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ABSTRACT Heart-rate variability (HRV), measured by the fluctuation of beat-to-beat intervals, has been 

growingly considered the most important hallmark of heart rate (HR) time series. HRV can be characterized 

by various statistical measures both in the time and frequency domains, or by nonlinear methods. During 

the past decades, an overwhelming amount of HRV data has been piled up in the research community, but 

the individual results are difficult to reconcile due to the different measuring conditions and the usually HR-

dependent statistical HRV-parameters applied. Moreover, the precise HR-dependence of HRV parameters 

is not known. Using data gathered by a wearable sensor of combined heart-rate and actigraphy modalities, 

here, we introduce a novel descriptor of HRV, based on a modified Poincaré plot of 24-h RR-recordings. 

We show that there exists a – regressive biexponential – HRV versus HR „master” curve (”M-curve”) that 

is highly conserved for a healthy individual on short and medium terms (on the hours to months scale, 

respectively). At the same time, we reveal how this curve is related to age in the case of healthy people, and 

establish alterations of the M-curves of heart-attack patients. A stochastic neuron model accounting for the 

observed phenomena is also elaborated, in order to facilitate physiological interpretation of HRV data. Our 

novel evaluation procedure applied on the time series of interbeat intervals allows the description of the 

HRV(HR) function with unprecedented precision. To utilize the full strength of the method, we suggest a 

24-hour-long registration period under natural, daily-routine circumstances (i.e., no special measuring 

conditions are required). By establishing a patient’s M-curve, it is possible to monitor the development of 

his/her status over an extended period of time. On these grounds, the new method is suggested to be used as 

a competent tool in future HRV analyses for both clinical and training applications, as well as for everyday 

health promotion. 

INDEX TERMS Holter-monitoring; Poincaré-plot; RMSSD; Heart-rate dependence; Neuron-model 

 

I. INTRODUCTION 

As all biological rhythms, heart rate (HR) carries inherent 

stochastic features [1], usually represented by the beat-to-

beat variability of interbeat interval (heart rate variability, 

HRV). It is generally accepted that HRV is largely 

influenced by the autonomic nervous system, and, 

discounting some special cases of arrhythmias which can 

easily be identified by statistical methods, a positive 

correlation between HRV and the health state of heart is 

heuristically established [2]. HRV is a widely used parameter 

in heart disease characterization, where it is considered to 

carry an important diagnostic value. An elevated HRV is 

regarded as the sign of high fitness and adaptability of the 

heart, while reduced HRV levels are usually associated with 

various pathological conditions, such as congestive heart 

failure, diabetic neuropathy, mental disorders, post-traumatic 

stress syndrome, cancer, etc. [3-6]. 

Several methods have been introduced for the study of HRV, 

such as frequency- and time-domain analyses, and nonlinear 

descriptions. In time-domain analysis, the main descriptors 

are statistical measures of the variability of beat-to-beat 

intervals, such as RMSSD, SDNN, SDSD, NN50, etc. [7]. A 

typical problem considered here is that all these parameters 

depend on physical activity (and also on HR), so their 

evaluation over a given time interval will always yield 

average values [8]. Unless, the patient is examined in a fixed 

position, the dynamics of his physical activity will inevitably 

affect the measurement. To solve this problem, various 

measurement protocols have been elaborated worldwide, 

amongst others, by the joint European and American task 
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force [9], which often prefer fixed-position registration of the 

RR time series. This may, in fact, be a solution for the issue, 

however it is not always feasible, and even if so, there might 

be significant fluctuations of HR due to other effects (such as 

excitement due to the examination, etc.), too, that should 

ideally be ignored when calculating intrinsic HRV.  

