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Abstract 
 

It is well attested that people predict forthcoming information during language 

comprehension. The literature presents different proposals on how this ability could be 

implemented. Here, we tested the hypothesis according to which language production 

mechanisms have a role in such predictive processing. To this aim, we studied two 

electroencephalographic correlates of predictability during speech comprehension ‒ pre-

target alpha‒beta (8-30 Hz) power decrease and the post-target N400 event-related 

potential (ERP) effect, ‒ in a population with impaired speech-motor control, i.e., adults 

who stutter (AWS), compared to typically fluent adults (TFA). Participants listened to 

sentences that could either constrain towards a target word or not, allowing or not to 

make predictions. We analyzed time-frequency modulations in a silent interval preceding 

the target and ERPs at the presentation of the target. Results showed that, compared to 

TFA, AWS display: i) a widespread and bilateral reduced power decrease in posterior 

temporal and parietal regions, and a power increase in anterior regions, especially in the 

left hemisphere (high vs. low constraining) and ii) a reduced N400 effect (non-predictable 

vs. predictable). The results suggest a reduced efficiency in generating predictions in 

AWS with respect to TFA. Additionally, the magnitude of the N400 effect in AWS is 

correlated with alpha power change in the right pre-motor and supplementary motor 

cortex, a key node in the dysfunctional network in stuttering. Overall, the results support 

the idea that processes and neural structures prominently devoted to speech planning 

and execution support prediction during language comprehension. 

 

 

Significance Statement 
 

The study contributes to the developing enterprise of investigating language production 

and comprehension not as separate systems, but as sets of processes which may be partly 

shared. We showed that a population with impaired speech-motor control, i.e., adults 

who stutter, are characterized by atypical electrophysiological patterns associated with 

prediction in speech comprehension. The results highlight that an underlying atypical 

function of neural structures supporting speech production also affects processes deployed 

during auditory comprehension. The implications are twofold: on the theoretical side, the 

study supports the need for a more integrated view of language comprehension and 

production as human capabilities, while on the applied and clinical side, these results 

might open new venues for efficient treatments of developmental stuttering. 

 

 

Keywords: Language prediction; Speech production; Persistent developmental 

stuttering; Electroencephalography 
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Introduction 
 

Traditionally, research on human language has tackled production and comprehension as 

separate systems, occasionally interacting with each other but fundamentally distinct 

(Pickering & Garrod, 2013). This separation was mainly supported by research in classic 

aphasiology, showing asymmetries in understanding, producing, and repeating words and 

sentences in brain-lesioned patients (Shalom & Poeppel, 2008), and research on language 

acquisition, showing asymmetries in the developmental trajectories of comprehension and 

production skills in children (Clark & Hecht, 1983; Hendriks & Koster, 2010). However, 

these asymmetries may not necessarily reflect the separation between two distinct 

systems (Keenan, 1968; Tremblay & Dick, 2016; Chater, McCauley, & Christiansen, 

2016). Furthermore, a growing body of research shows that the neural substrates 

underlying comprehension and production largely overlap (AbdulSabur et al., 2014; 

Giglio et al., 2021; Lukic et al., 2020; Silbert et al., 2014; Walenski et al., 2019), 

supporting the view that comprehension and production draw from processes and 

representations that are at least partially shared (Chater et al., 2016; Dell & Chang, 

2014; Fairs et al., 2021; Gambi & Pickering, 2017; McQueen & Meyer, 2019; Pickering & 

Garrod, 2013). 

 In this study we focused on one aspect that is central to many integrated 

approaches, i.e., prediction. Language comprehension is the result of both bottom-up and 

top-down processes. Comprehenders not only incrementally integrate incoming 

information but also actively predict (i.e., pre-activate) different features of what they 

are likely to encounter by exploiting multiple cues and pieces of information (Kuperberg 

& Jaeger, 2016). Many researchers – albeit with partially different approaches – proposed 

that prediction processes during comprehension are linked to processes and 

representations traditionally attributed to language production (Christiansen & Chater, 

2016; Dell & Chang, 2014; Huettig, 2015; Molinaro et al., 2016; Pickering & Gambi, 2018; 

Pickering & Garrod, 2013). One such proposal (Pickering & Garrod, 2013) assumes that 

prediction is based on covert simulation: motor-to-sensory forward models used to 

monitor one’s own speech during production (Hickok et al., 2011; Tourville & Guenther, 

2011) would also be implemented during comprehension, to predict forthcoming 

information.  

 A straightforward way to test whether predicting others’ speech relies on running 

a simulation through our own production machinery is offered by the investigation of 

prediction in people with impaired speech planning and execution. People who stutter 

(PWS)1 represent a suitable population for this aim. Developmental stuttering (DS) is a 

multifactorial disorder characterized by disruption of the normal speech flow, resulting 

in blocks, pauses, repetitions, and prolongations of speech sounds. Although multiple 

factors contribute to stuttering and the exact etiology remains elusive, core deficits have 

been linked to dysfunctions in neural structures devoted to the planning, timing, and 

execution of speech-motor sequences. Compared to typically developed speakers, PWS 

show aberrant morphology and function of cortical regions such as the primary 

 

1 In the literature, PWS is used to refer to both adults and children who stutter (AWS and CWS, 

respectively) indistinctively. The appropriate acronyms are used accordingly throughout the 

manuscript. 
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sensorimotor areas, the supplementary motor area (SMA) and the pre-SMA, the inferior 

frontal gyrus, temporo-parietal areas, the basal ganglia and the cerebellum (Alm, 2004; 

Busan, 2020; Chang et al., 2019; Etchell et al., 2018). Investigations on white matter 

structure further support this picture, revealing that, with respect to controls, PWS show 

atypicalities in speech-motor pathways (Etchell et al., 2018; Kronfeld-Duenias et al., 

2016a, 2016b, 2018; Neef et al., 2021).  

