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Abstract 
Genome instability (GIN) is a main contributing factor to congenital and somatic 
diseases, but its sporadic occurrence in individual cell cycles makes it difficult to study 
mechanistically. One profound manifestation of GIN is the formation of micronuclei 
(MN), the engulfment of chromosomes or chromosome fragments in their own nuclear 
structures separate from the main nucleus. Here, we developed MN-seq, an approach 
for sequencing the DNA contained within micronuclei. We applied MN-seq to mice with 
mutations in Mcm4 and Rad9a, which disrupt DNA replication, repair, and damage 
responses. Data analysis and simulations show that centromere presence, fragment 
length, and a heterogenous landscape of chromosomal fragility all contribute to the 
patterns of DNA present within MN. In particular, we show that long genes, but also 
gene-poor regions, are associated with chromosome breaks that lead to the enrichment 
of particular genomic sequences in MN, in a genetic background-specific manner. 
Finally, we introduce single-cell micronucleus sequencing (scMN-seq), an approach to 
sequence the DNA present in MN of individual cells. Together, sequencing micronuclei 
provides a systematic approach for studying GIN and reveals novel molecular 
associations with chromosome breakage and segregation.  
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Introduction 
Genome instability, a hallmark of cancer, results from various intrinsic and extrinsic sources of 
genotoxic stress. GIN does not manifest uniformly across the genome; instead, certain genomic 
regions and features are more prone to one or more forms of chromosome damage, breakage, 
and rearrangements. An important manifestation of this genomic heterogeneity are fragile sites: 
specific regions that are prone to breakage and rearrangements and that are cytologically 
observed as gaps or constrictions on metaphase chromosomes. Fragile sites can be 
categorized as common or rare, depending on their frequency in the population, and are 
typically observed following induction using mild applications of replication inhibitors (e.g. 
Aphidicolin). Late-replicating genomic regions are particularly prone to being fragile. However, 
while late replication is generally associated with a low gene density, numerous studies have 
implicated very long genes as potent drivers of fragile sites (1-8). Another category are early-
replicating fragile sites (ERFS), which tend to form due to replication-transcription conflicts at 
gene-rich, early-replicating genomic regions (9). 
 
Identification of fragile sites or otherwise common sites of GIN is informative regarding their 
mechanisms of formation. However, mapping chromosomal fragility in an accurate, 
comprehensive genome-wide scale poses technical challenges. One approach is to analyze 
chromosomal rearrangement in tumor genomes. This accurately reveals past chromosomal 
breakage events, but only those that have been selected during cancer evolution rather than the 
full distribution of fragility events. Alternatively, several genomic assays have been developed to 
directly map the sites of chromosomal double strand breaks (10, 11), however these assays are 
prone to background noise that obscures the signal originating from less common events.  
 
Another approach for mapping the landscape of chromosome fragility is to utilize one of the 
direct cellular outcomes of such instability. Specifically, broken, mis-segregated or unreplicated 
chromosomes or chromosome fragments can become separated from the main nucleus at 
mitosis and result in the formation of micronuclei (MN). MN are a common manifestation of 
genomic instability, are known to undergo partial and abnormal replication, and have the 
potential to be re-incorporated into the primary nucleus after undergoing extensive 
rearrangement. Micronuclear DNA can give rise to chromothripsis, which is observed in 
numerous solid cancer types (12, 13), or to the spillage of DNA into the cytosol, where it can 
elicit the cGAS/STING inflammatory response (14); both events contribute to tumorigenesis.  
 