Other studies, based on a statistical amount of measurements, 

determine what the optimal range for each HRV parameter 

is, but usually cannot provide an in-depth analysis for 

individual cases [7]. As an alternative solution, the well-

documented HR-dependency of HRV is taken into account 

by correcting it for HR, e.g., by normalization with HR [8] or 

with exp(-HR) [10], which, respectively, assumes an inverse 

or an exponential relationship between HRV and HR. Fourier 

components (e.g. LF and HF) derived from fluctuations of 

the RR(t) curve are used to describe HRV in the frequency 

range [9]. These are often attributed to sympathetic and 

parasympathetic nervous system effects, respectively. 

However, Billman and others pointed out that this 

assignment is problematic, because both components of the 

autonomic nervous system actually contribute to both of the 

LF and HF components [11]. Recently, various non-linear 

mathematical methods for the description of HRV have 

become increasingly popular, such as entropy-, detrended 

fluctuation analysis, Poincaré plots, etc [7]. The latter, for 

example, has been proven especially useful in detecting 

certain types of arrhythmias, though, has been less successful 

in contributing to the general description of the HR-

dependence of HRV [12,13].  

All in all, without a clear understanding of the HR 

dependency of HRV, it does not seem possible to find a 

narrow set of global parameters that would adequately 

characterize individual persons' HRV data. The question is 

whether there could be established a person-specific 

HRV(HR) function that is clearly defined, and does not 

explicitly depend on other parameters like time, physical 

activity and its history, etc., but only on HR. The results of 

Monfredi et al. imply that, if there exists such a function, it 

should be of rather exponential than hyperbolic nature [10]. 

They actually provide a general experiential formula, with a 

single, decremental exponential, which is apparently 

characteristic of all mammalian organisms. However, their 

method of data evaluation, and hence, the standard deviation 

of their HRV data does not allow its validation for individual 

cases.  

In this paper, we outline an attempt to overcome this 

obstacle, using a special evaluation method for the HRV time 

series. Based on a modified Poicaré plot of the data gathered 

by a wearable heart-rate and activity sensor, we derive a 

master curve („M-curve”) for characterizing the HRV(HR) 

function, that shows remarkable invariance to most other 

explicit variables (time, physical activity, etc.), and 

considered to be taken as a specific measure to the 

individual. If the HR interval is wide enough, the M-curve 

can normally be fitted with two exponentials, and for more 

in-depth mathematical description, we introduce a stochastic 

model on biomimetic grounds. The new analysis is then 

applied to evaluate a data base containing 24-hour long ECG 

recordings of healthy volunteers and individuals freshly 

undergone myocardial infarction. The analysis reveals a 

statistically significant deviation of model parameters of 

diseased patients from those in the healthy reference group. 

Finally, we discuss the potential applications of the new 

method in various disciplines of clinical science and 

everyday life. 

 
II.  MATERIALS AND METHODS 

The method for the derivation of the ”Master curve” 

describing the HRV(HR) dependence, and its basic features 

were demonstrated via a case study on a healthy volunteer 

(39-years-old male), performing daily routine activities. The 

study was approved by the Ethics Committee of the Medical 

Research Council (ETT-TUKEB) operating as a board of the 

Ministry of Human Capacities of Hungary (approval 

identifier: IV/7109-1/2021/EKU), and conducted according 

to the WMA declaration of Helsinki. Personal patient 

information was handled confidentially, and written informed 

consent was obtained prior to the study. The data of RR 

intervals were collected by a Polar V800 wearable heart rate 

monitor, equipped with a physical activity recording feature, 

validated for scientific use of HRV studies [14]. The 

evaluation method was then applied to ECG data obtained 

from the Telemetric- and Holter-ECG Warehouse (THEW) 

at the University of Rochester Medical Center, New York, 

United States [15]. 24-h Holter recording data of 202 healthy 

volunteers (Database Normal, EHOL-03-0202-003, age 

ranging from 9 to 82 years) and 93 patients with acute 

myocardial infarction (Database AMI, E-HOL-03-0160-001, 

age ranging from 27 to 90 years) were analyzed. The time 

series were filtered for outliers by a sequential cluster 

analysis using the ”dbscan” routine of MATLAB 

(MathWorks, 2020). 
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FIGURE 1. (a) Poincaré plot of a typical RR time series. (b) The same in Bland-Altman-like representation. (c) dRR as a function of HR, as calculated 
from the data in (b). The color code is to show the frequency of the data. (d) The RMSSD versus HR curve, as calculated from data in (c). 