 Neurocomputational models of speech production, such as the DIVA/GODIVA 

(Bohland et al., 2010; Guenther, 2016; Tourville & Guenther, 2011) and the HSFC 

(Hickok, 2012; Hickok et al., 2011) models, provided theoretical ground for the 

interpretation of these findings. Despite differing with respect to some architectural 

aspects, both frameworks stress the relevance of sensorimotor integration for planning 

and producing speech (for a discussion and comparison, see Guenther & Hickok, 2015). 

In both frameworks, motor plans are employed to predict auditory (and somatosensory) 

consequences, and these pieces of information are integrated  in order to obtain efficient 

speech production. In this context, DS has been proposed to be caused by impaired 

feedforward processing of speech-motor plans (Chang & Guenther, 2020; Civier et al., 

2013), as well as by inefficient motor-to-sensory predictions (Hickok et al., 2011; Max et 

al., 2004) and/or by an overreliance on the feedback control system (again, as a 

consequence of an inefficient and more inhibited feedforward system) (Civier et al., 2010; 

Max et al., 2004).  

 The investigation of speech planning with techniques that enable a high temporal 

resolution provided compelling evidence in support of this picture. In particular, by 

decomposing the electro-/magnetoencephalographic signal, it is possible to observe how 

the power of different frequency bands is modulated over time as a function of cognitive, 

sensory, and motor processing. Of particular interest in this context are the alpha (8-12 

Hz) and beta (13-30 Hz) frequency bands. In people without speech production deficits, 

a power decrease in these frequency bands is found during speech planning and execution. 

This power decrease is thought to reflect the engagement of regions associated with 

memory and motor processes for language and speech production (Piai & Zheng, 2019; 

Saltuklaroglu et al., 2018). In the case of DS, these frequencies have been shown to be 

abnormally modulated – especially in motor and premotor associative regions – in syllable 

and word production tasks, indexing inefficient motor-to-sensory transformation and 

reduced coordination in engaging cortical regions devoted to speech production (Jenson 

et al., 2018; Joos et al., 2014; Mersov et al., 2016; Mock et al., 2016). 

 Given impaired speech-motor control in DS, if speech planning and motor-to-

sensory forward modeling contribute to prediction during speech comprehension (Garrod 

et al., 2014; Pickering & Garrod, 2013), then it can be suggested that PWS would show 

impaired/atypical prediction processes during comprehension. In the present study we 

tested this hypothesis. To this end, we focused on two electrophysiological correlates of 

predictability, namely the pre-target alpha‒beta power decrease and the post-target N400 

event-related potential (ERP) effect. 

 In non-clinical populations, alpha and beta power decreases before predictable 

with respect to unpredictable (but still plausible) words have been observed during 

written and auditory language comprehension (Armeni et al., 2019; Gastaldon et al., 

2020; Molinaro & Monsalve, 2018; Rommers et al., 2017; Wang et al., 2018). Given the 

modulation in the same direction of the same frequency bands for language production, 
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some researchers suggested that these power decreases may underlie at least partially 

common processes for predicting and producing language (Molinaro et al., 2016). A recent 

study investigating oscillatory modulations in auditory language prediction and in 

context-induced word production provided the first clear evidence in such direction. 

Gastaldon et al. (2020) showed that the pre-target power modulations associated to 

predictability in the two tasks are positively correlated in left-lateralized language areas, 

with stronger correlations in frontal regions, more prominently involved in spoken word 

production. Critically, these frontal regions are implicated in impaired speech planning 

and inefficient timing of speech sequence initiation in DS (Etchell et al., 2018). To the 

best of our knowledge, no study has investigated oscillatory modulations in language 

comprehension in PWS. The present study will fill this gap in the literature. Instead, 

differences between fluent speakers and PWS have been reported in ERP studies 

investigating the N400 response to semantic violations during comprehension. Typically, 

anomalous words embedded in a sentence elicit a stronger negative-going deflection 

relative to regular words in centro-parietal electrodes after 300-500 ms from word 

presentation. For instance, Murase et al. (2016) and Weber-Fox (2001) found a reduced 

N400 effect in response to written semantic violations in PWS relative to controls. The 

authors interpreted these results as an index of impaired semantic integration (but see 

Weber-Fox & Hampton, 2008, for a failure to detect an effect in the auditory modality). 

The N400 effect is also elicited when contrasting the same word embedded in neutral vs. 

constraining sentences (i.e., non-predictable vs. predictable words), making the N400 a 

strong EPR marker of facilitatory predictive processing (Hodapp & Rabovsky, 2021; 

Kuperberg et al., 2020; Kutas & Federmeier, 2011; Nicenboim et al., 2020; Nieuwland et 

al., 2020; Urbach et al., 2020). No previous study tested whether the N400 response in 

PWS is altered by employing non-anomalous non-predictable vs. predictable words. 

