Stephan et al. 377 

(2006) (and see McVean 2007), was also found to be produced under a more limited range of 378 

severe neutral population bottlenecks (Jensen et al. 2007; Crisci et al. 2013). The point here is 379 

that the statistics themselves represent important contributions for studying patterns of variation, 380 

but in any given empirical application they are impossible to interpret without the definition of 381 

an appropriate baseline model and related power and false-positive rates. Thus, the search for a 382 

pattern unique to a single evolutionary process is not a work-around, and historically such 383 

patterns rarely turn out to be process-specific after further investigation. Even if a 'bullet-proof' 384 

test were to be someday constructed, it would not be possible to establish its utility without 385 

appropriate modeling, an examination of model violations, and power / sensitivity-specificity 386 

analyses. But in reality, the simple fact is that some test statistics and estimation procedures 387 

perform well under certain scenarios, but not under others.  388 

 The second common strategy involves summarizing empirical distributions of a given 389 

statistic, and assuming that outliers of that distribution represent the action of a process of 390 

interest, such as positive selection (e.g., Garud et al. 2021). However, such an approach is 391 

problematic. To begin with, any distribution has outliers, and there will always exist a 5% or 1% 392 

tail for a chosen statistic under a given model. Consequently, a fit baseline model remains 393 

necessary to determine if the observed empirical outliers are of an unexpected severity in the 394 

empirical distribution, and if the baseline model together with the hypothesized process has, for 395 

example, a significantly improved likelihood. Moreover, only by considering the hypothesized 396 

process within the context of the baseline model, may one determine if affected loci (e.g., subject 397 

to recent sweeps) would even be expected to reside in the tails of the chosen statistical 398 

distribution, which is far from a given (Teshima et al. 2006; Thornton & Jensen 2007). Hence, 399 
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the approach for which we advocate remains essential for defining expectations, power, and 400 

false-positive rates, and thus to interpret the significance of observed empirical outliers. As the 401 

appropriate baseline evolutionary model may differ strongly by organism and population, this 402 

performance must be carefully defined and quantified for each empirical analysis in order to 403 

accurately interpret results. 404 

  405 

Closing thoughts 406 

When it comes to evolutionary analyses, wanting to answer a question is not necessarily 407 

equivalent to being able to answer it. The ability of population genomics to address a hypothesis 408 

of interest with a given dataset is something that must be demonstrated, and this may be achieved 409 

by constructing a model composed of common biological and evolutionary processes, including 410 

the uncertainty in those underlying parameters, as well as the specific features of the dataset at 411 

hand. The variation in possible observational outcomes associated with a chosen baseline model, 412 

and the ability to distinguish an hypothesized additional evolutionary process from that 413 

'background noise', are both quantifiable. Furthermore, even if the model were to be correct, 414 

there exists a limit on the precision of estimation imposed by the evolutionary variance in 415 

population statistics that requires description, and which no amount of sampling can remove.  416 

 Demonstrating that multiple models, and/or considerable parameter space within a model, 417 

are compatible with the data need not be viewed as a negative or weak finding. Quite the 418 

contrary – the honest presentation of such results motivates future theoretical, experimental, and 419 

empirical developments and analyses that can further refine the list of competing hypotheses, and 420 

this article contains many citations that have succeeded in this vein. At the same time, this 421 

analysis can define which degrees of uncertainty are most damaging (e.g., Figures 3 and 4), also 422 
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highlighting the simple fact that organisms in which basic biological processes have been better 423 

characterized are amenable to a wider-range of potential evolutionary analyses. The impact of 424 

uncertainty in these parameters in non-model organisms may motivate taking a step back to first 425 

better characterize the basic biological processes such as mutation rates and spectra via mutation-426 

accumulation lines or pedigree studies, in order to improve resolution on the primary question of 427 

interest. 428 

 Importantly, the framework we describe will also generally identify many models and 429 

parameter realizations that are in fact inconsistent with the observed data. This 'ruling-out' 430 

process can often be just as useful as model-fitting, and rejecting possible hypotheses is 431 

frequently the more robust exercise of the two. The value of this narrowing down, rather than the 432 

enthusiastic promotion of individual scenarios, is worthy of heightened appreciation. 433 