We and others have shown that the level of MN is a reliable readout of genomic instability (15-
20). Specifically, anucleated red blood cells (RBCs) lose their primary nucleus during terminal 
differentiation but retain micronuclei that may have formed during prior mitotic cell divisions. In 
mice, these micronucleated erythrocytes are not efficiently cleared from the circulation and can 
thus be analyzed from peripheral blood samples. Quantifying the levels of MN-containing red 
blood cells provides a means of assessing the rate of genomic instability in various mouse 
mutants and under different genotoxic stresses. Moreover, identifying the genomic regions 
giving rise to the DNA fragments that get trapped inside micronuclei can reveal preferential sites 
of chromosomal instability, which themselves may vary in different genetic strains and 
conditions. Indeed, a previous study sequenced the DNA in RBC MNs, revealing the preferential 
mis-segregation of acentromeric chromosomal fragments as well as sites of elevated DNA 
breakage (21). Here, we further developed a similar approach of sequencing MN DNA from cell 
populations as well as from single cells, and applied it to wild type (WT) mice and two mutant 
mouse models with different types of genomic instability. Data analysis and simulations link MN 
formation to centromere presence and to a heterogenous landscape of chromosomal fragility 
related to long genes and to gene-poor regions.  
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Results and Discussion 
To study the DNA sequences harbored within MN, we used flow cytometry to isolate RBCs that 
contained a measurable amount of DNA above background, indicative of MN presence. We 
specifically isolated normochromatic erythrocytes (NCEs), which harbor spontaneous 
micronucleation events that happen during erythropoiesis.  These cells have a lifespan of 
approximately 120 days and provide a readout of steady state levels of MN.  The precursors of 
NCEs are reticulocytes, which are short-lived products of the most recent mitotic cycle and as 
such can be used to quantify MN after extrinsic or transient sources of genotoxic stress (Figure 
1; (15, 16, 19, 20)).  
 
MN were isolated from two GIN mouse models and their respective WT strains. The first was 
the Mcm4chaos3 (Chaos3) strain, originally identified via a screen for mice with elevated MN (15), 
that harbors a mutation in Mcm4 (22), part of the Mcm2-7 complex component of the replicative 
helicase. The second model were mice harboring a mutation in Rad9a, part of the RAD9A-
RAD1-HUS1 (9A-1-1) clamp complex that recruits DNA damage signaling and repair factors to 
damage sites and functions as part of the DNA damage checkpoint response. Specifically, we 
mutated a phosphorylation site in the RAD9A C-terminal tail (S385A) that is essential for 
interaction with TOPBP1 and 9-1-1 mediated ATR activation (hereafter referred to as the 
Rad9aSA mutant). As expected, Chaos3 mice had a 20.9-fold increase in cells containing MN-
NCE compared to isogenic WT mice. Homozygous Rad9aSA mice had an average of 8.7-fold 
increased rate of micronuclei relative to control mice (Table S1). We sorted between 83,000 and 
800,000 cells per strain, isolated and amplified DNA and performed whole-genome sequencing 
(see Methods). We refer to this approach as MN-seq. 
 
To analyze the genomic regions present in MN, we modified an analytic pipeline to call DNA 
copy number along chromosomes (23) (Figure 1B; Methods). Briefly, sequencing reads were 
counted in windows of 200Kb of uniquely alignable sequence and corrected for GC content 
effects on read coverage. Copy number segmentation and filtering was used to remove outlier 
data points as well as short segments that were grossly inconsistent with their surrounding 
regions. Subsequently, the slope of the filtered copy number values in each segment were 
calculated (Figure 1D-E; Table S2).  
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466311doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466311
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure 1. MN-seq. 
A. Experimental pipeline. Peripheral blood is flow-sorted to isolate MN-containing RBCs, DNA is 
extracted, amplified and sequenced. 
B. Analysis pipeline. TIGER (23) is used to infer DNA copy number across chromosomes, outliers (that 
result from technical noise or from copy number variation (CNVs)) are removed, and chromosomes are 
segmented into regions with continuous copy number states from which slopes are calculated. In parallel, 
computer simulations are used to predict the patterns of MN DNA resulting from different scenarios of 
chromosome breakage and chromosome fragment segregation into micronuclei. The slope data and 
simulations are jointly considered for interpreting the data and analyzing the properties of genomic 
instability.  
(Cartoons in panels A and B were created with BioRender.com) 
C. Isolation of MN-containing cells by flow sorting of DNA-containing (PI-positive) normochromatic 
erythrocytes (NCEs), which have lost expression of the transferrin receptor CD71. Reticulocytes (RET, 
upper right quadrant) retain CD71 expression.  
D-E. Examples of MN-seq data of chromosome 1 in WT (D) and Rad9aSA (E) strains. Each blue dot 
represents the relative DNA copy number within a 100Kb window of uniquely alignable sequence. Copy 
number is normalized to a genome-wide mean of 1. Red dots have been filtered-out as outliers or 
suspected CNVs. Black lines represent continuous segments, from which the slopes are calculated. In 
these examples, DNA copy number initially decreases and then sharply increases in several discrete 
shifts that are more pronounced upon mutation of Rad9a.  
 