Providing such evidence is a further aim of the present study. 

 In the experiment, adults who stutter (AWS) and typically fluent adults (TFA) 

performed a sentence comprehension task, in which the predictability of the final word 

was manipulated by the preceding sentential context. Participants listened to a sentence 

frame and then, after a silent interval of 800 ms, they listened to the target word. 

Sentence frames could be highly (HC) o low constraining (LC), thus making the target 

predictable or non-predictable, respectively. Oscillatory activity has been analyzed in the 

silent interval between the sentence frame and the target. ERPs have been computed at 

the onset of the target word, analyzing the N400 time-window (300-500 ms post-target) 

(see Figure 1). If DS affects the efficiency of predicting during auditory language 

comprehension, we expected AWS to show a reduced alpha‒beta power decrease before 

the critical target word and a reduced N400 effect, relative to TFA.  
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Figure 1 | Task structure and analyses of interest 

 

 

Materials and Methods 
 

Participants 

Sample size was not determined prior to data collection. Participant recruitment in 

stuttering research, as with other special populations for disorders at low prevalence, is 

inherently sub-optimal (Jones et al., 2002). Given the higher incidence of PDS in males 

(Smith & Weber, 2017), we chose to recruit males only in order to have a more 

homogeneous sample. This was also justified by research showing sex differences in neural 

responses, that may be the consequence of intrinsic sex-related characteristics, as well as 

the different effects of adaptation to PDS or the consolidation of fluency-inducing 

strategies (Busan et al., 2013; Fox et al., 2000). As a consequence, the final sample 

included 14 right-handed male adults who stutter (AWS), recruited on a voluntary basis 

(mean age = 33.29 years, sd = 9.06; handedness evaluated by means of the Edinburgh 

Handedness Questionnaire, Oldfield, 1971; mean laterality index = 81.07, sd = 22.38). 

To be included in the study, AWS either had been diagnosed from a speech pathologist 

or clearly exhibited overt stuttered speech, with reported idiopathic stuttering starting 

during childhood. For the control group (typically fluent adults, TFA), the data for 9 

male participants collected for Gastaldon et al. (2020) was pooled with newly collected 

data from 5 male participants recruited on a voluntary basis, for a total of 14 age- and 

handedness-matched male adult controls (mean age = 31.79 years, sd = 9.22; mean 

laterality index = 83.93, sd = 13.33). These participants were all fluent speakers, with 

no history of DS or other developmental disorders. All participants were native speakers 

of Italian. The two groups did not significantly differ for age (t = 0.434, df = 25.992, p 

= 0.668) or handedness (t = -0.411, df = 21.192, p = 0.686). History of psychiatric or 

neurological disorders, diagnosis of language or cognitive deficits, and ongoing or recent 

use of medications that could influence the functioning of the central nervous system 

were part of the exclusion criteria for both groups. All participants signed an informed 

consent prior to the session and were offered a compensation of 15€ for taking part to 

the study. The study was conducted in accordance with the Declaration of Helsinki and 

was approved by the Ethics Committee for Psychological Research of the University of 

Padova (protocol n. 3073). 
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Stimuli 

The stimuli are the same as employed in Gastaldon et al. (2020). One hundred twenty-

eight nouns associated to concrete concepts were selected and associated to corresponding 

black-and-white line pictures (size: 240 x 240 pixels). A scrambled version was generated 

for each picture, so that the referent was not recognizable. Each noun was associated to 

two sentence frames, one whose semantic content allows to easily predict the target word 

(high constrain, HC; cloze probability mean = 0.873, sd = 0.092) and one for which it is 

not possible to predict the target, despite still being a plausible conclusion to the sentence 

frame (low constraint, LC; cloze probability mean = 0.052, sd = 0.078). The total set 

resulted in 256 sentence frames (128 HC, 128 LC). The sentence frames for each target 

word were matched for number of syllables, were kept similar in their syntactic structure, 

and had the same final word. Sentence frames and target words were recorded separately 

by a female native speaker in a quiet room using a microphone connected to a PC and 

using the software Audacity (sampling rate of 44.1 KHz). The speaker was instructed to 

keep the reading pace as steady as possible and to keep a constant distance from the 

microphone. Recordings were then appropriately trimmed at the beginning and at the 

end using Audacity. The approximate number of syllables per second for each sentence 

frame, assuming a constant pace, was estimated as the number of syllables of the sentence 

divided by the length of each audio file. This measure was used to ensure a similar pacing 

across conditions. Target words and their associated sentence frames were then divided 

into two lists, A and B, each containing 64 target words and the associated 128 sentence 

frames and matched for a number of variables. Importantly, there were no significant 

differences of CP values within HC and LC conditions between the two lists (i.e., they 

elicited the same level of constraint) (please, refer to the Supplementary Material for all 

aspects of stimuli matching). 