 
 
III. RESULTS AND DISCUSSION 

A. DERIVATION OF THE M-CURVE 

For the characterization of the point-by-point HRV, the 

Poincaré plot is the most popular tool [12,13]. Fig.1a shows 

the traditional Poincaré-representation. Since these plots are 

quasi-symmetric to a line making 45 degrees with the X and 

Y-axes, a Poincaré analysis of the RR or HR time series 

often involves fitting of a tilted ellipsis to the plot, in order to 

characterize the extent (the „width” and „length”) of the set 

of points depicted, with respect to the symmetry axis. 

Accordingly, such an evaluation describes the time series 

with two numbers, corresponding to the maximal RMS of 

HRV, and the span of HR values [13]. In order to reveal a 

more detailed dependence of HRV from HR, we started from 

a modified Poincaré-plot, defined by the following equation: 

 

    1 1, / 2,n n n n n ndS x y S S S S      (1) 

 

where S may stand for RR or HR, and d for difference. A 

notable feature of this representation is that now the set of 

points is quasi-symmetric to the X-axis, which may be 

utilized in the analysis of other time series, as well. (Note that 

(1) is formally similar to the renowned Bland-Altman plot, 

often used for comparison of two time series, however, here 

we use subsequent points of the same time series, instead 

[16].) For the sake of convenience, we chose the following 

version of (1): 
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    1 1, / 2,n n n n n ndRR x y RR RR RR RR     

 

      1 160 / / 2 , ,n n n n n n n nHR RR RR dRR x y HR RR RR         (2) 

 

i.e., we practically described the point-by-point difference of 

subsequent RR values as a function of mean RR (Fig.1b) and 

HR (Fig.1c). If there are too many points to distinguish on 

the plot, one may color-code for point density, to better 

describe their distribution (Fig.1c). Instead of fitting an 

ellipsis to the point set, we determined the RMS of the dRR 

values for each HR (the latter defined by 2/(RRn+RRn+1)), 

using the symmetric feature of the point distribution to the X 

axis. This treatment allowed the determination of a 

characteristic HRV parameter as a function of HR, with a 

higher precision than earlier attempts (Fig.1d). (For a more 

detailed discussion of differences and similarities with 

previous treatments, see Supporting Information.) 

In the following, first we demonstrate through a case study 

that this function shows remarkable conservation features, 

and it is specific to the subject (Master curve or „M-curve”). 

Next, we apply the evaluation method to analyze RR-data of 

healthy and diseased individuals. Finally, we establish a 

stochastic model to formally describe the M-curve, and 

hypothetically associate the parameters of the model to some 

physiological descriptors of the autonomic nervous system. 

 
FIGURE 2. Reproducibility of M-curve. (a) M-curves calculated from data recorded before, during and after a submaximal training of a volunteer (<85% 
of max HR). (b) M-curves recorded on individual days. The insert shows the dates of recording and the corresponding cumulative physical activities in 
kcal. 

B.  INDEPENDENCE OF THE M-CURVE FROM ACTIVITY 
AND DATE 

Fig.2a shows the M-curves determined before, during and 

after a 1-hour long sub-maximal training of a volunteer. It 

can be seen that in the common HR range, the two curves are 

overlapping each other, i.e., the M-curve follows the same 

trend before and after training. It is often established in the 

literature that the RR variability decreases during, and shortly 

after, a physical exertion [17]. Our analysis reveals that, on 

the hours scale, this effect does not accompany with a change 

of HRV at a certain HR, but rather with a „shift” on the M-

curve towards the higher-HR region reached during, and 

shortly after, the exercise. (Note, however, that these results 

do not exclude deviations from the M-curve on a shorter time 

scale, e.g., that of minutes.) Apparently, different activities 

related to the daily routines on different days do not influence 

the M-curve of an individual on a daily basis, either. 