 
Analysis of the resulting changes in DNA representation along chromosomes revealed a 
complex landscape of genomic regions giving rise to MN DNA. At a broad scale, micronuclei 
tended to harbor increasing amounts of DNA from the telomeric ends of chromosomes (Figure 
1D-E, Figure 2, Figure S1). This is likely due to acentric chromosome fragments resolving into 
micronuclei. This, and the apparently opposite trend at the beginning of chromosomes 1 and 2, 
both confirm previous observations (21). However, we also noticed many significant changes in 
the steepness of copy number slopes across the chromosomes, including both increases and 
decreases. There were also additional examples (besides chromosomes 1 and 2) of negative 
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slopes, in which MN DNA is less represented from the proximal to distal parts of a chromosomal 
region. More generally, the level of MN varied by up to ~12-fold across the genome. Notably, all 
these patterns showed variations between WT mice, Rad9aSA mutants, and Mcm4Chaos3 mice, 
while they were highly reproducible in repeat experiments of the same genetic background 
(Figure 2; Figures S1-S2). Differences in MN levels between mouse strains and sexes have 
been reported before (20, 24). Although our sample size is not large enough to ascertain sex-
specific differences in MN DNA patterns, we did notice a highly elevated rate of MN fragments 
towards the right end of the X chromosome in females, in both WT strains and even more so in 
GIN mutants; this could conceivably be explained by a high level of chromosomal instability of 
the inactive X chromosome in female samples. 
 

 
 
Figure 2. The landscape of micronuclei DNA across the genome of different mouse strains.  
As in Figure 1D-E, for all chromosomes and various strains analyzed in this study (see Figure S1 for the 
remaining samples). Several notable patterns are observed, including negative and positive slopes, 
slopes of different steepness, slope shifts (both upward and downward), and differences between strains. 
The patterns are more subtle in WT than in mutant mice, and are different between Mcm4Chaos3 and 
Rad9aSA mutants strains. Also note the different DNA copy number scale for the Rad9aSA female sample, 
which reflects the extreme MN levels towards the right end of the X chromosome. The WT sample is a 
male FVB/B6 (the control strain for the Rad9aSA mutants).  
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We confirmed that sharp shifts in DNA copy number, for example the one on chromosome 6 of 
Mcm4Chaos3 mice, do not result from copy number variation in the genome itself of these strains 
(Figure S3). We cannot, however, rule out the possibility that structural rearrangements such as 
inversions or translocations influence the observed MN copy number patterns. 
 
To interpret the various patterns of MN DNA representation, we used in silico simulations. Two 
main parameters hypothesized to affect MN DNA were simulated: the locations of breaks along 
a chromosome, and which part of the chromosome results in a micronucleus after breakage. 
We considered random locations of breaks uniformly distributed along the lengths of 
chromosomes, regional changes (increases or decreases) in the rate of breaks in different parts 
of a chromosome, and hotspots comprising sharp elevations of chromosome break rates at 
specific locations. With regards to the fragments that are retained within MN, we considered 
whether the acentric or, reciprocally, centric fragments of a chromosome preferentially resolve 
into micronuclei. We also considered the possibility that the length of a fragment, rather than the 
presence of a centromere, is the determining factor for inclusion in MN. We thus simulated 
chromosome breaks in individual chromosomes, followed by aggregating many such 
hypothetical chromosomes in order to obtain MN DNA content patterns that could be compared 
to the empirical MN-seq data. 
 