 

Stuttering severity evaluation 

The Stuttering Severity Instrument-4 (SSI-4; Riley, 2009) was used to evaluate stuttering 

severity in AWS. Before the experiment, participants were asked to 1) read a brief 

passage (394 syllables) and 2) spontaneously talk about a topic of their choice (hobby, 

school, work etc.). Participants were audio- and video-recorded during this session. The 

recordings were then inspected by a psychologist with experience in stuttering evaluation 

(G.N.) and checked by one of the authors (P.B.), to evaluate the percentage of stuttered 

syllables, the longest block durations, and face and limb movements associated with 

dysfluencies, in both tasks. Subsequently, a total score was assigned to each participant 

(SSI-4 score henceforth).  

 

Procedure 

Participants sit in a soundproof room. Stimuli were delivered with E-Prime 2.0 

(Psychology Software Tools, Pittsburgh, PA) on a computer with a CRT monitor and 

built-in speakers. The same paradigm was used in two sessions, one with a comprehension 

task and one with a production task. After listening to the sentence frame, in the 

comprehension task participants listened to the final target word, while in the production 

task they named a picture appearing on the screen to complete the sentence frame (see 

Gastaldon et al., 2020). Participants performed the two tasks in separate blocks. Task-

specific instructions were given before each block. For each participant, the two stimuli 
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lists (A and B) were assigned to the tasks, resulting in a 2×2 design. Task order and list-

task association were counterbalanced across participants. Here we focus on the 

comprehension task (see Figure 1); the results of the production task are reported in the 

Supplementary Material. 

 After a fixation cross (800 ms), the auditory sentence frame was presented, while 

still displaying a fixation cross. At the end of the frame, a silent gap of 800 ms was 

introduced before the auditory target word was presented (concomitantly with a 

scrambled picture of the referent). The scrambled picture was introduced to keep 

consistency with the production task (i.e., to have a visual stimulus in both tasks; see 

Supplementary Material). To ensure that participants engaged in the task, 20% of the 

trials included a true/false judgement about the sentence, presented as a written 

statement on the screen after the target. Participants were asked to answer true/false by 

means of vocal response, recorded by means of a microphone positioned at approximately 

50 cm from the participant. Inter-trial interval consisted in a blank screen presented at 

varying intervals (1.5, 1.8 and 2 seconds). Trial order was pseudo-randomized for each 

participant by using Mix (van Casteren & Davis, 2006). The same condition was not 

repeated for more than three times consecutively, and between the first and the second 

presentation of the same target there were at least 7 trials. Every 32 trials, participants 

could take a pause. A familiarization phase was carried out before the task (8 trials, no 

stimuli were presented in the subsequent experiment). The task lasted approximately 20 

minutes.  

 

EEG recording and pre-processing 

Electroencephalogram (EEG) was recorded with 64 active Ag/AgCl electrodes system 

(ActiCap, Brain Products) with a 10-20 placement convention. Sixty electrodes were used 

as active electrodes (Fp1, Fp2, AF3, AF4, AF7, AF8, F1, F2, F3, F4, F5, F6, F7, F8, 

Fz, FT7, FT8, F1, F2, F3, F4, F5, F6, Fz, FC1, FC2, FC3, FC4, FC5, FC6, T7, T8, C1, 

C2, C3, C4, C5, C6, Cz, TP7, TP8, CP, CP2, CP3, CP4, CP5, CP6, CPz, P1, P2, P3, 

P4, P5, P6, P7, P8, PO3, PO4, PO7, PO8, PO9, PO10 POz, O1, O2, Oz), while 3 were 

used to record blinks and saccades (external canthi and below the left eye). Reference 

was placed at the left earlobe. Impedance was kept below 10 kΩ throughout the 

experiment. The signal was amplified and digitized at a sampling rate of 1000 Hz. Each 

task was recorded separately. All pre-processing steps were performed using the 

MATLAB toolbox Brainstorm (Tadel et al., 2011). A high-pass filter at 0.5 Hz with 60 

dB attenuation was applied to the raw data. Noisy or flat channels were excluded (max 

2 channels per participant). No interpolation of excluded channels was performed. 

Segments with extreme muscle artifacts were excluded. Subsequently, Independent 

Component Analyses (ICA) with 60 components was computed on the continuous 

recordings to detect and remove artifact components with known time-series and 

topographies (blinks, saccades, and power-line noise at 50 Hz). If any channels were 

removed from the analyses due to excessive noise, the number of components for the ICA 

was reduced to the number of available channels. Markers for incorrect responses were 

manually added to the continuous EEG recording according to the off-line evaluation of 

the audio files. Epochs were imported around three event-markers: (a) the onset of the 

first fixation cross (from -1.5 to 1.5 s), and (b) the onset of the 800 ms gap between 

sentence frame and target (from -1.5 to 1.5 s), and (c) the onset of the auditory target 
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word (from -0.3 to 1 s, baseline corrected in the inverval -300 to 0 ms). Epochs (a-b) were 

employed for time-frequency analyses, while (c) for ERP analyses. While epochs (b) were 

divided into HC and LC conditions, epochs (a) were used as a condition-average baseline 

for the normalization of epochs (b). All epochs were visually inspected, and those with 

artifacts (uncorrected blinks/saccades, muscle activity, channel drifts, transient electrode 

displacements) were rejected. Additionally, trials that were associated to an incorrect 

response to the true/false judgement were discarded from the analyses. The mean 

percentage of epochs retained for each group are the following: AWS: baseline: 91.9%%, 

intervalHC: 91%, intervalLC: 89.7%, targetHC: 88.8%, targetLC: 86.4%; TFA: baseline: 