Nevertheless, all models should not be viewed equally. Decades of work supporting the central 434 

tenets of the Neutral Theory (Jensen et al. 2019), high-quality experimental and computational 435 

work quantifying mutation rate and recombination rate (e.g., Lynch et al. 2008; Auton & 436 

McVean 2012; Comeron et al. 2012; Ness et al. 2015; Smith et al. 2018; Pfeifer 2020a), 437 

constantly improving experimental and theoretical approaches to quantify the neutral and 438 

deleterious DFE from natural population, mutation-accumulation, or directed mutagenesis data 439 

(e.g., Keightley & Eyre-Walker 2007; Bank et al. 2014b; Foll et al. 2014; Böndel et al. 2019; 440 

Johri et al. 2020), and often historical knowledge (e.g., anthropological, ecological, clinical) of 441 

population size change or structure – combined with the fact that all of these processes may 442 

strongly shape observed levels and patterns of variation and divergence – justify their status in 443 

comprising the appropriate baseline model for genomic analysis. Given this, and particularly 444 

once accounting for the inflation of variance contributed by uncertainty in these parameters, 445 
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potential model violations, as well as the quantity and quality of data available in any given 446 

analysis, it will often be the case that many hypotheses of interest may not be addressable with 447 

the dataset and knowledge at hand. However, recognizing that a question cannot be accurately 448 

answered, and defining the conditions under which it could become answerable, must be the 449 

preference over making unfounded and thus misleading claims. Consistent with this call for 450 

caution however, it should equally be emphasized that the fit of a baseline model to data is 451 

certainly not inherent evidence that the model encompasses all relevant processes shaping the 452 

population. In reality, it is virtually guaranteed not to be all-encompassing, and building these 453 

models involves simplifying more complex processes (for a helpful and more general 454 

perspective, see Gelman & Shalizi 2013). When an additional process on top of this model 455 

cannot be satisfactorily detected, that may rather be viewed as a statement about statistical 456 

identifiability – the inability to distinguish a hypothesized process from other processes that are 457 

known to be acting – and in such scenarios, absence of evidence need not be taken as evidence of 458 

absence. 459 

 While the many considerations described may appear daunting, it is our hope that this 460 

may serve as a useful roadmap for future data analyses in population genomics, one that may 461 

inform not only the perspectives of authors, but also that of reviewers and editors as well. 462 

Helpfully, these strategies can save considerable time, money, and effort prior to the start of 463 

empirical data handling, by determining which questions are accessible to the researcher. If a 464 

question is addressable, this preliminary analysis can additionally define what types of data are 465 

needed; for example, the number of variants or sample size necessary to obtain sufficient power, 466 

or how alternative data collections (e.g., temporal samples) could improve resolution. This 467 

further highlights the value of defining specific hypotheses and of studying specific patterns as 468 
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opposed to running a general suite of software on each new dataset in the hopes of identifying 469 

something of interest – namely, one cannot define power to address an unformulated question. 470 

Such hypothesis-driven population genomics has resulted in a number of success stories over the 471 

past decade; systems in which specific hypotheses were formed, data was collected for the 472 

purpose, detailed population genomic analyses were designed, and ultimately important insights 473 

were gained about the evolutionary history of the population in question (e.g., the study of 474 

cryptic coloration has proven particularly fruitful in this regard, Harris et al. 2020). One feature 475 

common amongst these studies is interdisciplinarity: the utilization of population genetic theory 476 

and inference as described here, combined with classical genetic crosses, large-scale field 477 

studies, and genetic manipulation in order to connect genotype to phenotype to fitness and to 478 