Simulations confirmed that if acentric chromosomal fragments are those that tend to result in 
MN, a gradual increase in DNA representation will be observed along the length of the 
chromosome (maintaining the assumption that the centromeres are at the left end). This 
increase will be gradual if break sites are random (Figure 3B), but will accelerate in regions of 
high breakpoint density (Figure 3G), decelerate in regions of low breakpoint density (Figure 3H), 
and undergo an abrupt shift if there are localized hotspots of chromosomal breakage (Figure 
3E). On the other hand, if centric fragments are those that compose MN DNA, we would expect 
to see a gradual decrease in DNA content along a chromosome (Figure 3C). If centric and 
acentric fragments are equally likely to segregate into MN, a flat pattern of DNA content is 
expected to emerge (Figure 3D), which would be difficult to discriminate from large regions with 
low break rates (Figure 3H). Last, if the main determinant of fragment capture in MN is the 
length of the fragment (in addition to, or instead of, centromere presence), then the pattern of 
MN DNA could be expected to show a decrease followed by an increase along the chromosome 
(or vice versa in the less likely scenario in which long rather than short fragments tend to be 
captured in MN). In such cases, the length preference (and potentially association with 
centromere presence) will determine the site of slope shift. A specific case would be such a 
length dependence together with a spike in break rate at approximately the same inflection point 
– this scenario can explain the unusual pattern seen in Mcm4Chaos3 MN on chromosome 6 
(Figure 2; Figure 3F). We also considered the possibility of two breaks occurring on the same 
chromosome, with the interstitial chromosome fragment either preferentially retained in MN, or 
retained at random. In either case, the resulting MN patterns did not resemble the observed 
data (Figure S4). This is also consistent with the relatively modest rate of MN across the studied 
strains (<5% of cells per sample; Table S1), which would predict that two breaks occurring on 
the same chromosome in the same cell would be rare. 
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Figure 3. Simulations of MN DNA representation as a function of chromosomal break sites and 
preference for retained fragments. 
A. Explanation of the visual representation of simulated MN DNA fragments. We simulated an artificial 
chromosome of 10Kb (black line) with the centromere on the left side (circle). We then introduced 100 
chromosome breaks (red arrows) at either random locations or at variable rates along the chromosome. 
We simulated scenarios in which, after a chromosome is broken, the centric, acentric, or a randomly 
chosen fragment is retained in a micronucleus. Blue lines represent individual fragments that would be 
retained following a given break (20 are shown in A, and one under each corresponding chromosomal 
break in other panels). The cumulative MN fragment graph (bottom) represents the count of single DNA 
molecules covering regions along the chromosome, and corresponds to the expected data observed from 
MN-seq analysis. 
B. Random breaks with only acentric fragments retained in micronuclei. 
C. Random breaks with only centric fragments retained. 
D. Random breaks with either centric or acentric fragments, assigned randomly, retained in micronuclei. 
E. Simulation of a spike with elevated chromosome break rates at the middle of the chromosome; 
acentric fragments retained. 
F. A breakage spike at 1/4 of the chromosome length, with centric fragments up to that point (i.e. shorter 
than a 1/4 of the chromosome length) retained, and acentric fragments retained otherwise. 
G. Break rate doubles after the center of the chromosome; acentric fragments retained.  
H. A region in the center of the chromosome devoid of breaks; acentric fragments retained. 
 
 
Overall, simulations provide plausible explanations (albeit not direct evidence) for the various 
patterns of MN DNA observed across chromosomes and strains (Figure 2). Having established 
at least one possible biological interpretation for each of the various patterns of MN DNA 
content observed in the data, we could now turn to a systematic quantification of the 
chromosome breakage landscape. 
 
