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Abstract 

 

 Genome wide association studies (GWAS) can play an essential role in understanding genetic 

basis of complex traits in plants and animals. Conventional SNP-based linear mixed models (LMM) used 

in many GWAS that marginally test single nucleotide polymorphisms (SNPs) have successfully identified 

many loci with major and minor effects. In plants, the relatively small population size in GWAS and the 

high genetic diversity found many plant species can impede mapping efforts on complex traits. Here we 

present a novel haplotype-based trait fine-mapping framework, HapFM, to supplement current GWAS 

methods. HapFM uses genotype data to partition the genome into haplotype blocks, identifies haplotype 

clusters within each block, and then performs genome-wide haplotype fine-mapping to infer the causal 

haplotype blocks of trait. We benchmarked HapFM, GEMMA, BSLMM, and GMMAT in both 

simulation and real plant GWAS datasets. HapFM consistently resulted in higher mapping power than the 

other GWAS methods in simulations with high polygenicity. Moreover, it resulted in higher mapping 

resolution, especially in regions of high LD, by identifying small causal blocks in the larger haplotype 

block. In the Arabidopsis flowering time (FT10) datasets, HapFM identified four novel loci compared to 

GEMMA’s results, and its average mapping interval of HapFM was 9.6 times smaller than that of 

GEMMA. In conclusion, HapFM is tailored for plant GWAS to result in high mapping power on complex 

traits and improved mapping resolution to facilitate crop improvement.   
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Introduction 

 Genome-wide association study (GWAS) presents a powerful tool to link genetic variations with 

phenotypic traits. In human studies, GWAS has been extensively employed to associate numerous genetic 

variants with candidate genes responsible for human diseases, some of which have become targets for 

medical interventions 1. For example, the identification of an androgen receptor (AR) gene through 

GWAS led to the development of therapeutic drugs for patients with prostate cancer 2. GWAS methods 

have also been used in plant studies to identify the genetic basis of certain agronomic traits (reviewed by 

3). There have been many successful applications including the identification of OsSPY for plant 

architecture in rice 4, metabolic genes for tomato flavor 5, and ZmFBL41 for blight resistance in maize 6. 

Although genetic associations in plants have been revealed through GWAS, serious limitations still exist 

in the current best practices, including insufficient power and poor biological interpretation 3,7 8,9.  For the 

most part, these limitations are due to the relatively small population size in plant studies, usually in the 

hundreds, reducing mapping power as compared to human GWAS analyses that may involve tens of 

thousands of individuals. 

 Mapping power is critical for understanding the genetic architecture of complex traits in GWAS. 

Many agronomic traits, such as yield, flowering time and disease resistance, are complex in nature 

involving many loci with variable effect sizes, some of which are difficult to be identified due to systemic 

issues in most plant GWAS datasets: small population size, existing confounding factors such as 

population structure and kinship between individuals, and a high levels of genetic diversity common to 

plant genomes 3,8.  Conventional SNP-based GWAS methods use linear mixed models (LMM) to account 

for population structure and kinship and then marginally regress individual variants to test for 

significance. A few variations of the LMM-based methods such as MLMM 10, SUPER 11 and FarmCPU 12 

have been proposed to increase mapping power. These GWAS models, however, still have insufficient 

power because true causal variants may have small effects, and the models lack power to detect minor 

effect loci because of the small population size. Moreover, a large number of variants causes multiple 

testing burden further reducing detection power 3. In human GWAS studies, SNP-set based GWAS 
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method, SMMAT 13 has been proposed to increase the mapping power by grouping nearby variants to 

aggregate small effects to reduce the number of tests. This method has yet to be evaluated in plant 

mapping studies. In the recent years, haplotype-based GWAS methods, such as RAINBOW 14 and FH-

GWAS 15, were developed which showed improvements in mapping power over SNP-based methods in 

plant datasets. These studies have demonstrated the feasibility of using haplotypes as variables to 

overcome issues in plant GWAS.  

In addition to mapping power, mapping resolution is another critical aspect of GWAS with small 

mapping intervals benefitting downstream experimental validation. Many plant species, especially those 

propagated via self-pollinating or vegetative cloning, have extensive LD block structures 16-18. For a 

significant locus in the high LD region, conventional GWAS methods identify variants with significant p-

values without differentiating causal from proximal variants. This can result in a large mapping interval 

spanning over dozens or hundreds of genes 3 19, greatly increasing the difficulty of downstream 

validations.  

A typical approach to increasing mapping resolution in plant mapping studies is to generate fine-

mapping populations to enhance recombination in the targeted region 20-22. This approach, however, is an 

escalation in time, sometimes years, and effort and an option that is not always feasible. Post GWAS 

analyses such as statistical fine-mapping models have been proposed in human genetics, which can 

leverage biological annotations to identify potential causal variants among linked genetic variants 23. 