88.8%%, intervalHC: 90%, intervalLC: 87.7%, targetHC: 89.5%, targetLC: 87.5% 

 

Source estimation and ROI definition 

To perform source analysis, the head model was built using OpenMEEG BEM (Boundary 

Element Method) with 8002 vertices as forward solution (Gramfort et al., 2010) and 

ICBM152 as template anatomy. A noise covariance matrix, providing a specification of 

channel noise, was computed by taking the baseline epochs in the time-window [-550 -

250] ms. The head model and the noise covariance matrix were used for the Minimum 

Norm Imaging (NMI) with the sLORETA (Standardized Low Resolution Brain 

Electromagnetic Tomography; Pascual-Marqui et al., 1994) as inverse solution. Given the 

lack of individual anatomy scans, the dipole orientation was set to be unconstrained. 

 Subsequently, we defined regions of interest (ROIs) by generating a custom atlas 

starting from the Desikan-Killiany atlas (Desikan et al., 2006) as implemented in 

Brainstorm (see Table S1 and Figure S1 for ROI definition and the projection on the 

cortex). ROIs were defined by taking into consideration the literature on the neural bases 

of developmental stuttering and on linguistic processing (see references in the 

Introduction). Time-series at the ROI level were extracted by using Principal Component 

Analysis (PCA) and selecting the first component, as implemented in Brainstorm. These 

time-series were then the input for the time-frequency decomposition. 

 

Time-frequency decomposition and analyses 

Time-frequency decomposition was performed both at the sensor- and the ROI source-

level by using the Morlet wavelet implementation in Brainstorm. The decomposition was 

performed for each trial in the range 8-30 Hz, with a linear step of 1 Hz, by generating 

wavelets from a mother wavelet with central frequency = 1 and FWHM = 3. After 

obtaining the average time-frequency maps of each condition (baseline, HC, and LC) for 

each participant, the HC and LC conditions were normalized against the baseline, 

specifically in the pre-trial interval from -550 to -250 ms. The normalization method was 

the event-related synchronization/desynchronization (ERSD), which yields the %-power 

change relative to the baseline. 

 Due to the small sample size and to the contrasts between groups leading to lower 

statistical power, we performed both corrected (cluster-based permutations, Maris & 

Oostenveld, 2007; number of Monte Carlo simulations = 1000) and uncorrected t-tests. 

All contrasts for time-frequency power modulations focused on the 800 ms silent time-

window between the sentence frame and the target. When contrasting the HC and LC 

conditions within each group, one-tailed paired t-tests were performed (H0: HC ≥ LC, 

H1: HC < LC; α-level = 0.05). This choice was guided by previous literature that 
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consistently showed a desynchronization in the alpha and beta bands pre-target 

associated to predictability (Gastaldon et al., 2020; Molinaro & Monsalve, 2018; Rommers 

et al., 2017; Wang et al., 2018). In this way, the research hypothesis is appropriately 

translated into a statistical hypothesis (Cho & Abe, 2013). To compare the predictability 

effects between groups in the two tasks and in absence of no previous studies contrasting 

the two populations, we contrasted the effects (i.e., the differences between conditions, 

∆%power-change from now on) between AWS and TFA by means of independent two-

tailed t-tests (H0: HC = LC, H1: HC ≠ LC; α-level = 0.05). When testing at the sensor-

level, the minimum number of neighboring channels was set to 2, whereas when testing 

at the ROI level, the parameter was set to 0. This is due to the fact that, while at sensor 

level the activity of one sensor is affected by the activity from neighboring sensors, the 

components identified by the PCA at source level should be treated separately. 
 

Event-realated potential analyses 

After pre-processing, all retained epochs were averaged separately by condition, and a 

low-pass filter at 40 Hz (60 dB attenuation) was applied to the average. Cluster-based 

permutations on the 300‒500 ms interval typical of the N400 component were performed 

to test the difference between non-predictable and predictable words, corresponding to 

LC and HC sentence frames respectively, within each group (paired one-tailed t-tests; 

H0: LC ≥ HC, H1: LC < HC; α-level = 0.05; number of Monte Carlo simulations = 2000; 

minimum number of neighboring channels = 2). A cluster-based permutation was 

performed on the differentials (non-predictable – predictable, ‘N400’ for simplicity) 

between the AWS and the TFA group on the same time-window to test for an interaction. 

Given our research hypothesis and results from previous research, we employed an 

independent one-tailed t-test (H0: N400AWS ≤ N400TFA, H1: N400AWS > N400TFA; α-level 

= 0.05; 2000 Monte Carlo simulations; minimum number of neighboring channels = 2). 

 

Correlations 

Pearson’s correlations were performed to better understand the relation between power 

modulations, ERP responses, and behavioral measures. Power changes in each ROI were 

averaged across the 800 ms pre-target time-window in a priori frequency ranges (alpha: 

8-12 Hz; beta1: 12-20 Hz; beta3: 20-30 Hz), and correlated with the mean amplitude of 

the N400 effect (calculated in the 300-500 ms time-window across centro-parietal sensors 

where the N400 effect is typically evident (CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2, 

P4, PO3, POz, PO4), and, for the AWS group only, with the SSI-4 values. 