According to our measurements, though, these factors may 

well change the HR range, but the actual shape of the 24-

hour M-curve will not be effected.  

The question arises, whether or not the reproducibility of M-

curve persists on longer time scales, too. For this reason, we 

registered RR data of the same volunteer on subsequent days 

or weeks, and after a half-year-long intermission period. 

Fig.2b shows a series of daytime M-curves calculated from 

the data collected. Although, the daily activities (shown in 

the insert) are very different (due, e.g., to occasional 

trainings), the central part of the M-curves remained 

practically the same. Significant differences occur only at the 

extrema of HR, i.e., the maximum and minimum HR values 

of the curves show variation, due, e.g., to the presence or 

absence of a strong training on the particular day that seem to 

shift the HR set towards higher values. (The steep cutoffs at 

small HR values are an artifact of the method due to sparse 

data.) 
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C.  GENERALIZATION AND AGE DEPENDENCE 

Since all the above findings were demonstrated via a case 

study, the question arises whether similar statements apply to 

other individuals, too. Processing data from 202 volunteers 

and additional 93 patients in the THEW database, we found 

that the M-curves of the vast majority (> 95%) of healthy 

volunteers and a considerable part (> 50%) of diseased 

patients showed the same, biexpoential-type pattern. It 

should be noted, however, that the "second" (slower-

changing) exponential-like component was present only in 

those cases where the recorded HR range was sufficiently 

wide (that is, when the HR extended ca. 110 bpm). For 

different people, the M-curves showed smaller or greater 

differences, contrary to the location of the transition range, 

which appeared to be rather conservative, between 110 and 

130 bpm.  

In order to reveal any systematic dependence of the HRV on 

the age of the healthy individuals, we performed an age-class 

cohort study to determine the ”averaged M-curves” for 

several age groups (Fig.3a). In other words, we calculated the 

mean HRV values of individuals belonging to each age 

group, at each HR value. Notably, these group-averaged M-

curves show the characteristic feature of two exponential-like 

phases. 

According to our analysis, the, e.g., HRV(80) data give a 

decent measure to distinguish HRV data upon age change 

(Table 1, Fig.3b). Note that similar statements concerning the 

age-dependence of HRV have been established earlier on 

different grounds [18]. In the most comprehensive study, 

Tsuji et al. determined the SDNN of interbeat intervals and 

the average heart rate from 2-hours-long ECG recordings of 

each patient. Investigating age-selected cohorts of 1192 

healthy subjects, they found that HRV was determined by 

age and HR to a different extent, but both in an „inversely 

associated” manner. 

 

FIGURE 3. (a) Group-averaged M-curves of healthy volunteers belonging to different age classes. Sections with the dashed line identify the mean 
RMSSD values at HR=80. (b) Cohort mean HRV(80) values as a function of age. 

 

TABLE I 

AGE-GROUP DISTRIBUTION AND THE CORRESPONDING HRV PARAMETERS OF HEALTHY INDIVIDUALS OF THE DATABASE ANALYSIS SHOWN IN FIG.3. 

Age group 

(year)
Group size

Mean age 

(year)

Std Age 

(year)

mean RMSSD 

(ms)

std RMSSD 

(ms)

0-15 5 9.2 5.35 38.63 3.23

15-30 69 23.14 4.13 32.69 8.22

30-45 60 37.67 4.15 24.89 6.64

45-60 45 50.58 4.03 18.37 4.2

60-75 15 65.07 4.54 14.65 1.92
 

 

D. EFFECT OF DISEASE 

To see whether heart disease may have an effect on the M-

curve, we applied the method to data of patients with acute 

myocardial infarction (AMI). In this case, we identified a 

number of unusual patterns on the modified Poicaré-plots 

(e.g, Fig.4a) indicative of different types of arrhythmias [13], 

hence, the corresponding M-curves appeared in various 
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anomalous shapes (data not shown). Nevertheless, for some 

50% of the AMI patients, the M curves showed the ”regular” 

biphasic decay. Considering only these data, we calculated 

the averaged M-curves of healthy and hospitalized AMI 

patients belonging to the same age group (between 45 and 60 

years, 45 and 55 patients, respectively), shown in Fig 4b. It 

can be seen that the latter curve runs below the one of the 

control group in the 60 < bpm < 100 HR range. 

