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Transcriptional pausing is highly regulated by the template DNA and nascent transcript se-
quences. Here, we propose a thermodynamic model of transcriptional pausing, based on the thermal
energy of transcription bubbles and nascent RNA structures, to describe the kinetics of the reaction
pathways between active translocation, intermediate, backtracked, and hairpin-stabilized pauses.
The model readily predicts experimentally detected pauses in high-resolution optical tweezers mea-
surements of transcription. Unlike other models, it also predicts the effect of tension and the GreA
transcription factor on pausing.

INTRODUCTION

During bacterial transcription there are frequent
pauses in the forward translocation of RNA polymerase.
Pauses have been observed widely in vivo and in vitro
and vary in durations from milliseconds to minutes [1, 2].
Long pauses, which may last tens of seconds, are clas-
sified as Class I ‘hairpin-stabilized’ and Class II ‘back-
tracked’ signals. Short pauses, which typically last less
than one second, are proposed to be intermediate pre-
cursors of long pauses [3]. Class I and Class II pauses
have been structurally characterized and mechanistically
explored [4, 5]. They are thought to be regulated by
the sequence of the DNA template, the structure of the
nascent transcript, and the availability of transcription
factors [6–8].

Previous models of the kinetics of back-tracked
pauses reproduces some types of experimentally detected
pauses [9–12] but fail to predict other types of pausing
and pause duration, and do not treat external tension
and transcription factors. Here, we propose a model
based on our current biochemical understanding of tran-
scription pausing mechanisms and train the model with
high-resolution transcription traces. The model success-
fully predicts the experimentally observed pause sites and
duration, and provide a mechanistic explanation to the
effect of external tension and transcription factors. The
model shows broad predictive power in RNAP elongation
and is readily extendable to incorporate the initiation and
termination stages.

MODEL DESCRIPTION

The energy of the ternary elongation complex (TEC)
is estimated as the sum of four contributions: the energy
of the (i) transcription bubble, (ii) DNA-nascent RNA
hybrid, (iii) nascent RNA, and (iv) RNAP binding:

GTEC = Gbubble +Ghybrid

+GRNA +GRNAP_binding.
(1)

This estimate of the energy of a TEC is mostly sequence-
dependent, as the first two terms are clearly sequence-
dependent, and the secondary structure of nascent RNA

(the third term) is also directed by sequence. The fourth
term corresponds to interactions be- tween the nucleic
acids and RNAP subunits and is considered sequence-
independent (taken to be zero here, as in Yager&von
Hippel, Tadigotla, and Bai) [9–11]. To determine the
configuration of a transcription bubble and the details of
the energy profile of a TEC, we used an approach based
on statistical mechanics, the basis of which was described
by Tadigotla [10] (SI).

The model considers two translocation states (n): the
active (0) and the backtracked state (-), plus one confor-
mational state: the hairpin-stabilized pause (hsp). The
hairpin-stabilized (Class I), the backtracked (Class II)
and the pre-translocated pauses are sequence-induced.
The interconnection among these states is shown in Sup-
plementary Figure 1b. The first two have been studied
extensively and their existence is supported by crystal-
lographic evidence, while the pre-translocated pause is a
theoretical prediction.

The active translocation of RNAP is modeled by the
Michaelis-Menten (M-M) equation

kforward =
kmax [NTP]

Keff
d + [NTP]

,

Keff
d = Kd (1 +Ki) ,

(2)

where kmax is the rate of NTP catalysis, Kd is the NTP
dissociation constant, and Ki is the equilibrium constant
between two adjacent translocation states. This is a good
approach, whether the translocational register of a TEC
is considered to be determined by the presence of incom-
ing NTP, as in the Brownian-ratchet model [13], or by
the release of pyrophosphate [14], as long as kmax and
Kd are given a different physical meaning in each case
(SI).

Backtracking was modeled using the ArrheniusEqua-
tion (3) with activation barrier up to 40 − 50 kBT for
each step of backward translocation [9]. This value may
be unreasonably high given that the free energy of base
pairing in a transcription bubble is typically less than
−20 kBT [10].

kbt = k1 exp (4Gbt/kBT ) (3)
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We take the same Arrhenius approach but treat the first
step of backtracking differently from the subsequent ones
(Supplementary Figure 1c), based on the assumption
that initially the 3’ end of the nascent transcript dis-
rupts the active site and invades the secondary channel
of RNAP [15] , while additional backtracking stabilizes
the interaction of RNA within the secondary channel.
The details are given in the SI.