 

 

Results 
 

Statistical contrasts of time-frequency data within (∆ = HC vs. LC) and between groups 

(∆AWS vs. ∆TFA) at the sensor level are shown in Figure 2. For the source-level, between 

group contrasts are shown in Figure 3 (for sake of simplicity, within-group contrasts are 

reported in Figures S2 and S3). As specified in the Methods section, we performed both 

cluster-corrected and uncorrected t-tests; only the latter analysis yielded statistically 

significant results. 
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 At the sensor level, while TFA display a clear power decrease before predictable 

(HC) relative to non-predictable (LC) words, especially in the beta range, this effect is 

less marked in AWS. Contrasts between AWS and TFA revealed more prominently 

positive than negative t-values, especially in the beta range (13-25 Hz). This indicates 

that the predictability effect elicits lower power in TFA relative to AWS. 

 

 
 

Figure 2 | Time-frequency results at the sensor level. Results are averaged across the 

sensors in the two hemispheres as indicated on the scalp models in the bottom-right panel (only 

for visualization purposes). For each panel (AWS, TFA, and AWS ‒ TFA), the top row shows 

the ∆%-power change in the difference between HC and LC conditions, while the bottom row 

represents the t-values of uncorrected statistical tests (p < 0.05). 

 
 This pattern is confirmed at the source level (Figure 3). Power decrease is visibly 

marked in prefrontal, frontal, temporal, and parietal regions, bilaterally, in TFA. In 

AWS, the effect seems to be limited to posterior (temporal and parietal) regions of the 

left hemisphere. Statistical contrasts between the effects in AWS and TFA revealed 

positive t-values throughout the considered ROIs. More specifically, this difference results 

from a less marked power decrease in posterior regions in AWS relative to TFA, but from 

a power increase in anterior regions in AWS, whereas TFA consistently show a power 

decrease. 
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Figure 3 | Time-frequency results at the source ROI level. For each hemisphere, ∆%-

power change for AWS, TFA, and AWS – TFA, and the map of uncorrected t-tests for AWS vs. 

TFA (p < 0.05) are shown. Each numbered row corresponds to a ROI depicted on the cortical 

model below. For the contrasts within each group, please see Figures S2 and S3. 

 
 The cluster-corrected statistical analyses on the ERPs (Figure 4) revealed that 

non-predictable vs. predictable words elicited the well-known N400 effect in both groups 

(TFA: p = 0.0005, t-sum = -32112, size = 8806; AWS: p = 0.001, t-sum = -19210, size 

= 6799). However, the contrast between groups revealed that the N400 effect is reduced 

in AWS, reflected in less negative values (p = 0.032, t-sum = 3516, size = 1408). 
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Figure 4 | N400 effects within and between groups. Panel (a): Topographical plots of the 

voltage difference between non-predictable and predictable targets averaged in the 300-500 ms 

post-target time-window for the TFA group (left), the AWS group (center), and the difference 

between AWS and TFA groups (right). The raster plots below show the significant clusters 

identified. Panel (b): Grand-average waveforms from a representative electrode, CP2 (highlighted 

in orange on the scalp model). Time 0 signals the onset of the auditory target word. The dotted 

lines represent the N400 effect for AWS (in red) and TFA (in blue). The area in grey highlights 

the time interval where the significant cluster between groups is defined.  
 

 We further explored the relationship between DS and prediction by performing 

correlations between pre-target power change in regions of interest and i) stuttering 

severity (SSI-4 scores), and ii) post-target N400 amplitude. Correlations between power 

modulations and N400 revealed that, in AWS, the magnitude of the N400 effect is 

positively correlated with pre-target alpha (8-12 Hz) power modulation in premotor 

regions of the right hemisphere, comprising the supplementary motor regions (R = 0.61, 

p = 0.022): less negative values (a weaker effect) are associated to a lower power decrease 

or a power increase in this region. No significant correlations were found with stuttering 

severity. In TFA, the N400 magnitude is positively correlated with beta1 (13-20 Hz) (R 

= 0.58, p = 0.029) and beta2 (20-30 Hz) (R = 0.54, p = 0.048) power changes in the left 

inferior frontal cortex: a stronger effect is associated to a stronger power decrease. These 

correlations are shown in Figure 5. 
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Figure 5 | Correlations between ROI ∆%-power change and the N400 effect in the 

two groups. Alpha range: 8-12 Hz; beta1 range: 13-20 Hz; beta2 range: 20-30 Hz. 

 

 

Discussion  
 

In this study we contrasted electrophysiological correlates of predictability (pre-target 

alpha‒beta power decrease and post-target N400 effect) between a group of adults who 

stutter and a group of matched fluent controls, to test whether aspects of speech-motor 

control ‒ which are extensively defective in AWS ‒ play a role in prediction during spoken 

language comprehension. We found that in AWS the alpha‒beta power decrease usually 

found before predictable words is less consistent and primarily restricted to posterior 

areas. Convergently, the N400 effect usually reported for non-predictable vs. predictable 

words is significantly reduced in AWS. Significant correlations between power 

modulations and the N400 were also found, revealing that, in AWS, the amplitude of the 

N400 effect is positively correlated with alpha power modulations in right supplementary 

and associative premotor areas. 