 

FIGURE 4. HRV(HR) characteristics of patients with myocardial infarction. (a) Bland-Altman-type representation of HRV data of an individual typical of 
arrhythmia. (b) Cohort-averaged M-curves of healthy and heart-attack patients (black and red symbols, respectively), belonging to the same age class 
(45-60 years). 
 

E.  COMPARISON TO EARLIER RESULTS ON THE 
HRV(HR) DEPENDENCE 

Most of the traditional time-domain analyses of HRV usually 

yield one (or a few) global parameter(s) that characterize the 

variability of the whole HR (or RR) time series. This is 

normally a sort of averaged HRV value, corresponding to the 

HR time series registered under pre-defined particular 

measuring conditions, this way limiting the HR range, in 

order to avoid the HR-dependence of HRV.  

Since the high-profile publication of Monfredi et al. [10], 

there is an ongoing debate about the „proper normalization” 

of HRV by HR, as well as about the possible 

„disentanglement” of the two state-describing parameters 

[17]. According to the, perhaps, most accepted approach, the 

actual HRV measure should be normalized by the average 

HR [8,9,19,20] correcting for the well-known fact of HR-

dependence of HRV, assuming a reciprocal relationship 

between the two. This looks a logical method if one assumes 

that the distribution of HRV, measured normally as RMSSD 

or SDNN, is constant in the time domain, where the 

registered RR time series are naturally represented. This 

would also imply that HRV could be described by a single 

parameter, which is an appealing perspective. On the 

contrary, Boyett et al. claim that the HRV(HR) function is a 

single, unique exponential for (healthy) humans and 

mammals, in general. On the one hand, this would mean a 

steeper dependence than the simple reciprocal relation, 

implying that data derived using the latter assumption are 

flawed, and on the other, would establish a strict coupling 

between HRV and HR, implying that the HRV-effects are, 

mostly and simply, due to the change of HR, impairing the 

diagnostic value of the former. They constructed a simpler 

and a more complex biophysical model based on the 

stochastic nature of ionic currents charging the membrane of 

the pacemaker cells, to interpret the exponential-like 

relationship between HRV and HR they inferred. Although, 

both models were able to account for describing the 

descending tendency of the HRV data as a function of HR, 

the fit of the simulated values to the experimental ones 

showing fairly high standard deviation, was rather poor in 

both cases [10]. 

VanRoon et al. argue that the quality of the gathered data 

does not allow to assess their exponential or reciprocal 

dependencies on the HR scale spanned, but votes for the 

simpler (reciprocal) case [21]. Gasior et al. use an improved 

correction factor proportional to the inverse 3rd power of HR 

(see also Supporting Information) [22]. In a recent paper, 

vandenBerg et al. investigated 10-s ECG records of a 

population of 13,943 individuals, both males and females, 

with a wide age distribution, and tested 4 different methods 

for correcting HRV by HR, assuming linear, exponential, 

hyperbolic or parabolic relationship between the two 

quantities. They also concluded that the data scattered too 

much to allow clear distinction among the 4 cases, however 
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they found the exponential correction slightly superior to the 

others, though, not perfect, especially at high HR values [23]. 

In view of this debate, our low-noise M-curves can be 

decisive. The linearity of the M-curve in semi-logarithmic 

plot clearly shows an exponential type of dependence at HR 

values below ca. 100 bpm. On the other hand, we also show 

that the general HRV(HR) function can be described by two 

components, whose slopes are usually different for different 

subjects (see below), so the M-curve may be taken as 

characteristic to the individual, and it is rather conservative 

on the time scale of days or even months. On the scale of 

decades, however, the M-curve does depend on age, 

indicating an overall decrease of HRV for elderly people, and 

a similar effect can be observed for patients of heart disease.  