These methods, however, restrict fine-mapping analyses to significant GWAS loci only, which limits 

their utility in plant studies. Similar to SNP-set based association methods, statistical fine-mapping 

methods have not been adequately evaluated in plant studies yet. 

As a result of the rapid growth in sequence-based resources, many plant species now, or in the 

near future, have extensive genomic resources available to complement the study of genetic basis of 

complex traits. In plants, complex variations, such as structural variation (SVs), are often the drivers of 

many quantitative traits, and genome-wide catalogs of SVs are fast becoming available for many plant 

species, including Arabidopsis 24, rice 25, tomato 26, soybean 27, maize 28 to name a few. Similarly, the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466332doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466332


availability of transcriptomic datasets can be utilized to identify gene expression changes that result in 

phenotypic alteration in plants 29. Yet, in the past, conventional plant GWAS methods have not been 

capable of incorporating these resources into the trait mapping pipeline. Therefore, a novel trait mapping 

framework that can systemically incorporate informative genomic, transcriptomic and other meta-datasets 

to increase mapping power would represent a significant improvement over current methodologies. 

 In this paper, we present a novel haplotype-based trait fine mapping framework, HapFM, that 

addresses limitations in plant GWAS methodologies. Unlike previous haplotype-based mapping 

algorithms, HapFM incorporates the use of unique haplotypes clusters based on historical recombination, 

rather than individual SNPs or uniform block partitioning of SNPs, to fit a genome-wide statistical fine-

mapping model. Furthermore, HapFM was designed to permit the systemically incorporate biological 

annotations such as SV and other biological elements to facilitate causal inference and biological 

interpretation of the mapping results. Compared to previous GWAS methods, HapFM resulted greater 

mapping power and smaller mapping intervals for complex traits with both simulated and real plant 

datasets. In addition, we demonstrated that it is possible to incorporate SV and functional annotation 

datasets into HapFM to further increase mapping power. Overall, HapFM achieves a balance between 

statistical power interpretability, and downstream experimental verifiability.  
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Results 

Overview of HapFM workflow  

 In this paper, we present a novel haplotype-based trait fine-mapping framework, HapFM, to serve 

as a powerful strategy for mapping complex traits(Figure 1). There are four steps in the HapFM 

framework: block partition, unique haplotype identification, haplotype clustering, and statistical fine 

mapping. In the block partition step, HapFM identifies genome-wide haplotype blocks based on LD 

information. In order to increase computation efficiency, HapFM utilizes a 2-step partitioning strategy. It 

first identifies large independent blocks which are defined as a set of adjacent SNPs with minimum 

pairwise LD (r2) greater than a pre-defined threshold (r2 = 0.1 by default). Next, HapFM partitions each 

independent block into sub-blocks using available block partition programs. The block partition step 

outputs non-overlapping SNP sets representing haplotype blocks in the genome.  

In the haplotype identification step, HapFM enumerates a set of unique haplotypes in each block 

based on phased SNP genotypes. If the number of unique haplotypes exceeds the user-defined threshold 

(n = 10 by default), HapFM will cluster unique haplotypes to reduce the number of variables in the 

mapping step. After the haplotype clustering step, HapFM outputs a haplotype design matrix which will 

be used for statistical fine mapping. The haplotype design matrix also has the same format as the 

conventional SNP genotype matrix, therefore it is compatible to current GWAS methods as well.  
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Figure 1. The workflow of haplotype-based trait fine mapping (HapFM). HapFM consists of four 

steps: genome-wide haplotype block partition, unique haplotype identification, haplotype clustering, 

and causal haplotype identification. Biological features, such as structural variations, functional 

annotations, signals of selection, etc. can be incorporated into the fine mapping model. The y-axis of 

Manhattan plot generated by HapFM is block pip, indicating causal probability. The size of the dots 

indicates the effect size of the block.  

 

 In the genome-wide statistical fine mapping step, HapFM follows a linear mixed model (LMM) 

and a hierarchical Bayes inference framework to infer the causal relationship between haplotype blocks 

and the phenotype. Upon availability, HapFM can also incorporate existing biological evidence to model 

the prior probability of causality for each haplotype block. The fine-mapping model accounts for the LD 

between haplotype blocks, and therefore the result suggests the causal instead of association relationship 

with the phenotype. 