 

Atypical alpha-beta power modulations and a reduced N400 effect signal 

inefficient prediction during spoken language comprehension in AWS 

The power decrease in the oscillatory activity found when contrasting high vs. low 

constraining conditions was less marked in AWS than in the TFA group. At the source 

level, in AWS the power decrease was mainly evident in the low and high beta bands in 

left posterior areas. In TFA, the effects involved also anterior areas. When comparing 

differentials between AWS and TFA (i.e., when comparing the effects of predictability), 

differences were evident across many anterior and posterior regions in both hemispheres. 

This likely indicate that the two groups engaged in prediction in a different manner. 

Notably, group differences in the posterior areas were due to a reduced power decrease 

associated to predictability in AWS, whereas in frontal areas the differences were 

characterized by the presence of a power increase in stuttering. However, given the 

specific directional hypothesis formulated on the basis of previous findings, in the contrast 

between HC and LC conditions, performed within each group, we only tested the negative 
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tail of the distribution. For this reason, the power increase observed in frontal areas in 

AWS may not be statistically significant. From a functional point of view, alpha‒beta 

power increase has been interpreted as a marker of cortical inhibition and maintenance 

of the current motor or cognitive state, while a power decrease has been suggested as a 

marker of cortical engagement, change in the current set, and it has been shown to be 

negatively related to the richness and precision of information retrieval and encoding, 

i.e., the stronger the decrease, the richer the information (Engel & Fries, 2010; Griffiths 

et al., 2019; Hanslmayr et al., 2012). Consequently, in the context of language prediction, 

the alpha‒beta power decrease has been linked to the pre-activation of representations, 

i.e., the access of information from long-term memory before the stimulus is actually 

encountered and processed (Prystauka & Lewis, 2019). The pattern emerging from our 

results suggests that i) the information pre-activated by AWS when predicting is less 

precise, or AWS are less committed to their predictions, and that ii) AWS may be also 

exerting an inhibitory control at some level of processing that engages frontal areas. 

Speculatively, this inhibitory control may be carried out in order to avoid an “incorrect” 

activation of information that may not be strictly related to the predicted target, thus 

inhibiting possible competing information. In fact, AWS have been found to show an 

altered inhibitory control in tasks such as motor sequences (Busan et al., 2020), but also 

during lexical selection for word production (Maxfield, 2020). This suggests the existence 

of altered signal-to-noise ratios for action release in DS, thus resulting in impaired 

inhibitory processing (compare with Alm, 2004). The present findings are compatible 

with this recent evidence, suggesting that altered inhibition processes may play an 

important role in sensorimotor aspects of DS (see Neef et al., 2016, 2018), impacting also 

aspects of language comprehension, such as prediction. 

 As for the results obtained in the ERP analyses, even though both groups showed 

a N400 effect (i.e., the difference between non-predictable and predictable targets), the 

effect was significantly attenuated in AWS. Importantly, the responses to non-predictable 

targets are comparable between the two groups and the difference is driven by the ERP 

response to predictable targets, which resulted in a more positive-going deflection in TFA 

than in AWS. This strongly suggests that the difference in the N400 effect reflects a 

specific difference in how predictable words are processed, rather than a general difference 

in word processing. The different amplitude observed only for predictable words could 

reflect the reduced top-down facilitation of bottom-up processing, due to less efficient 

predictions. Arguably, a malfunctioning speech-motor system is unable to appropriately 

predict the auditory consequences of speech-motor plans; predicting during 

comprehension by means of the same mechanisms brings about inefficient auditory 

(phonological) prediction of others’ speech.  

 Interestingly, a positive correlation between power modulation and the magnitude 

of the N400 effect in AWS showed that higher alpha power in posterior dorsal frontal 

regions (ROI 1) ‒ which implies a reduced cortical engagement ‒ is associated to a 

reduced N400 effect (less negative voltage). Such ROI includes the premotor cortex, the 

SMA and pre-SMA. These regions are anatomically and functionally connected with both 

subcortical (basal ganglia, thalamus) and cortical structures (anterior cingulate cortex, 

inferior frontal gyrus, angular gyrus, pre-motor cortex, primary motor cortex, 

somatosensory cortex and middle cingulate cortex) (Hertrich et al., 2016). These 

connections make premotor regions and the SMA complex important nodes in the 
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extended speech-motor network (Alario et al., 2006; Ghosh et al., 2008). In the 

DIVA/GODIVA framework of speech planning and execution, the SMA and pre-SMA 

are responsible for the sequencing and timing of speech-motor units (Guenther, 2016). 

Recent research has shown that these mechanisms play a role in auditory perception and 

imagery of speech, by mediating the generation of top-down auditory predictions (Lima 

et al., 2016). Importantly, the SMA complex (together with regions such as the inferior 

frontal cortex, especially in the left hemisphere) represents a crucial node in the 

pathophysiology of DS: dysfunction in the cortico-basal-thalamo-cortical system – 

comprising the SMA complex – causes a disruption in the internal timing of the initiation 

of planned, complex motor sequences, such as those required for speech production, 

leading to stuttering (Busan, 2020; Busan et al., 2019; Chang & Guenther, 2020). 