Our results also imply that it is generally not enough to 

characterize HRV by a single parameter (e.g., after proper 

normalization of the raw data), but the whole HRV(HR) 

function must carry important physiological information. In 

order to facilitate its deeper interpretation, we elaborated a 

stochastic model that can account for the characteristic 

features of the M-curve. 

F.  STOCHASTIC MODEL 

Following earlier approaches [10, 24], we considered a 

simple integrate-and-fire neuron model to mimic HRV, 

where a white noise (δ) of Gaussian amplitude distribution of 

„d” RMS is added to the charging ion current (It) (Fig.5). 

Due to the presence of the noise term, the time intervals 

between adjacent firing spikes (representing the RR intervals 

in this model) show a stochastic distribution even at constant 

It. It is, however, assumed that It >> d, so HR is considered to 

scale with It.    

In mathematical terms, 

 

/m m tRR APD V C I APD        (3) 

 

60 /HR RR        (4) 

 

 (5) 

 

 

 

(6) 

 

where  is the instantaneous noise term, ”d” denotes RMS(), 

ΔVm is the difference between the negative peak and the 

threshold, Cm is the membrane capacitance, APD is the 

action-potential duration (considered to be 160 ms), and τ is 

the diastolic interval [10]. If one assumes a constant “d”, as 

in [10], it is easy to see from the equations, that one gets back 

an approximate hyperbolic relationship between HRV and 

HR, which, as we discussed above, cannot fit the measured 

data with decent precision. Hence, we allowed a variation in 

“d” as a function of It, and determined the d(HR) function by 

fitting the model to the experimental data (i.e., to the M-

curve). 

 

 
FIGURE 5. A simple, stochastic integrate-and-fire model of HR and HRV. 
(a) An electrical substitution circuit of the model. Cm is the membrane 
capacitance, and Vm is the membrane potential which is short-cut by a 
discharge device, if it exceeds a threshold level. (b) Schematic 
representation of the time course of Vm. Black line symbolizes the 
physiological signal, while the red line is the outcome of our model. 

 

As it can be seen in Fig.6a, the d(HR) function can be 

decently approximated by two linear functions of positive (α) 

and negative slopes (-β), respectively, below and above a 

transition range around 110 bpm.  

In mathematical terms, the instantaneous (It) terms can be 

represented as: 

 

 (7) 

 

where δα and δβ are stochastic multiplicators sampled from 

independent normal distributions of 0 mean and 1 standard 

deviation. From this, “d(It)” can be expressed as follows:  

  

(8) 

 

Fitting the experimental M-curve by the set of equations (3), 

(4), (6) and (8), we could establish that the model is able to 

describe the experimental data with high accuracy (Fig.6b), 

and the α, β, Ia and Ib parameters can be determined (see also 

SI). Based on this result, it is straightforward to assume that 

the noise term of our model (“d”) can be considered as a 

result of two stochastic processes dominating below and 

above the transition zone. While the contribution of the 

former one shows a descending tendency with increasing 

HR, the weight of the latter one is slightly increasing with it.  

 

     t t a a b tI I I I I        
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RMS RR I V C
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 
      
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FIGURE 6. (a) Experimentally determined RMSSD values (open circles) and the result of model-fitting (solid line), as a function of HR. The 
corresponding noise amplitude (“d” parameter) of the model, as determined from (6). (b) The result of model-fitting of the M-curve in semi-logarithmic 
representation. 

 
Without aiming to give a strict physiological interpretation of 

the parameters of the stochastic model able to describe the 

experimental M-curve, we cannot resist calling the attention 

to the striking similarity between their behavior and that of 

the components of the autonomic nervous system. According 

to the widely accepted view, HR is determined by the 

sympatho-vagal balance, in which framework increasing 

parasympathetic activity decreases HR and increases HRV, 

while increasing sympathetic activity acts oppositely (Fig.7). 