Hypertranslocation, which refers to the forward
translocation of RNAP without concurrent RNA elon-
gation at the active site, is translocationally similar to
backtracking. However, we do not consider hypertranslo-
cation for two reasons. First, hypertranslocation may
not be a general phenomenon during transcription [16] ,
and it cannot be distinguished from backtracking in force
spectroscopy assays. Second, hypertranslocation is never
energetically favored, because there is less base-pairing
than in the active state.

We take an allosteric view when modeling the hairpin-
stabilized pause [4, 17]. The pathway is modeled as a
fast equilibrium between two configurational states, the
active state and an inactive state with an RNA hairpin
allosterically disrupting the active site through a hairpin-
flap interaction. The equilibrium is followed by a rate-
limiting catalytic step (Supplementary Figure 1d). The
equilibrium is considered rapid compared to the forma-
tion of chemical bonds that stabilize the inactive state.

A stable RNA hairpin structure can increase the en-
try rate into a hairpin-stabilized, inactive state and
significantly bias the equilibrium towards that paused
state. To correctly model the formation of the hairpin-
stabilized pause, we must evaluate the co-transcriptional
folding of nascent RNA. To this end, we rely on KINE-
FOLD algorithms [18], which provide a simulation of co-
transcriptional RNA folding at a constant RNA elonga-
tion rate. We also test the model with RNA folding gen-
erated by the lowest-energy method.

Since the experimental data we used to validate the
model were acquired under tension of magnitude up to
25pN, the effect of external tension on the thermody-
namics of TEC needs to be considered. For the forward
translocation and backtracking pathways, we employed
the idea that the energy barrier is modulated by the work
produced by tension [19]. The hairpin-stabilized pause
was assumed to be independent of any applied tension,
since it does not involve RNAP translocation.

It is important to notice that transcription is a pro-
cess that involves only very small numbers of reacting
molecules, thus the law of mass chemical reaction is not
suitable. Rather, we apply two stochastic kinetics meth-
ods: (i) continuous-time Markov chain and (ii) stochastic
simulation. The continuous-time Markov chain allows us
to analytically solve for the expected time spent in each
state at a certain position (SI). The stochastic simulation
sheds light on how individual pausing events unfold.

The model is encapsulated in a MATLAB class object,

which can generate a predicted residence time histogram
with the input of a template sequence and a guess of un-
known parameters. Thus, the model can be trained with
the real-time single molecule experimental results of bac-
terial transcription. We used the traces obtained in high-
resolution optical tweezers transcription experiments by
Gabizon et al. [20] without or with factors that are known
to interact with RNA and affect RNAP pausing, such as
GreB or RNase A. The transcription experiments were
performed on a DNA template (8XHis) containing the
T7A1 promoter followed by eight tandem repeats of a
239 bp sequence containing the his-leader pause site and
four other known sequence-dependent pause sites [1] .
The temporal resolution is high enough to detect paus-
ing events longer than ~100ms. This allows sampling of
the residence time at the one base-pair resolution. Align-
ment of the traces under different forces and transcription
factor conditions generates the residence time histogram
(Figure 1A) as described previously.

COMPARISON OF THE MODEL WITH
EXPERIMENTAL DATA

To test the validity of the model, we optimized the
values of the model parameters to yield a residence time
histogram that resembled the experimental one Figure 1.
Since the model includes many parameters, we avoided
overfitting when tuning the parameters(SI). Fortunately,
the experimental data under different factor conditions
could manifest the mechanisms of the pauses. Also, the
analysis of the backtracking dynamics helps differentiate
backtracked pauses from others. For example, pauses at
position “a” are likely due to pre-translocation in Figure 1
, since their duration is barely affected by the addition of
GreB. Pauses at position “b” are likely due to backtrack-
ing, as their duration responds to the presence of GreB,
and they are preceded by backward RNAP translocation,
as previous analysis suggests [20]. Pauses “d” and his are
hairpin-stabilized, as they almost disappear in the pres-
ence of RNase. The nature of pauses at “c” and at other
less significant sites are less clear because they respond
insignificantly to changes in experimental conditions.