First, we combined all slopes across the genome in each strain separately as well as across all 
strains together, and analyzed the distributions of their steepness. While most slopes 
represented a baseline break rate, there was also a mode of segments with negative slopes, a 
larger mode comprised of slopes with increased steepness that represent regions with elevated 
chromosomal breaks, and yet another disperse mode with very steep slopes (Figure 4, top). 
While most negative slopes were attributed to Chaos3 mice, Rad9aSA mutants contributed the 
majority of slope fragments with elevated steepness (Figure 4, bottom). This confirms the strain-
specific differences in the chromosomal distribution of break sites and the tendency of different 
chromosomal fragments to end up within micronuclei.  
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Figure 4. Statistics of MN-seq slopes. 
Slopes were combined across the genome and, in the top panel, across all samples (sample Mcm4Chaos3 
female had lower sequence coverage and was not included in these analyses and in the figure; see 
Methods). The distribution of slope values is shown. Bottom panels show individual samples; only one 
repetition for Rad9aSA male is shown. 
 
 
We next analyzed the slopes in individual chromosomes and strains and compared them to the 
locations of genes, DNA replication timing, and early-replicating fragile sites mapped in mouse. 
Visually, steep slopes appeared to map to late-replicating, gene-poor regions, while sharp shifts 
between slopes often mapped near long genes (Figure 5). For example, the sharp drop on 
chromosome 6 in Chaos3 mapped within ~200Kb from CNTNAP2, the second-longest gene in 
the mouse genome (2.24Mb) and a known fragile site in humans and mice (1, 25). Other 
breakpoints with sharp shifts in DNA copy number between segments mapped to the known 
fragile sites associated with LRP1B (2.06Mb), MACROD2 (1.99Mb), and FHIT (fragile histidine 
triad gene; 1.57Mb), which contains FRA3B, the most active common fragile site in many 
human cell types (1, 4, 26, 27). Overall, 9 of the 10 longest genes in the mouse genome were 
within 0.5Mb from a slope shift breakpoint in DNA copy number segments. 
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Figure 5. Examples of MN-seq data and slopes in individual chromosomes and samples together 
with other relevant genomic data.  
Dashed grey lines mark the borders of slope segments. Note that steep slopes are over-sensitive to being 
fragmented into several segments that may have similar slopes, thus breakpoints along steep slopes may 
represent the slopes themselves rather than discrete shifts as seen elsewhere. DNA replication timing: 
replication profiles measured from 29 different cell types (grey; (28)), pre-B cells (black; (28)), MEFs 
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(green; (23)) and mouse pluripotent stem cells (blue; (23)). Higher values represent earlier replication. 
Note that some replication timing data is missing for chromosome 14 (due to LiftOver) and chromosome X 
(due to sex of samples). ERFS: early replicating fragile sites (9). Gene density: the number of genes in 
1Mb windows. Genes: individual genes (shown on four vertical levels). Slopes and slope shifts are 
represented with a color code (colormap underneath) with orange representing shallow slopes and subtle 
shifts, and darker shades representing steeper slopes and more extreme break rate shifts. 
 
 
Statistical analysis of these associations confirmed that, genome wide and across strains, there 
was a strong relationship between steep slopes and both low gene density and late replication 
(Figure 6). These associations followed an exponential fit rather than a linear relationship, with 
the majority of steep slopes occurring in regions with less than one gene per megabase 
(compared to a genome-wide mean of seven genes/Mb; Figure 6A) and with replication timing 
at least one standard deviation later than the mean (Figure 6B). These associations were 
observed also in individual chromosomes (Figure S5). Segment breakpoints were also 
associated with late replication, although not as strongly as slope steepness (Figure 6C). On the 
other hand, there was a compelling association between breakpoints and long genes, with many 
segment borders falling close to some of the longest genes in the genome (Figure 6D). Overall, 
of the 3304 genes within 0.5Mb from a breakpoint, 55 were longer than 0.5Mb, compared to 148 
genes in the genome of this length out of a total of 21,958 genes (chi square p = 2.15x10-9). We 
did not find a significant association between breakpoints and ERFS (Figure 5). 
 