validate statistical inference. Importantly however, without the population genetic framework to 479 

define hypotheses, quantify processes contributing to observed variation and divergence, 480 

evaluate and distinguish amongst competing models, and define uncertainty and potential biases, 481 

these empirical observations alone remain merely descriptive.  482 

 483 

 484 

METHODS  485 

Both forward- and coalescent-simulations were performed (see below for details) for (1) the 486 

inference of demographic history using ABC assuming complete neutrality, (2) the inference of 487 

parameters of positive selection using ABC assuming constant population size, and (3) to obtain 488 

test datasets representing different evolutionary scenarios.  In all cases, a chromosomal segment 489 

of 99,012 bp was simulated with an intron-exon-intergenic structure resembling the D. 490 

melanogaster genome. Each gene comprised five exons (of 300 bp each) and four introns (of 100 491 
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bp each) separated by intergenic regions of length 1,068 bp. Such a construct resulted in a total 492 

of 33 genes across the simulated segment. Population parameters were chosen to resemble those 493 

from D. melanogaster populations following Campos et al. (2019), assuming an effective 494 

population size (Ne) of 10! individuals with a mean mutation rate (𝜇) of  4.5 × 10"# per bp/gen 495 

and a mean recombination rate (r) of 1 × 10"$  per bp/gen. For computational efficiency, all 496 

parameters were re-scaled by a factor of 200. 497 

 498 

Modeling and inference of demographic history  499 

A simple demographic history was modeled in which a single population undergoes an 500 

instantaneous change from an ancestral size (𝑁%&') to a current size (𝑁'()), 100 generations ago. 501 

Priors for both 𝑁%&' and 𝑁'() were sampled from a loguniform distribution between 10 and 502 

50,000, while priors for 𝜏 were sampled from a loguniform distribution between 10 and 𝑁'(). 503 

One hundred replicates were simulated for each parameter combination. Simulations required for 504 

ABC were performed in msprime v. 0.7.3 (Kelleher et al. 2016) assuming complete neutrality. 505 

Mutation and recombination rates were assumed to be constant across the genome and across 506 

replicates. 507 

 508 

Modeling and inference of positive selection 509 

A recurrent selective sweep scenario was modeled in which only neutral and beneficial 510 

mutations were assumed to be present, with simulations performed using SLiM v. 3.1 (Haller & 511 

Messer 2019). Introns and intergenic regions were assumed to be neutral, while exons 512 

experienced beneficial mutations with fitness effects sampled from an exponential distribution 513 

with mean 𝑠. The two parameters varied were the mean population-scaled strength of selection,  514 
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𝛾 = 2𝑁%&'𝑠, and the proportion of new beneficial mutations, 𝑓*+,. Priors for these parameters 515 

were sampled from a loguniform distribution such that 𝛾 ∈ [0.1, 10000] and 𝑓*+, ∈516 

[0.00001, 0.01]. For all parameter combinations, the true rate of beneficial substitutions per site 517 

(𝑑%) and the true fraction of substitutions due to beneficial mutations (𝜆, which is related to the 𝛼 518 

parameter of Eyre-Walker & Keightley) was calculated using the total number of fixations (as 519 

provided by SLiM), which was found to range from 0-0.85 depending on the underlying 520 

parameters. Parameter inference was performed for 𝛾 and 𝑑% and the corresponding 𝜆 was 521 

inferred using 𝜆 = -!
-!.((0"1"#$)×4×&(5	+1	78&8)%9:+&,)

, where it was assumed that 1 − 𝑓*+,~1. 522 

Populations were assumed to have a constant size and comprised of 5000 diploid individuals 523 

with constant mutation and recombination rates as specified above. Selection coefficients were 524 

re-scaled by the factor 200 and simulations were run for 100,100 generations (i.e., 20Ne + 100 525 

generations). 526 

 527 

ABC 528 

The sample size was set to 100 haploid genomes (or 50 diploid individuals). Under both 529 

demographic and selection models described above, all exonic regions were masked and the 530 

mean and variance (across replicates) of the following summary statistics were calculated: 531 

number of segregating sites, nucleotide site diversity (𝜋), Watterson’s theta (𝜃;), 𝜃<, 𝐻′, 532 