The effect of tension is correctly modeled by introduc-
ing two different effective lengths ELf and ELbt for for-
ward and backtracking translocation, respectively. Fig-
ure 2 shows the comparison of the duration of pauses
at site “a” (pre-translocated pause), “b” (backtracked
pause), “d” and his under different values of tension. Our
model is clearly able to reproduce, therefore predict, the
lifetime of pauses observed experimentally. Notice that
the effective length for the forward translocation pathway
is shorter than 1 base pair, while the external force acts
on an effective length shorter than 0.1 bp during back-
tracking (Table S1). The fitted values of effective length
agree with previous work [13, 21] . These results indi-
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FIG. 1. Stacked histogram produced by the model for the
condition of opposing 7 pN. The residence time due to dif-
ferent pausing mechanisms is represented by different colors.
The experimental result is shown by the black line.

cate that opposing tension extends the duration of back-
tracked pauses mostly due to a decrease in transcription
rate. It also supports the idea that the entry into long-
lived pauses, such as backtracked pauses, follows entry in
short-lived pauses.

FIG. 2. Comparison between experimental result and model
prediction of the duration of pauses at different sites under
different force conditions.

Figure 3 shows the comparison of pause duration in the
presence or absence of transcriptional factors GreB and
RNAse. In general, the presence of GreB extends the
dwell time at these pause sites [20]. The model repro-
duces this effect by decreasing the forward translocation
rate (i.e., decrease kmaxand/or increase Kd). The pres-

FIG. 3. Comparison between the pause times obtained exper-
imentally and those predicted by the model under different
transcription factor conditions.

ence of RNase significantly decreases the dwell time at
sites “d” and his but has little effect on the duration of
pauses at other sites. The model can achieve this effect
by setting the energy of RNA secondary structure to zero.

To further test the validity of the model, we used
Monte Carlo simulations to generate a large number of
transcription traces, and we compared the dynamics of
backtracking in experimental and simulated traces. The
pauses at site “b” in simulated traces were analyzed for
backtrack depth and backtrack duration(Figure 4). The
clear agreement between simulated and experimental re-
sults lends further support to the model.

The power of the model is demonstrated by the fact
it accurately predicts major pauses in the transcription
of an unfamiliar 210 bp sequence. This sequence just
prior to the repeat region of the 8XHis template was not
included in the data used to optimize the model param-
eters. In Figure 5, significant pauses near 15, 40, and
130 bp shown in the dwell histogram acquired after align-
ing experimental transcription records (red, see methods)
were successfully predicted (blue).

STRENGTHS AND LIMITATIONS OF THE
MODEL

The model identifies pausing sites and correctly char-
acterizes the mechanism of transcription pausing. Note
that, the model identifies sites of slow forward transloca-
tion rates as pre-translocation pauses. In other reports,
these are often referred to as ubiquitous pauses. The
model also distinguishes the backtracked pause and the
hairpin-stabilized pause, which are typically viewed as
long-lived pauses.
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FIG. 4. Comparison between the backtracking dynamics in experimental and simulated traces . (A) Examples of simulated
traces generated by Monte Carlo simulation. (B) Distribution of backtrack depth observed experimentally and predicted by
the model. (C) Distribution of backtrack duration observed in the experiments and predicted by the model.

FIG. 5. Comparison of the dwelltime histogram of experi-
mental data and model predictions.

Our results support a previous theoretical analysis
of transcriptional pauses which suggests that a long-
lived pause is stabilized from a short-lived ubiquitous
pause [3]. For example, at pause site “b”, backtrack-
ing is favored over forward translocation because of the
low forward translocation rate. Indeed, the energetic pa-
rameters of the model would predict comparable back-
tracking rates at the 35 bp site (pause “b”) and at the
160 bp site, but the fast forward translocation rate at
the 160 bp site opposes backtracking. Using the canoni-
cal Michaelis-Menten expression, we determined that the
forward translocation rate along the template varies from
less than 3 nt/s to 50 nt/s. This implies that a slowly
transcribing complex may enter into a long-lived pause at
one site, even if the back-tracking energy barrier at this
position is higher than the barrier height at a position
where transcription is faster.