In the absence of vegetative control (e.g., during autonomic 

blockade), an intrinsic HR is set around 100-110 bpm, below 

which value parasympathetic, while above it sympathetic 

effects dominate. Given the same tendency established for 

the noise components of our model, it is reasonable to 

assume a close connection between these and the 

components of the ANS, however, a more established 

support for this hypothesis should be the subject of follow-up 

studies. 

G.  POSSIBLE APPLICATIONS OF THE M-CURVE 

Even in the absence of a solid physiological interpretation of 

the data, knowing the tendency of the characteristic statistical 

parameters (e.g., HR(80), α and β in Fig.S3) as a function of 

age, one can establish reference values for the age groups. 

Hence, we suggest a protocol for HRV registration and 

evaluation based on the new method: A preferably 24-hour 

(or longer) RR-recording should be registered once a year, 

from which the M-curve characteristic of the patient can be 

determined by high accuracy. In between, shorter 

measurements - still appropriate to determine the HR(80) 

value by high precision - are sufficient to follow changes in 

the status.  

 
 
FIGURE 6. Similarity between the HR-dependences of the two 
components of our noise parameter (d) and the two components of the 
autonomous nervous system (ANS), as generally assumed [25]. 

 

In addition to the opportunity of medium and long-term 

monitoring, the precise description of the M-curve allows the 

determination of an instantaneous HRV value on the minutes 

scale, that is supposed to be characteristic to the momentary 

state of the patient, independent from the actual HR value. 

For this purpose, the exact knowledge of a person’s 
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HRV(HR) function would be essential, but the presently 

applied methods either use a raw measure of HRV, or correct 

it by an ill-defined normalization function (see Figure S2). 

Since the M-curve describes the medium-term HRV(HR) 

function with high precision, normalization of a short-term 

(e.g., 5-minute) HRV(HR) recording according to the M-

curve should be informative for the actual state. 

IV. CONCLUSIONS 

We introduced a new representation of heart rate variability 

data, based on a Bland-Altman-like mathematical 

transformation of the Poincaré-plot, that allows a natural 

visualization of the beat-to-beat variability of interbeat 

intervals as a function of heart rate. The graphs of an 

individual show striking reproducibility on the daily and 

monthly scales, and physical activity also does not seem to 

affect their shape, only causes shifts along the same curve 

(that we call Master- or M-curve). Recordings of beat-to beat 

intervals on the hours scale allow the construction of a high-

quality M-curve, determining the HRV(HR) function with 

unprecedented precision, as compared to the conventional 

representations.  

As a function of HR, in a semi-logarithmic plot M-curve 

shows a linear dependence with negative slope between ca. 

60 and 100 bpm, while above this interval the rate of 

regression is weaker, implying a biexponential-like decay. 

Analyzing data from a public ECG-database, we found that 

the M-curves of the vast majority (> 95%) of healthy 

volunteers and a considerable part (> 50%) of diseased 

patients showed a similar pattern. For different people, the 

M-curves showed smaller or greater differences, but 

arranging the data in age groups revealed a clear shift of the 

averaged M-curves to lower ranges, by progressing age. The 

HRV(80) data are a good representation of this tendency, and 

the averaged values can be taken as a normal reference. The 

plots of heart patients with myocardial infarction differ 

significantly in shape and/or range.  

Nevertheless, our results also suggest that a single parameter 

is not sufficient to fully describe the complex features of 

HRV data. We show that an integrate-and-fire stochastic 

neuron model is able to fit the experimental HRV(HR) 

graphs of healthy people with high precision, at the same 

time offering plausible clues for a physiological 

interpretation of the HRV(HR) relationship.  