 
 
Figure 6. Global correlations of break rates with other genomic features. 
A. Segment slope as a function of gene density. 
B. Segment slope as a function of DNA replication timing in MEFs. Replication timing is presented in units 
of standard deviation from the mean, which is set to zero across the genome. Negative values represent 
late replication and positive values represent early replication. Replication profiles from other cell types 
provided similar results.  
C. Segment shift magnitude as a function of DNA replication timing in MEFs.  
D. Gene length as a function of the distance of a gene to the nearest segment breakpoint. Calculated for 
all breakpoint-gene pairs. 
Sample Mcm4Chaos3 female was not used in any of the analyses. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466311doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466311
http://creativecommons.org/licenses/by-nc/4.0/


 
While an association between long genes and chromosome fragility is well-established (1-8), 
our results point to an independent contribution of gene-poor chromosomal regions to 
chromosome breakage. Gene-poor regions were also recently shown to associate with 
chromosomal breaks in human embryos (29). Notably, the locations of both long genes and 
gene-poor regions are correlated with late replication. However, they manifest on genome 
stability in different ways: long genes tend to be associated with strong breakage hotspots, while 
gene density has a more subtle albeit more comprehensive association with the overall 
background rates of breaks along chromosomes. While long genes may cause chromosome 
breaks through transcription intermediates, it is less clear how gene-poor regions could relate to 
broad chromosome stability. Gene density is also a highly heterogenous feature of 
chromosomes and cannot by itself predict the rates of MN formation observed in our data, thus 
additional factors likely interact to shape the genomic landscape of fragility. Further 
improvement in data resolution will enable finer mapping of chromosomal break rates as well as 
the identification of break hotspots at higher resolution. 
 
Another limitation of MN-seq is that it relies on sequencing DNA from many MN-containing cells. 
The analyzed signal therefore derives from the superimposition of many events, making it 
difficult to infer the molecular events that gave rise to individual micronuclei (for example see 
Figure 3). However, chromosomal breaks are expected to happen at different locations in 
different cells, thus ensemble approaches (such as MN-seq and other genomic approaches) 
represent the cumulative fragility landscape yet miss individual events that are diluted by 
background signals from other cells. Recently, several approaches have been developed for 
whole-genome sequencing of DNA from single mammalian cells (30-34). These approaches 
rely on isolating individual cells, extracting and barcoding the DNA from each cell, and then 
pooling, amplifying, and sequencing the DNA. We reasoned that a similar approach could be 
applied to MN-containing erythrocytes, in particular since the cells are still intact and can be 
isolated. While the amount of DNA in a single micronucleus is very small, the signal that is 
sought is binary, i.e. the presence or absence of DNA representing large chromosomal 
fragments, making it amenable for such analyses. We hence developed single-cell 
micronucleus sequencing (scMN-seq), in which the DNA in (one or more) micronuclei contained 
within individual cells is separately sequenced. We used the 10x Genomics Single-Cell CNV 
platform for cell isolation, barcoding and DNA amplification, followed by whole genome Illumina 
sequencing. Although most cells were lost during the process or failed to amplify, we did obtain 
clear signals from 14 single MN-containing cells from WT, Rad9aSA and Chaos3 mice. Analysis 
of the DNA present in these cells revealed that micronuclei (one or more per cell) contained 
DNA from between one to three chromosomes. In some of the cells, entire chromosomes were 
present in micronuclei, while in other cases, either an acentric (right) or, less often, centric (left) 
portion of a chromosome was present in a micronucleus (Figure 7). These observations confirm 
our interpretation of the bulk MN-seq data as well as the in silico simulations (which are 
fundamentally a simulation of single micronuclei), including that centromere-containing 
chromosomal fragments can indeed result in micronuclei. More generally, we suggest that the 
scMN-seq approach, applied on a larger scale and in different genetic background and 
conditions, is a promising direction to elucidate mechanism of genomic instability and identify 
specific sites of chromosome breakage and the rules governing which fragments preferentially 
result in MN formation. 
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Figure 7. Single micronucleus sequencing. 
MN-containing NCEs were flow sorted and subjected to microfluidic isolation and library preparation using 
the 10X Genomics CNV platform, followed by whole genome sequencing. Each row shows the sequence 
content of MN from a single cell. 
 