 

Block partition and haplotype clustering algorithms  
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 Various algorithms were benchmarked to assess the robustness of block partitioning and 

haplotype clustering steps used in HapFM.  Four clustering methods: affinity propagation 30, X-means 31, 

KNN-spectral clustering and local-spectral clustering 32, were first benchmarked for the clustering step. A 

high haplotype diversity dataset was simulated to contain, on average, 500 blocks and 15 unique 

haplotypes derived from three founder haplotypes in each block.  Both low and high polygenicity trait 

datasets were tested for comparative purposes. Comparable mapping power was found for the low 

polygenicity simulations and none of the clustering methods consistently outperformed the others (Figure 

2a, Supplemental Figure 1a). In the high polygenicity datasets, affinity propagation and X-means 

clustering methods consistently resulted in higher mapping power than KNN-spectral and local-spectral 

clustering (Supplemental Figure 1b). Different clustering algorithms resulted in similar true positive rate 

in both low and high polygenicity simulations (Supplemental Figure 2). Affinity propagation gave 2.7 

times more clusters than X-means in real data analyses, which costs longer computational time in the 

mapping step (Supplemental Table 1). Overall, considering user-friendliness, mapping power, and 

computational time, X-means was found to be more favorable than the other three cluster methods tested.   

 Next, we compared three different block partition algorithms -- BigLD, Plink, and a uniform 

partition method -- with the simulated ground truth for block partition accuracy. BigLD and Plink 

generated outputs closer to the true partitions in the low haplotype diversity setting while BigLD 

outperformed Plink when analyzing high diversity simulations, whose genome partitions were numerous 

small blocks that failed to capture local LD structures (Supplemental Figure 3). Uniform partitioning 

underperformed in both datasets suggesting that the fixed size of blocks was a poor reflection of the 

underlying LD structure.  

We then compared the trait mapping power using haplotype blocks identified by each method in 

simulated datasets. The simulated datasets covered both low and high haplotype diversity and trait 

polygenicity, and four types of QTL architectures which represented different numbers of major and 

minor effect alleles in each locus (Figure 2a). Minor mapping power differences were found between 

BigLD and Plink blocks in the low haplotype diversity simulations. When the trait polygenicity was low, 
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BigLD blocks consistently resulted in higher or comparable mapping power than that of Plink blocks in 

all four QTL architectures (Supplemental Figure 4a). When the trait polygenicity was high, BigLD blocks 

resulted in higher mapping power than that of Plink blocks in QTL architecture 1 and 3 scenarios, and 

comparable mapping power in the QTL architecture No. 2 and 4 scenarios (Supplemental Figure 4b). The 

mapping power of BigLD blocks was similar to ground truth blocks, and uniformed partition blocks had 

the lowest mapping power consistently.  

Major mapping power differences were found between BigLD and Plink blocks in the high 

haplotype diversity simulations. BigLD blocks consistently resulted in higher mapping power than that of 

Plink blocks in all four QTL scenarios in both low and high polygenicity simulations (Figure 2b, 2c). 

Plink blocks resulted in similar mapping power as that of uniform partitions. 

 

 

Figure 2. Simulation schemes and mapping power comparison of different block partition 

algorithms.  

 (a) Four types of QTLs simulated in the datasets. The effect of QTL1 is contributed by one 

large effect SNP. The effect of QTL2 is contributed by several minor effect SNPs which are not on 
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the same haplotypes. The effect of QTL3 is contributed by two modest effect SNPs which are not on 

the same haplotype. The effect of QTL4 is contributed by a mixture of modest and small effect SNPs 

that are not on the same haplotypes. (b) Mapping power comparison (FDR < 0.05) of block partition 

algorithms in the low haplotype diversity and high polygenicity simulations. The x-axis indicates the 

per-locus heritability. (c) Mapping power comparison (FDR < 0.05) of block partition algorithms in 

the high haplotype diversity and high polygenicity simulations. The x-axis indicates the per-locus 

heritability. 

 
 

 

GWAS algorithms on simulated datasets 

 Four GWAS algorithms: GEMMA, HapFM, BSLMM, and GMMAT, were studied for true 

positive rate, mapping power, and interval length in simulated datasets. When the trait polygenicity and 

haplotype diversity were both low, GEMMA consistently gave the highest mapping power and smallest 

standard deviation in the low haplotype diversity simulations. HapFM and GMMAT provided comparable 

mapping power to GEMMA in QTL architecture 2, and both HapFM and GMMAT displayed similar 

mapping power in all four QTL architectures. BSLMM consistently resulted in the lowest mapping power 

(Supplemental Figure 5a). GEMMA, HapFM, and GMMAT resulted in similar true positive rates, which 

were significantly higher than that of BSLMM (Supplemental Figure 6a).  