The new method is suggested to be used as a competent tool 

in future HRV analyses, for both clinical and training 

applications, as well as for everyday health promotion (in 

cardiology, polysomnography, sports, training, etc.). 
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Supporting information 
 

S1. Differences and similarities to the conventional evaluation methods 

In a conventional time-domain analysis, one could determine the HRV(HR) dependence by a sectional 

evaluation of the HR time series, for a rolling time window (similarly to Monfredi et al.) [10]. However, when 

selecting the optimal width of the time window, one has to consider the problem stemming from the time-

dependence of HR. If the analysis is restricted to short time intervals (where HR does not change significantly), it 

results in a higher uncertainty in HRV, while longer averages accompany with information loss on the HR scale 

(Fig.S1). Our evaluation method seems to solve this problem. 

  

 
Figure S1. Comparison of the M-curve (blue line) with data of the conventional moving average evaluation (red points) 

in semi-logarithmic representation. a) An example RR time series with the moving window. (b), (c), (d), (e): Data obtained 

with window size of 10, 50, 300 and 1000 data points, respectively. 

 

In a semi-logarithmic representation, the core part of the M-curve (between ca. 60 and 100 bpm) shows a 

linear dependence with negative slope, while at around 100 bpm, there is a transition range, above which the rate 

of regression is weaker in the function of HR. (Note that the latter component can only be seen if HR extends well 

beyond this transition range or ”break point”.) This means that in the full HR range, the HRV(HR) function 

follows a regressive exponential-like dependence of two decaying components. 

 

S2. Normalization attempt of HRV by HR  

Establishing a single HRV parameter characteristic to the cardiac health state of the patient has always been 

an appealing goal. Hence, a proper normalization function that could account for the observed HR-dependence 
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of time-domain HRV data has been intensively searched for. In the main body of the paper, we discuss that, 

apparently, a universal analytical function cannot be given to describe the HR-dependence of HRV of each 

individual in the „full” HR-range. So far, however, the quality of HRV data obtained by earlier methods, has not 

allowed to make such a definite statement, leaving room for a lot of debate [8,10,17,21,22]. Some clever correction 

functions, such as using the inverse cubic normalization by HR [22], e.g., seem to give a decent result for 

moderate HR values, if HRV data are established by the moving-average evaluation. A more accurate 

representation of the HRV(HR) function (i.e., the M-curve), however, reveals the limitations of this method  

(Figure S2).   

 

 
Figure S2. RMSSD data of a typical HR time series normalized by a HR-3 function. Red and light blue symbols: data 

from a moving-average evaluation, dark blue: data from the ”M-curve” evaluation. A decent fit is got to the red-symbol 

region, unlike to the more accurate data. 

 

S3. Model fitting to measured data 

M-curves calculated from data of healthy individuals could be fitted by our integrate-and-fire model with 

decent accuracy, however, the standard deviation of the fitting parameters (α, β, Ia and Ib) was rather high (see 

Fig. S4 a-d, where HRs and HRp were determined from Ia and Ib, respectively, according to Eqs. (3) and (4)). The 

primary reason for this was the limited HR range of recordings in a number of cases, not allowing the accurate 

determination of all these parameters. Since only β showed a significant tendency as a function of age, and the 

other fitting parameters were fluctuating around virtually age-independent average values, we repeated the fits 

with HRs and HRp values fixed at the mean of their distribution. This restriction did not considerably affect the 

goodness of individual fits, and worked properly for the group-averaged M-curves, too (Fig. S3). Fig. 8b shows 

the age dependence of α and β parameters for the latter case. It is apparent that β shows a significant monotonic 

decrease by age, while the change in α is minor. 
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Figure S3. Model fitting of cohort HRV data of healthy individuals from the THEW database [15]. (a) Averaged M-

curves of age groups distinguished by color code, and the fitted curves (black lines). (b) Age-dependence of the α and β 

parameters, while HRp and HRs values kept fixed. 

 
Figure S4. Variable parameters of model fitting of M-curves of healthy individuals from the THEW database [15].  (a) α, 

(b) β, (c) HRs, (d) HRp. 
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