Tajima’s D, number of singletons, haplotype diversity, and statistics summarizing LD (𝑟=, 𝐷, 𝐷′). 533 

All statistics were calculated in non-overlapping sliding windows of 2 kb using pylibseq v. 0.2.3 534 

(Thornton 2003). ABC was performed using the R package “abc” v. 2.1 (Csilléry et al. 2012) 535 

using all summary statistics, with “neural net” to account for non-linearity between statistics and 536 
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parameters. A 100-fold cross-validation was used to identify the optimum tolerance level, which 537 

was found to be 0.05.  538 

 539 

Simulations of different evolutionary scenarios as 'true scenarios' 540 

To consider more biologically realistic models and evaluate model violations, a number of 541 

evolutionary scenarios were simulated (using SLiM) as follows: 542 

a) Background selection: Exons experienced deleterious mutations modeled by a discrete 543 

DFE comprised of four non-overlapping uniform distributions, representing the 544 

effectively neutral (−1 < 2𝑁%&'𝑠 ≤ 0), weakly deleterious (−10 < 2𝑁%&'𝑠 ≤ −1), 545 

moderately deleterious (−100 < 2𝑁%&'𝑠 ≤ −10), and strongly deleterious (2𝑁%&'𝑠 ≤546 

−100) classes of mutations. All four bins were assumed to contribute equally to new 547 

mutations (i.e., 25% of all new mutations belonged to each class of mutation). 548 

b) Positive selection: Exons experienced beneficial mutations with 𝛾 = 125 and	𝑓*+, =549 

2.2 × 10"> (modified from Campos & Charlesworth 2019), resulting in 𝜆~0.35.  550 

c) Population size change: A population decline was simulated such that the population 551 

declined from 5000 to 100 individuals instantaneously 100 generations ago. A population 552 

expansion was similarly simulated with parameters 𝑁%&' = 5000 and 𝑁'() = 10000. A 553 

population bottleneck model was also simulated such that 𝑁%&' = 𝑁'() = 5000 and a 554 

bottleneck occurred 2000 generations ago with a severity of 1% and a duration of 100 555 

generations. 556 

d) SNP ascertainment: Genotype error was modeled as an inability to detect the true number 557 

of singletons when using low-coverage population-genomic data to call variants (Han et 558 
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al. 2014). To account for this scenario, a random set of singletons, representing a third of 559 

all singletons present in the sample, were removed. 560 

e) Progeny skew: A skew in the offspring distribution was modeled as a 𝜓-coalescent 561 

(Eldon & Wakeley 2006; and see Matuszewski et al. 2018; Sackman et al. 2019), such 562 

that 5% and 10% of the population was replaced by the offspring of a single individual 563 

each generation. 564 

f) Variation in mutation and recombination rates across the genome (e.g., McVean et al. 565 

2004; Chan et al. 2012; Penalba & Wolf 2020): Every 10 kb of the ~100 kb genomic 566 

region considered was assumed to have a different mutation and recombination rate. For 567 

every simulated replicate, these rates were sampled from a Gaussian distribution with the 568 

same mean as above, and a standard deviation of 0.5×mean value. Negative values were 569 

truncated to 0. 570 

 571 

Posterior checks 572 

For the purposes of illustration, an example of posterior checks are provided in Figure 1 (i.e., 573 

showing a simple evaluation of the fit of the inferred posteriors under the incorrect models to 574 

the true scenarios under consideration). Specifically, the mean estimates of the inferred 575 

parameters were used to simulate the “best-fitting model” in SLiM v. 3.1 (Haller & Messer 576 