The model predicts that the effective length of force
is about half bp for forward translocation pathway, but

less than 0.1 bp for the backtracking pathway. This re-
sult suggests that external forces insignificantly affect the
back-tracking rate. During backtracking RNAP must
ratchet backwards on the DNA and disrupt the RNA-
DNA hybrid near the active site. The rate is determined
in large measure by the denaturation of the hybrid com-
plex. Thus, external forces cannot alter this process as
much as biasing the equilibrium constant in the forward
translocation pathway. This result further supports that
backtracked pausing is favored by slow forward translo-
cation.

The hairpin-stabilized pause requires the interaction
between a transcript hairpin and the RNAP flap do-
main. Previous models simulated the folding of nascent
transcripts using the lowest-energy method [10, 13, 22].
However, that method cannot locate the correct posi-
tions of hair- pins. In our sequence, the lowest energy
model predicts strong hairpins with optimal stem lengths
at positions 27 and 101. However, the experimental
data do not suggest the existence of hairpin-stabilized
pauses at these positions. Alternatively, we used the co-
transcriptionally folded RNA structure in which a new
nucleotide is added every 40 ms. In this case, hair-
pins at position 27 and 101 are unlikely to interact with
RNAP, because they are not likely to form before RNAP
has past these positions. Instead, hairpins form quickly
at positions 86 and 136, which correspond to pauses at
sites “d” and his, respectively. Clearly, considering co-
transcriptional folding of nascent RNA leads to more ac-
curate prediction of hairpin-stabilized pauses.

The model shows promise in predicting the tran-
scriptional kinetics at pause sites “a”, “b”, “d” and his.
Nonetheless, the current model cannot characterize the
pauses observed at site “c” and at other less significant
sites. The duration of the pause at site “c” is largely un-
affected by the addition of either GreB or RNase, sug-
gesting a mechanism besides backtracking or hairpin-
stabilized pausing. that is not captured in the current
model. Alternatively, such a pause might result from
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misalignments when processing the experimental traces.

COMPARISON WITH OTHER MODELS

In recent decades, many attempts have been made to
model the kinetics of transcription. Bai et al., Tadig-
otla et al. and others independently proposed models in
which the kinetic of transcription is treated as a com-
petition between the active transcription pathway and
a branched pathway [9, 10, 12, 13, 22]. Although their
models yield results in statistical agreement with exper-
imental results, the predicted pauses differ from those
observed in single-molecule measurements. In addition,
previous models mostly focus on short ubiquitous and
Class II backtracked pauses, without considering Class I,
hairpin-stabilized pauses and the effects of tension and
transcription factors.

The model described in this report drives the kinet-
ics of transcription from a competition between one ac-
tive and two branched pathways, and the details of the
pathways differ from previous efforts. For example, back-
tracking is treated as a two-step mechanism in which the
first step backwards must overcome a higher energy bar-
rier than the successive steps. Unlike earlier models, the
kinetics of Class I pauses are also included. By fitting
specific kinetic parameters under specific experiment con-
ditions, the resulting model achieves not only statistical
agreement with experimental results, but reveals quan-
titative, detail regarding the effects of DNA sequences,
applied tension, and transcription factors.

CONCLUSION AND OUTLOOK

The success of the model indicates that a thermo-
dynamic consideration of the transcription complex can
faithfully describe transcription kinetics. By incorporat-
ing both Class I and Class II pauses, the model refines our
current understanding of active pathway and branched
pathways in transcription and can be used to predict the
occurrence of Class I and II pauses that regulate tran-
scription.

Further improvements in our biochemical understand-
ing of transcriptional pauses, in the quality of experimen-
tal data, and in the model itself, will likely improve its
predictive power. For example, the model might predict
the pause at site “c” if the mechanism of this pause is
determined and incorporated. Longer spans of high res-
olution observations of transcription would also improve
optimization of the model and the accuracy of predic-
tions.
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