 When the trait polygenicity was low and haplotype diversity was high, GEMMA resulted in the 

highest mapping power and smallest standard deviation in QTL architectures 1, 3, and 4. HapFM resulted 

in similar mapping power to GEMMA in QTL architecture 2 and HapFM consistently resulted in higher 

or similar mapping power than GMMAT in four QTL scenarios. BSLMM consistently resulted in the 

lowest mapping power, but its mapping power was increased in the high diversity simulations compared 

to the low haplotype diversity simulations (Supplemental Figure 5b). HapFM resulted in higher true 

positive rate than GEMMA and GMMAT in QTL architecture 1, and the true positive rates of the three 

were comparable in QTL architectures 2, 3, and 4.  

 When the trait polygenicity was high, HapFM consistently resulted in the highest mapping power 

in all four QTL architectures in both low and high haplotype diversity simulations (Figure 3). As 
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expected, the mapping power of HapFM decreased in the low diversity simulations. The true positive rate 

of HapFM was consistently higher than or similar to those of GEMMA, GMMAT, and BSLMM 

(Supplemental Figure 7).  

 

Figure 3. Mapping power comparisons of different GWAS algorithms in the high polygenicity 

simulations. The x-axis indicates the per-locus heritability.  

(a) Mapping power comparisons (FDR < 0.05) of different GWAS algorithms in the low haplotype 

diversity and high polygenicity simulations. (b) Mapping power comparisons (FDR < 0.05) of different 

GWAS algorithms in the high haplotype diversity and high polygenicity simulations.  

  

The mapping interval length of significant loci of GEMMA resulted in higher variation than those of 

HapFM, BSLMM, and GMMAT in all trait polygenicity and haplotype diversity simulations. When the 

trait polygenicity was low, the average interval length of GEMMA significant loci was 29.53 times higher 

than that of HapFM in the low haplotype diversity simulation. Similarly, the average interval length of 

GEMMA significant loci was 23.32 times higher than that of HapFM (Figure 4a) in the high haplotype 

diversity simulation. When the trait polygenicity was high, the average interval length of GEMMA 

(a) QTL architecture 1 QTL architecture 2 QTL architecture 3 QTL architecture 4 

(b) QTL architecture 1 QTL architecture 2 QTL architecture 3 QTL architecture 4 
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significant loci was 15.19 times higher than that of HapFM in the low haplotype diversity simulations. 

The average interval length of GEMMA significant loci was 13.32 times higher than that of HapFM in the 

high haplotype diversity simulations (Figure 4b). The median interval length of GEMMA was not 

significantly different from that of HapFM (median test, p-value 0.37). In addition, the variance of the 

interval length of significant loci of GEMMA was significantly higher than those of the other three 

GWAS algorithms in all the simulations (Supplemental Table 1).  

 

 

Figure 4. Mapping interval comparisons of different GWAS algorithms in the simulations. The interval 

length ratio was calculated by normalizing to the average HapFM’s interval length. The red dash line 

indicates the average interval length of significant signals identified by HapFM.  

(a). Interval length of significant loci (FDR < 0.05) identified by different GWAS algorithms in the low 

polygenicity simulations. (b). Interval length of significant loci (FDR < 0.05) identified by different 

GWAS algorithms in the high polygenicity simulations 
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 Five plant GWAS datasets -- Arabidopsis flower time, rice heading time, cassava HCN content, 

tomato metabolite concentration, and maize height -- were used to benchmark the performance of HapFM 

as compared to the other GWAS algorithms (Table 1). HapFM identified the most significant loci 

compared to the other GWAS algorithms in the Arabidopsis flowering time (FT10) dataset (Figure 5). 

HapFM first partitioned genome into 48,171 haplotype blocks, out of which it identified 82,431 haplotype 

clusters. The average and median of block length were 2,803 nt and 457 nt, respectively. In the haplotype 

fine mapping step, HapFM identified seven significant loci (FDR < 0.05). GEMMA identified five 

significant loci (FDR < 0.05), out of which three loci were shared with HapFM results. The locus on Chr5 

(most significant SNP: 5@3161477) was also detected by HapFM but slightly missed the significant FDR 

cutoff (FDR = 0.07). GMMAT identified two significant loci and both of them were identified as 

significant by HapFM and GEMMA. BSLMM identified one significant locus also discovered by HapFM 

and GEMMA. HapFM identified four loci: Chr3@7598564-7598957, Chr4@405136-406621, 

Chr5@14063228-14197451, and Chr5@16141604-16146257 that were unique to HapFM algorithm. In 

these unique intervals, flowering time related candidate genes were identified in or near those loci. In the 

Chr3@7598564-7598957 locus, there is no gene in the interval but an adjacent proximal gene 

AT3G21570 located 1.3kb away, was previously shown to be exclusively expressed in the developing 

flowers with transcriptomic changes during pollen germination and tube growth in Arabidopsis 33. The 

Chr4@405136-40662 interval overlaps with AT4G00950 (MEE47), a gene that is highly expressed in 

mature flowers and required for female gametophyte development and function in Arabidopsis 34 35. In the 

Chr5@14063228-14197451 interval, there are 30 protein-coding genes. Multiple candidate genes in the 

interval, such as AT5G36110, AT5G35926, AT5G35995, have been shown to be highly expressed in 

different flower stages and tissues 36. The Chr5@16141604-16146257 locus overlaps with AT5G40360 

(MYB115), a gene was shown to be highly expressed during flowering stages and mature flowers and its 

overexpression promotes vegetative-to-embryonic transition in Arabidopsis 37.  