Compatibly, premotor and SMA regions of the right hemisphere have been reported as 

being part of a plausible compensation system, that may be useful to overcome 

dysfluencies in stuttering (Brown et al., 2005; Busan et al., 2019; Neef et al., 2015, 2016, 

2018). Considering all these lines of evidence, we suggest that during prediction the SMA-

complex may be (bilaterally) involved in the coordination of sensorimotor information 

flow between cortical areas. The positive correlation between cortical inhibition in this 

region (reflected in alpha power increase) and the reduced efficiency in word prediction 

(reflected in a reduced magnitude of the N400 effect) supports the hypothesis that a 

network involved in motor-auditory mapping and sequence processing is relevant for 

prediction during spoken language comprehension, and that a disfunction in such network 

negatively affects prediction efficiency. For what concerns correlations in the control 

group, they show that a power decrease in the beta range in the left inferior frontal cortex 

(i.e., a stronger engagement of this cortical region) is associated to a stronger N400 effect 

(more negative values). The involvement of this region is in line with previous studies 

(Jakuszeit et al., 2013; Lau et al., 2008; Siman-Tov et al., 2019; Wang et al., 2018). 

Interestingly, the inferior frontal cortex has functional and anatomical connections with 

the SMA complex. If these connections are dysfunctional in DS, as shown in the literature, 

the information flow may be disrupted, resulting in compromised predictions. While the 

correlation between power modulations and the N400 effect is found in the left hemisphere 

in TFA, for AWS the correlation involves the right hemisphere. As noted above, the 

recruitment of (especially motor and premotor) regions in the right hemisphere is often 

reported as a compensation mechanism; for this reason, the different laterality of the 

correlations found in the two groups is not surprising. 

 The present findings add also relevant evidence in favor of the strict 

interdependence of brain areas and neural processes that support speech production and 

self-monitoring, as hypothesized by the DIVA/GODIVA model (Guenther, 2016). Within 

the model, and in a very simplified manner, while frontal regions may be involved in 

evaluating the current context for the generation of appropriate predictions, this 

information may be promptly delivered to the motor system, for its possible initiation 

(e.g., the SMA complex). Similarly, information is sent to temporal and parietal regions 

for auditory and somatosensory mapping and prediction. This will allow the system to 

be “ready”, both if some corrections are necessary (with respect to the perceptual 

information received), or if it will be needed to respond with a prompt action (i.e., 

speech). Within such dynamic and integrated system, a sub-optimal feedforward 

performance of the sensorimotor system of AWS may easily result in inefficient planning 
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and prediction skills (see also Chang & Guenther, 2020 and Civier et al., 2013 in the 

context of the relations between stuttering and the DIVA/GODIVA model). In turn, this 

lower efficacy may trigger a cascade of sub-optimal responses, influencing also sensorial 

maps, and finally resulting in a reduced efficiency in proactive processing during speech 

comprehension. 

 

Limitations 

The study also presents some limitations. First, the number of AWS we were able to 

recruit was quite restricted. This is due to the fact that participant recruitment in 

stuttering research, as with other special populations with disorders at low prevalence, is 

inherently sub-optimal (Jones et al., 2002). A second threat to generalizability is our 

choice of investigating only males. This choice was motivated by i) the higher incidence 

of PDS in males (Smith & Weber, 2017), and ii) attested biological sex differences in 

neural responses in AWS, that may be the consequence of intrinsic sex-related 

characteristics, as well as the different effects of adaptation to PDS or the consolidation 

of fluency-inducing strategies (Busan et al., 2013; Fox et al., 2000). Finally, possibly 

related to the previous points, we recognize the fact that, from a strict statistical point 

of view, the effects we obtained were significant only without correcting for multiple 

comparisons. Given the highly explorative nature of the study that aimed at exploring a 

likely subtle phenomenon in a clinical population, we believe that a less stringent 

approach is justifiable.  

 

Conclusions 
 

We studied the electrophysiological correlates of prediction during auditory language 

comprehension in adults who stutter. We found evidence for less efficient prediction in 

this population. This study adds novel evidence in support of the involvement of the 

neural infrastructure devoted to speech-motor control in prediction during speech 

comprehension. The study ultimately stresses two major points: i) a more integrated 

investigation of language comprehension and production is desirable, and we advocate 

for a view in which the two modalities are seen as task sets drawing from at least partially 

shared resources, rather than two separate systems (see e.g., McQueen and Meyer, 2019), 

and ii) the investigation of on-line speech/language comprehension in DS, in addition to 

speech/language production, should be further pursued, in order to attain a better 

understanding of the neural architecture of language in healthy and/or pathological 

conditions. Specifically, regarding DS, we suggest that the role of executive functions and 

inhibitory control should be further investigated and taken as potential targets for better 

speech therapy interventions, extending treatment techniques using cognitive and 

linguistic approaches in addition to approaches mainly focused on “classical” fluency-

shaping techniques. Future research should investigate which representations and 

processes are implicated in different tasks (and how), in order to better specify the 

language architecture and language use. This, in turn, can help in the development of 

more effective therapeutic approaches to developmental and acquired disorders of both 

language comprehension and production. 
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