2019). Exons were masked and summary statistics were calculated as above in windows of 2 577 

kb using pylibseq v.0.2.3 (Thornton 2003). In order to simulate the inferred models of 578 

positive selection, 𝑓*+, was calculated from 𝜆 assuming a Wright-Fisher diploid population 579 

of size 𝑁 and a total mutation rate of 𝜇9+9 (which for our purpose is the same as 𝜇). Thus, 580 

𝜇? = 𝑓*+, × 𝜇9+9 and 𝜇&8( = (1 − 𝑓*+,) × 𝜇9+9 where 𝜇?	𝑎𝑛𝑑	𝜇&8( are the beneficial and 581 
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neutral mutation rates, respectively. Given a value of 𝜆, and assuming that the distribution of 582 

fitness effects of beneficial mutations is exponential (with mean �̅�), we calculate 𝑓*+, as 583 

follows: 584 

given that 585 

𝜆 =
#𝑜𝑓	𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙	𝑠𝑢𝑏𝑠

#𝑜𝑓	𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙	𝑠𝑢𝑏𝑠 + #𝑜𝑓	𝑛𝑒𝑢𝑡𝑟𝑎𝑙	𝑠𝑢𝑏𝑠															(1) 586 

 587 

where, 588 

#𝑜𝑓	𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙	𝑠𝑢𝑏𝑠 = 	𝑃1:@ 	× 𝐿	 × 2𝑁𝜇?													(2) 589 

and, 590 

#𝑜𝑓	𝑛𝑒𝑢𝑡𝑟𝑎𝑙	𝑠𝑢𝑏𝑠 = 	𝜇&8( × 𝐿																			(3) 591 

where 𝐿 is the length of the region being considered and 𝑃1:@ is the probability of fixation of 592 

beneficial mutations, such that 593 

𝑃1:@ =	U
(1 − 𝑒"@)
(1 − 𝑒"=A@) (	

𝑒"@ ,̅⁄

�̅� )𝑑𝑥
D

E
															(4) 594 

Substituting (2) and (3) in (1), and rearranging we get 595 

𝑓 = 	
𝜆

(1 − 𝜆)𝑃1:@2𝑁 + 	𝜆
													(5) 596 

 597 

Integrating (4) in R and substituting it in (5) gives us values of 𝑓.  598 

 599 

Statistics were calculated in non-overlapping windows of 2 kb and confidence intervals (CIs) 600 

were calculated as the 0.025 and 0.975 quantiles of the distribution of the statistics.  601 

 602 
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 955 
 956 
Box 1: Diagram of important considerations in constructing a baseline model for genomic 957 
analysis. Considerations related to mutation rate are coded in red, recombination rate in blue, 958 
demographic history in green, and the distribution of fitness effects in purple - as well as 959 
combinations thereof. Beginning from the top with the source of data collected, the arrows 960 
suggest a path that is needed to be considered. 961 
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 962 
Box 2: Diagram of important considerations in detecting selective sweeps. The color scheme 963 
matches that in Box 1, with 'selective sweeps' coded in orange. 964 
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 965 
 966 
 967 
Figure 1. Incorrect models may often readily be fit to a given dataset 968 
Here we present three scenarios varying from simple to more complex: the first row presents a 969 
constant-sized population experiencing background selection (denoted by 'Eqm + BGS'), the 970 
second row is the same scenario with the addition of recurrent selective sweeps (denoted by 971 
'Eqm +BGS + Pos'), and the final row adds a population bottleneck (denoted by 'Bottleneck + 972 
BGS + Pos'). For each scenario, the resulting site frequency spectra (SFS, truncated to n = 20) 973 
and linkage disequilibrium (r2) distributions are given, together with mean pairwise (𝜋) and 974 
haplotype diversity. To these simulated data we fit two incorrect models; one assuming all sites 975 
are neutral but including a change in population size (with the current size, ancestral size, and 976 
time of change being estimated from the data), and a second model in which there are recurrent 977 
selective sweeps, no change in population size, and all mutations are assumed to be neutral or 978 
beneficial (with a population-scaled beneficial selection coefficient (𝛾) and the fraction of 979 
beneficial substitutions (𝜆) being estimated from the data). For each inference panel, the red 980 
cross gives the true value, the distribution presents the joint-posterior obtained from the ABC 981 
analysis, and the summary statistics given above the posteriors represent the mean values, and 982 
the range from the 95% CIs, obtained from posterior checks. In all cases, exonic sites (i.e., 983 
directly selected sites) were masked, and the summary statistic calculations as well as inference 984 
is based only on neutral regions (see Methods). As shown, demographic and selection models 985 
can be fit to all datasets, often resulting in strong mis-inference when the assumptions underlying 986 
the estimation procedure are violated. 987 
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 991 
 992 