In addition to having the highest mapping power, HapFM also mapped significant loci to the smallest 

genomic intervals in most cases. For example, HapFM, GEMMA, and BSLMM all identified the same 
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significant locus, FT locus, on Chromosome 1 (Figure 5). The interval length of the locus identified by 

GEMMA and BSLMM are both 21.9kb while the interval length of the locus identified by HapFM is 

2.7kb. On average, the average interval length of significant loci identified by HapFM and GEMMA was 

24.8kb and 237.8kb, respectively (Table 1). The average number of SNPs per significant locus identified 

by HapFM and GEMMA was 28 and 105, respectively. Similar results were found in the other four real 

plant GWAS datasets (Table 1). HapFM consistently resulted in similar or higher number of significant 

loci than GEMMA, BSLMM, and GMMAT. In addition, the mapping interval of HapFM is considerably 

smaller than GEMMA in all the comparisons.  

 Using the Arabidopsis flowering time dataset, a proof-of-concept study demonstrated that 

biological annotations could be incorporated (HapFM-anno) and potentially increase mapping power. The 

biological-informed prior probability for each haplotype block was calculated using eight biological 

annotations. In this example, the biological annotations were the number of CNV, INDEL, rare variants, 

high effect variants, moderate effect variants, low effect variants, and modifier variants in each block. The 

estimated effect size of biological annotations suggested the number of CNV in each block significantly 

affected the prior probability of each haplotype block (Figure 6a). HapFM-anno identified nine significant 

loci in total using biological-informed priors (Figure 6b,c). Five out of nine were also identified 

previously without biological annotation incorporated. HapFM-anno identified four novel loci: 

Chr1@7884994-7886542, Chr1@11474330-11475120, Chr1@25408933-25429985, and 

Chr5@23204856-23205070 (Figure 6b). The interval Chr1@7884994-7886542 is at the upstream region 

of gene AT1G22330 that is highly expressed in mature flowers 36. The interval Chr1@11474330-

11475120 is at the upstream of the gene AT1G31940 that is highly expressed in mature flowers 36 and 

involved in seed germination 38. The locus Chr1@25408933-25429985 overlaps with ten genes. Multiple 

candidate genes in the interval, such as AT1G67780 and AT1G67790, have been shown to be highly 

expressed during petal differentiation and expansion stage 36. The locus Chr5@23204856-23205070 

overlaps with the gene AT5G57280 that has been shown to be highly expressed in different flower tissues 

36 and pre-meristematic cell-mound formation during shoot regeneration 39. Two HapFM identified loci: 
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Chr5@14063228-14197451 and Chr5@16141604-16146257, were not significant after incorporating 

biological annotations. 
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Figure 5. Manhattan plots of different GWAS methods on the Arabidopsis flowering time (FT10) 

dataset. The red dash line indicates the FDR 0.05 threshold. In the HapFM’s plot, the size of the dots 

indicates the estimated effect size of the block.  

 

 

 

 

Table 1. Summary of GWAS results on the five real plant datasets. 

 
  

Phenotype Dataset Block number GWAS algorithms
# of significant loci 

(FDR < 0.05)

Avg. significant locus 

length (nt)

Avg. # of snps per 

locus

Arabidopsis 

Flowering

1003 individuals  

1.12M SNPs 
48,171

HapFM 7 24,780 28

GEMMA 6 237,772 105

BSLMM 1 21,863 80

GMMAT 2 10,110 27

Rice Heading 

Time

529 individuals     

1.43M SNPs
14,301

HapFM 20 236,200 63

GEMMA 10 2,024,412 517

BSLMM 1 53,189 43

GMMAT 4 249,122 66

Cassava HCN
1134 individuals  

24.75K SNPs
9,112

HapFM 3 62,018 44

GEMMA 4 1,068,992 348

BSLMM 0 NA NA

GMMAT 2 71,044 32

Maize Height
263 individuals  

23.09M SNPs
98,723

HapFM 10 398,161 62

GEMMA 0 NA NA

BSLMM 0 NA NA

GMMAT 2 312,091 70
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Figure 6. Arabidopsis flowering time GWAS results using biological-informed priors (HapFM-anno). 