To summarize, we’ve shown that micronuclei from mouse peripheral blood red blood cells can 
be sequenced, in bulk and from individual cells, and that the resulting data is highly informative 
with regards to the landscape of chromosome breakage. MN-seq and scMN-seq provide 
informative and straightforward approaches to study genome stability and can be applied in 
larger scales to many genetic backgrounds, genotoxic stresses and combinations thereof. A 
main strength of these approaches over alternatives is that they comprise in vivo methods for 
quantifying chromosome fragility genome-wide. A notable limitation is their specificity for 
anucleated RBCs. It is likely that the DNA sequences contained in micronuclei will differ among 
cell types, for example due to differences in chromatin structure or cell-type-specific activities of 
DNA repair pathways or responses to genotoxic stress. While it is feasible to separate 
micronuclei from main nuclei in other cell types, this is currently difficult to apply in an accurate 
and large-scale manner. Last, MN-containing erythrocytes are retained in peripheral blood of 
mice but are cleared more efficiently by the spleen in humans (35). Performing similar 
experiments in humans will thus require enrichment for reticulocytes, the recruitment of patients 
post-splenectomy, or working with other, nucleated cell types. 
 
MN-seq revealed a heterogenous landscape of chromosome fragility and chromosomal 
fragment retention. Long genes and gene-poor regions both emerge as central factors in 
chromosome fragility, while centromere presence and fragment length influence the fate of 
broken chromosomes. While common fragile sites (which are essentially re-discovered here in a 
systematic way) have previously been linked to long, late-replicating genes, MN-seq further 
provides a quantification of chromosome breakage rates genome-wide, revealing a new 
association with gene density. The fragility landscape and the tendency of chromosomal 
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fragments to be retained in micronuclei both differ between mouse strains. Since chromosomal 
breaks can lead to rearrangements and promote cancer, these strain differences are consistent 
with different genetic backgrounds having different cancer susceptibilities (for example, Chaos3 
mice have a strong tendency to develop sporadic mammary tumors (22)). Further studies are 
required in order to establish the pathways by which mutations in specific genes involved in the 
maintenance of genome stability influence the sites of chromosome breakage.  
 
 
 
Methods 
 
Mice 
All mice used for this study were handled following federal and institutional guidelines under a 
protocol approved by the Institutional Animal Care and Use Committee (IACUC) at Cornell 
University. The Chaos3 strain was previously described (15). Rad9aSA mice contain a serine to 
alanine mutation at residue 385 generated by CRISPR/Cas9 gene editing as to be described 
elsewhere and were maintained in a mixed FVB/NJ and C57BL/6J background. 
 
MN sorting 
Blood was collected from the submandibular vein of adult mice aged between 6-12 weeks old. 
Blood was collected into heparin-containing tubes and was fixed in pre-chilled methanol in -
80ºC. Blood cells were analyzed for MN presence following protocol described in Balmus et. al. 
(20). Briefly, cells were washed with sodium bicarbonate to remove methanol, stained with anti-
CD71 (Fisher #P01275F05) and treated with RNaseA (Sigma #45-R6513). Cells were 
subsequently washed and stained with propidium iodine (PI; Thermo Fisher #P3566) to 
visualize DNA. CD71-negative and PI-positive NCEs were isolated using a Sony MA900 cell 
sorter.  
 
MN-seq 
Following RBC sorting, DNA was extracted using the MasterPure™ Complete DNA and RNA 
Purification Kit (Lucigen) following the manufacturer’s instructions. DNA was then amplified 
using QIAseq Ultralow Input Library Kit (Qiagen) following the manufacturer’s instructions. 
Whole genome sequencing was performed using the Illumina NextSeq500 with 75bp reads. 
Sequencing reads were converted into non-mapped bam files and marked for Illumina adaptors 
and duplicate reads with Picard Tools (v1.138) (http://broadinstitute.github.io/picard/) commands 
‘FastqToSam’, ‘MarkIlluminaAdapters’, and ‘MarkDuplicates’. Bam files were aligned to mm10 
with BWA mem (v0.7.17).  
Samples were processed and sequenced in two separate batches. The first batch consisted of 
the following samples: FVB/B6 male (Rad9a WT; 44.14 million reads obtained); Rad9aSA male 
repetition 1 (32.23 million reads); Rad9aSA male repetition 2 (25.17 million reads); and Chaos3 
male (35.4 million reads). The second batch consisted of samples Rad9aSA female (24.26 
million reads); C3H female (Chaos3 WT; 24.23 million reads); and Chaos3 female (3.59 million 
reads). 
 