 993 
 994 
 995 
Figure 2. Ascertainment errors may amplify mis-inference, if not corrected 996 
As in Figure 1, the scenarios are given in the first column, here population growth with 997 
background selection and recurrent selective sweeps ('Growth + BGS + Pos'), as well as the same 998 
scenario in which the imperfections of the variant-calling processes are taken into account – in 999 
this case, one-third of singletons are not called ('Growth + BGS + Pos + Ascertainment'). The 1000 
middle columns present the resulting SFS and LD distributions, and the final panels provide the 1001 
joint posterior distributions when the data are fit to two incorrect models: a demographic model 1002 
that assumes strict neutrality, and a recurrent selective sweep model that assumes a constant 1003 
population size. All exonic (i.e., directly selected) sites were masked prior to analysis. Red 1004 
crosses indicate the true values. As shown, unaccounted for ascertainment may contribute to mis-1005 
inference. 1006 
 1007 
 1008 
 1009 
 1010 
 1011 
 1012 
 1013 
 1014 
 1015 
 1016 
 1017 
 1018 
 1019 
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 1020 
 1021 
 1022 
Figure 3. The impact of potential model violations can be quantified 1023 
As in Figures 1 and 2, the scenarios are given in the first column, here equilibrium population 1024 
size together with a moderate degree of progeny skew ('Eqm +  𝜓 = 0.05') as well as with a high 1025 
degree of progeny skew ('Eqm + 𝜓 = 0.1') (see Methods); the middle columns present the 1026 
resulting SFS and LD distributions, and the final panels provide the joint posterior distributions 1027 
when the data are fit to two incorrect models: a demographic model assuming neutrality, and a 1028 
recurrent selective sweep model assuming equilibrium population size. Red crosses indicate the 1029 
true values. As shown, this violation of Kingman coalescent assumptions can lead to drastic mis-1030 
inference, but the biases resulting from such potential model violations can readily be described. 1031 
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 1040 
 1041 
 1042 
Figure 4. The effects of not correcting for mutation and recombination rate heterogeneity  1043 
Three scenarios are here considered, equilibrium population size with background selection and 1044 
recurrent selective sweeps ('Eqm +BGS + Pos'), declining population size together with 1045 
background selection and recurrent selective sweeps ('Decline + BGS + Pos'), and growing 1046 
population size together with background selection and recurrent selective sweeps ('Growth + 1047 
BGS + Pos'). Inference is again made under an incorrect demographic model assuming 1048 
neutrality, as well as an incorrect recurrent selective sweep model assuming equilibrium 1049 
population size. However, within each category, inference is performed under two settings: 1050 
mutation and recombination rates are constant and known, and mutation and recombination rates 1051 
are variable across the region but assumed to be constant (see Methods). Red crosses indicate the 1052 
true values, and all exonic (i.e., directly selected) sites were masked prior to analysis. As shown, 1053 
neglecting mutation and recombination rate heterogeneity across the genomic region in question 1054 
can have an important impact on inference, particularly with regards to selection models. 1055 
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