(a) The estimated effect sizes of different biological annotations for the Arabidopsis flowering time 

dataset. (b) The comparison of significant loci identified with and without incorporating biological 

annotations. (c) Manhattan plots HapFM-anno on Arabidopsis flowering time (FT10) dataset. The red 

dash line indicates the FDR 0.05 threshold. The size of the dots indicates the estimated effect size of 

the block.  
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Discussion 

 

 GWAS has emerged as a critical approach to understanding the genetic architecture of complex 

traits and diseases especially in medical studies. Its utility in plant studies has been limited by a dearth of 

suitable genomic datasets. Yet, as the volume of plant genomic and phenotypic datasets increase, GWAS 

will begin to take on a more significant role as it does in human studies. SNP-based LMM and its variants 

are commonly used but often underpowered in plant GWAS studies due to limitations in the study 

designs and the high complexity nature of agronomic traits 3,40. Conventional GWAS methods use LMM 

to identify significant SNPs by marginally testing one SNP at a time without considering LD between 

proximal SNPs.  

There may be reasons why a conventional GWAS approaches may not be the most suitable model 

for plant GWAS. Plant GWAS generally have a small population size, a magnitude or two smaller than 

most human GWAS. In these circumstances, when an individual SNP has a large effect size, marginal 

regression can successfully identify it together with its in-LD SNPs and results in a significant peak in the 

Manhattan plot even in small GWAS populations. For instance, conventional GWAS methods have been 

used in small populations to map traits contributed by large-effect loci, such as qualitative resistance 41, 

plant architecture 4, metabolic pathways 5. On the other hand, conventional GWAS methods often struggle 

to map traits contributed by numerous small-effect loci in populations of limited size. For example, 

significant SNPs identified by an LMM-based GWAS method, FarmCPU, only explained 15% of the 

phenotypic variation in a Sclerotinia resistance in soybean42. This result is consistent with our simulation 

results that GEMMA, a representative of conventional LMM-based GWAS method, that correctly 

identified large-effect loci in low-polygenicity traits while failing to identify small-effect loci in high 

polygenicity traits. One way of increasing mapping power is to increase sample size in GWAS. For 

example, in human height GWAS, 253,288 individuals were analyzed identifying 423 loci, with the 

majority loci contributing less than 1% of the total heritability 43.  Aggregating SNP effects is another way 

of increasing mapping power, such as SNP-set based method. This assumes that there may exist more 
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than one causal SNPs in the SNP-set. HapFM follows a similar strategy by projecting SNPs on haplotypes 

and then testing the effect sizes of haplotypes rather than individual SNPs. In addition, using haplotypes 

as variables also includes cis-interaction between SNPs, which is generally missing in SNP-based LMM 

models.  

           The second reason conventional GWAS models are underpowered is that a large number of SNPs 

cause multiple testing burdens in the marginal regression. As sequencing cost continues to decrease, 

however, genotyping a GWAS cohort by whole genome sequencing has become more affordable than 

ever before. When WGS datasets are used in plants, the high levels of genetic diversity of many plant 

species create datasets whereby millions of SNPs / INDELs can be identified in individuals, especially 

when including wild relatives 44. This excessively large number of SNPs can affect the power of 

conventional SNP-based LMM methods because significance is tested on individual SNPs with overall 

significance calculated with cutoffs to control type I error. The overall significance cutoff will be more 

stringent as the number of SNPs increases in the analysis, significantly reducing the power of 

conventional SNP-based GWAS methods, such as GEMMA, GAPIT, and FarmCPU. A common solution 

to the multiple testing issue is to select a subset of representative SNPs for each LD block, also known as 

“tag SNPs”, to reduce the number of tests in the analysis.  This method assumes, however, that the causal 

SNPs are in LD with the tag SNPs 45 46.  This can be problematic since the selection of the representative 

SNP is arbitrary involving choosing parameters for LD cutoff and physical distance. Moreover, 

information about other SNPs is lost with this method, such as the number of causal SNPs, LD structure 

between nearby SNPs. As discussed below, HapFM solves the multiple testing problem by combining 

SNPs into haplotypes, which greatly reduced the total number of variables in the model.  