Data processing 
GC-corrected read depth data for each sample were generated via TIGER (28) using a read 
length of 100bp for alignability filtering and a bin size of 10Kb. The segment-filtering step utilized 
for GC correction in TIGER was not implemented (since the copy number across chromosomes 
is not uniform). Subsequently, every 20 TIGER windows were merged and the TIGER 
segment_filt function was applied with an R2 value of 0.01 and std threshold of 0.1. Following 
this filtering step, remaining segments shorter than 5 windows were also removed, as were 
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segments shorter than 20 windows that had either higher or lower copy number values than 
both of their flanking segments (i.e. represent an inconsistent change of copy number values 
along chromosomes). For the first and last segments on each chromosome, the latter criterion 
was replaced by whether the segments were different by more than one 0.3 copies from their 
adjacent segment. For the second sample batch, since the sequencing coverage was lower 
compared to the first batch (which resulted in a higher level of noise), a segment filtering std 
threshold of 0.3 (instead of 0.1) was used. In addition, since the Chaos3 female sample had yet 
lower coverage than others, we relaxed the R2 value to 0.05, the std threshold to 0.5, and did 
not apply the filter for segment that were inconsistent with their neighbors. Due to the relaxed 
data filtering of the Chaos3 female sample, we did not include it in the statistical analysis of 
slopes (Figures 4 and 6).  
 
Segment analysis 
Data was smoothed as in TIGER, with a smoothing parameter of 10-19. For each segment, the 
smoothed data was used to fit a linear polynomial curve, from which the slope of the segment 
was derived. 
 
Simulations 
A linear vector the length of 10,000 was used to simulate a chromosome, with 100 random 
locations initially chosen as break sites. Break sites were then adjusted based on the selected 
model: for a spike in break rate, 40% of break sites were removed and replaced with breaks 
clustered in proximity to each other; for a change in break rate, 75% of breaks were removed 
and replaced with breaks limited to the right half of the chromosome; for a region with no 
breaks, 150 breaks were simulated at random locations, sorted by position, and break indexes 
50-100 were removed. The fragments retained in MN were then simulated as follows: for 
centromeric fragments, the left end of the broken chromosomes was assumed as retained; for 
acentric fragments, the right end was retained; for random fragments, either the left or right 
fragment were randomly retained; for length-dependence of fragment retention, left fragments 
were retained if they were shorter than a selected length, and otherwise right fragments were 
retained. The locations of the breaks were plotted on the simulated chromosomes, and the 
expected MN fragment resulting from each break and retained in MN in the selected model was 
plotted as a line. To calculate the expected cumulative MN copy number values, the location 
indexes of all retained fragments were added and plotted. 
 
External data 
Genes and gene density were based on RefSeq genes (mm10). Early-replicating fragile sites 
were downloaded from Ref. (9). Replication timing data from Refs. (23, 28) was normalized to a 
zero mean and one standard deviation. Replication timing data for the X chromosome was not 
available. 
 
scMN-seq 
Sorted samples of each strain were processed using the 10x Genomics Single-Cell CNV kit on 
the Chromium Controller (10x Genomics, Pleasanton, CA, USA). Data was processed as 
described (34). Briefly, sequencing reads associated with each cell-specific barcode were 
counted in 20Kb windows. To account for low-level background, a minimum read threshold was 
set for each cell at the 10th percentile of per-window read count. A cell was determined to have 
a micronucleus if at least 10% of any chromosome had read counts above its minimum read 
threshold. Multiple barcodes associated with identical patterns of micronuclei were observed in 
Rad9aSA, and assumed to be a technical artifact. 
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