Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Impact of protein conformational diversity on AlphaFold predictions

View ORCID ProfileTadeo Saldaño, View ORCID ProfileNahuel Escobedo, Julia Marchetti, View ORCID ProfileDiego Javier Zea, Juan Mac Donagh, Ana Julia Velez Rueda, Eduardo Gonik, Agustina García Melani, Julieta Novomisky Nechcoff, Martín N. Salas, Tomás Peters, Nicolás Demitroff, Sebastian Fernandez Alberti, Nicolas Palopoli, Maria Silvina Fornasari, Gustavo Parisi
doi: https://doi.org/10.1101/2021.10.27.466189
Tadeo Saldaño
1Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Tadeo Saldaño
Nahuel Escobedo
1Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nahuel Escobedo
Julia Marchetti
1Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Diego Javier Zea
5Independent researcher, 14 rue Léo Lagrange, 31400, Toulouse, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Diego Javier Zea
Juan Mac Donagh
1Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ana Julia Velez Rueda
1Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eduardo Gonik
4INIFTA (CONICET-UNLP) - Fotoquímica y Nanomateriales para el Ambiente y la Biología (nanoFOT), La Plata, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Agustina García Melani
3IMBICE (CONICET - UNLP). Laboratorio de Electrofisiología, La Plata, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julieta Novomisky Nechcoff
1Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martín N. Salas
1Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tomás Peters
2Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicolás Demitroff
2Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sebastian Fernandez Alberti
1Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicolas Palopoli
1Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maria Silvina Fornasari
1Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gustavo Parisi
1Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence. Here we address the performance of AlphaFold2 predictions under this ensemble paradigm. Using a curated collection of apo-holo conformations, we found that AlphaFold2 predicts the holo form of a protein in 70% of the cases, being unable to reproduce the observed conformational diversity with an equivalent error than in the estimation of a single conformation. More importantly, we found that AlphaFold2’s performance worsens with the increasing conformational diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity found between different members of the homologous family of the protein under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to ligand binding transitions.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • https://drive.google.com/file/d/1GR-9cS5qYiJ9Ws7zJJcNe2nKf2ftbby9/view?usp=sharing

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted October 28, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Impact of protein conformational diversity on AlphaFold predictions
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Impact of protein conformational diversity on AlphaFold predictions
Tadeo Saldaño, Nahuel Escobedo, Julia Marchetti, Diego Javier Zea, Juan Mac Donagh, Ana Julia Velez Rueda, Eduardo Gonik, Agustina García Melani, Julieta Novomisky Nechcoff, Martín N. Salas, Tomás Peters, Nicolás Demitroff, Sebastian Fernandez Alberti, Nicolas Palopoli, Maria Silvina Fornasari, Gustavo Parisi
bioRxiv 2021.10.27.466189; doi: https://doi.org/10.1101/2021.10.27.466189
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Impact of protein conformational diversity on AlphaFold predictions
Tadeo Saldaño, Nahuel Escobedo, Julia Marchetti, Diego Javier Zea, Juan Mac Donagh, Ana Julia Velez Rueda, Eduardo Gonik, Agustina García Melani, Julieta Novomisky Nechcoff, Martín N. Salas, Tomás Peters, Nicolás Demitroff, Sebastian Fernandez Alberti, Nicolas Palopoli, Maria Silvina Fornasari, Gustavo Parisi
bioRxiv 2021.10.27.466189; doi: https://doi.org/10.1101/2021.10.27.466189

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (6022)
  • Biochemistry (13704)
  • Bioengineering (10432)
  • Bioinformatics (33143)
  • Biophysics (17099)
  • Cancer Biology (14172)
  • Cell Biology (20106)
  • Clinical Trials (138)
  • Developmental Biology (10866)
  • Ecology (16011)
  • Epidemiology (2067)
  • Evolutionary Biology (20337)
  • Genetics (13393)
  • Genomics (18630)
  • Immunology (13746)
  • Microbiology (32163)
  • Molecular Biology (13386)
  • Neuroscience (70049)
  • Paleontology (526)
  • Pathology (2188)
  • Pharmacology and Toxicology (3741)
  • Physiology (5861)
  • Plant Biology (12020)
  • Scientific Communication and Education (1814)
  • Synthetic Biology (3367)
  • Systems Biology (8163)
  • Zoology (1841)