 Another limitation of conventional GWAS methods is the interpretability of mapping results, 

including mapping interval and relevant biological information. Domestication and modern breeding 

result in large LD blocks in many crop genomes 47 and most conventional GWAS methods marginally test 

each SNP marker without considering the LD between nearby SNPs. Therefore, a bundle of proximal 

SNPs may pass the significance threshold simply due to strong regional LD, resulting in a large 
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significant peak in the Manhattan plot. This is especially problematic when the mapping interval of the 

locus is defined as the boundary where LD decays below a threshold (r2 < 0.1). In a region with high LD, 

the mapping interval could span hundreds of genes and compounding the difficulty downstream 

experimental validation 3,8,23. A common practice to increase mapping resolution in the high LD region in 

many plants is to generate a fine-mapping population to further reduce LD by introducing recombination 

into the region 48. Nevertheless, developing a fine-mapping population is labor-intensive and at a high 

cost, which largely limits its application. Mapping resolution can also be improved by performing 

statistical fine-mapping in the region to identify a credible set of SNPs with a high probability containing 

the true causal SNPs. Statistical fine-mapping methods has been successfully used in human genetic 

studies to narrow down the list of causal SNPs 49 50. One limitation of this method, however, is that it is 

locus-specific rather than genome-wide due to high computation intensity. Also, biological interpretation 

of the SNPs in the credible set may be ambiguous because they may not be obvious functional variants. 

HapFM leverages the combination of genome-wide haplotype block fine-mapping with statistical 

fine-mapping to identify causal haplotype blocks. When possible, HapFM partitions large independent 

blocks into smaller and correlated blocks to further increase mapping resolution. LD information between 

small blocks is then used to identify the causal blocks. The causal block identified provides a reduced 

interval for the identification of functional variants. One limitation of this method, however, is that 

structural rearrangements, such as inversion, may result in the location of functional variants outside of 

the identified causal blocks.  

           Comparison with other GWAS methods in the simulation and real datasets showed that HapFM 

could greatly increase mapping resolution and achieve higher mapping power with complex traits.  This 

indicates that HapFM may greatly improve current mapping efforts and perhaps serve as an alternative 

GWAS strategy in plant studies. Our results show that HapFM generated smaller mapping intervals than 

GEMMA, especially in regions of high LD in the simulation studies. HapFM consistently mapped traits 

to a smaller interval with fewer candidate genes than GEMMA. These results suggest that HapFM is 

capable of addressing the previously mentioned limitations found in many plant GWAS studies. In low 
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polygenitcity simulations, GEMMA showed higher mapping power than HapFM, suggesting GEMMA, 

or SNP-based LMM models in general, would provide a powerful method for mapping simple traits 

contributed by major effect loci. Therefore, the choice of the mapping algorithms may be determined by 

the genetic architecture of the traits. Other methods, such as GMMAT and BSLMM, consistently 

underperformed in both the simulation and actual plant datasets. Therefore, optimization of the models is 

necessary for better plant applications. 

 A similar haplotype-based method, FH-GWAS 15, has been developed which demonstrates an 

advantage of using haplotypes over SNP as variables by aggregating local epistatic effects. In our study, 

FH-GWAS and HapFM identified more significant loci than conventional SNP-based methods on the 

same Arabidopsis FT10 GWAS dataset (Supplemental Table 1). Overall, HapFM identified two more 

significant loci than FH-GWAS in the Arabidopsis FT10 GWAS dataset. The improved mapping power 

may be due to the following reasons. HapFM has benchmarked different block partitioning algorithms 

and showed the advantages of non-uniform LD-based partitioned using BigLD over uniform partitioning 

and PLINK partitions. HapFM goes further by performing haplotype clustering instead of using unique 

haplotypes, reducing the number of variables in the final model, and increasing the power of low-

frequency haplotypes. Finally, HapFM uses the full model instead of marginal regressing haplotypes 

methods used in most haplotype-based GWAS methods, such as FH-GWAS and RAINBOW 14. The full 

model doesn’t need to estimate the kinship between individuals, and the output results from HapFM 

indicate causal signals. Last but not least, HapFM can use biological-informed priors for different 

genomic regions, which could further improve its mapping power. 

 One limitation of HapFM is its high computational time. This computational cost is determined 

by factors including the number of blocks in the genome, the sensitivity of haplotype clustering, and the 

number of MCMC iterations. HapFM uses the full model rather than marginal regression to infer the 

causality of each block. The more blocks partitioned, the more variables will be included in the fine-

mapping model, which essentially increases resolution at the expense of computational intensity. 

Similarly, failing to cluster haplotypes will also increase the number of variables in the model. HapFM 
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uses MCMC for parameter inference, and the number of iterations for MCMC to reach convergence is 

random and highly variable. In addition, a large number of iterations is necessary to reduce the standard 

error of the estimates. These factors all contribute to the high computational time of HapFM. 

 Future improvements on HapFM include, but are not limited to, optimization in block partition 

and haplotype clustering algorithms and reducing computation time in the MCMC step. Moreover, as 

more and more plant species now have a pan-genome reference showing complex structural variations in 

different individuals 51, a pan-genome compatible trait mapping algorithm will be in high demand in the 

near future. The conventional SNP-based marginal regression models may struggle to be applied to the 

pan-genome reference because different reference genomes will output different sets of SNP genotypes as 

well as structural variations. HapFM has an advantage in pan-genome-based trait mapping because it uses 

haplotype as variables, defined by SNPs and structural variations. In addition, different reference 

genomes increase the accuracy and resolution of haplotype identification by providing extra information. 

The application of HapFM on pan-genome references is still under development. 

 In conclusion, we have developed a novel GWAS algorithm, HapFM, to address specific issues in 

plant studies. We demonstrated that HapFM showed advantages in shorter mapping intervals and higher 

mapping power than conventional GWAS methods in simulation and actual plant datasets. These results 

suggested that HapFM is a reliable alternative GWAS algorithm, and it supplements the current GWAS 

methods to facilitate the understanding of genetic architecture of traits.   

   

 

Material and Methods 
 

Genome-wide haplotype block partition 

HapFM first performs genome-wide block partitioning, outputting sets of non-overlapping SNPs 

using LD between SNPs as the partitioning metric. Previous studies have demonstrated that given the 

genotype data of a population, the linear reference genome can be divided into blocks with limited 
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haplotype diversity, also known as haplotype blocks 52. HapFM utilizes a 2-step partitioning strategy to 

achieve high computation efficiency. The first step identifies large independent blocks which are defined 

as a proximal set of SNPs with minimum pairwise LD (r2) that are larger than a pre-defined threshold 

(r2=0.1 by default). A maximum distance threshold between SNP pairs is also set to avoid unrealistically 

large blocks caused by randomness. The second step in the partitioning process identifies sub-block 

structures within the large independent block by using existing block partition algorithms. The current 

version of HapFM has the choice of three block partition algorithms -- Uniform partition, PLINK 53 and 

BigLD 54. Users can also input their own block partitions.  

 

Haplotype clustering 

After the block partition step, HapFM performs haplotype clustering on the unique haplotypes 

present in each haplotype block. In this clustering step, HapFM first enumerates all of the unique 

haplotypes in the block. When the number of unique haplotypes exceeds the user-defined threshold (n = 

10 by default), HapFM will perform haplotype clustering to reduce the number of variables in the 

mapping step. For a block containing h unique haplotypes characterized by s SNPs, HapFM uses the SNP 

indicator matrix (ℎ × 𝑠) as input for the clustering algorithms. HapFM currently has implemented four 

clustering methods: affinity propagation, X-means, local scaling (LS)-spectral clustering and K-nearest 

neighbor (KNN)-spectral clustering. Affinity propagation was implemented using 

sklearn.cluster.AffinityPropagation function from the scikit-learn package (0.23.2). X-means was 

implemented using the X-Means function from the Pyclustering library 55. LS-Spectral clustering and 

KNN-Spectral clustering were implemented using in-house python scripts.  

 

Genome-Wide Haplotype Fine Mapping Model 

The genome-wide haplotype fine mapping model follows a linear mixed model (LMM) and a hierarchical 

Bayes inference framework: 
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𝑦	 = 	𝐂𝛼	 + 	𝐇𝛽	 + 	𝜖, 

where y is a length 𝑛	vector of phenotypic values; C is an 𝑛 × 𝑐 matrix of covariates, 𝛼 is a length c 

vector containing the fixed effects of covariates; H is an 𝑛 ×𝑚 design matrix indicating the counts of 

haplotype (clusters); 𝛽 is a length 𝑚 vector of random effects of haplotype (clusters); 𝜖 is a length n 

vector of random residual effects. The prior distribution for effect size 𝛽 is shown as below: 

𝛽	~(1 − 𝜋)𝑁(0, 𝛿!") + 	𝜋𝑁(0, 𝛿#"), 
 

𝛽$ 	|	𝛾$ ∼	>
𝑁(0, 𝛿!")							if	𝛾$ = 0
𝑁(0, 𝛿#")							if	𝛾$ = 1

, 

𝛾$ 	~	Bernoulli(𝜋), 

𝛿#%"	~	Gamma(a, b), 

𝛽&'& = 	Ε(	𝛾	|	y, 𝐇) 
 

 As shown in the model, the haplotype effect sizes follow a mixture of normal density with mean 0 

and variance 𝜎#" and a normal density with variance 𝜎!" pre-specified close to 0. The latent variable 𝛾 

encodes the components whose corresponding effect size come from 𝑁(0, 𝜎#") . The inference was 

performed using an in-house Gibbs sampler, and the posterior inclusion probability (PIP) of each 

𝛽	indicates the inferred probability of the haplotype block being causal.   

 The parameter 𝜋 suggests the prior probability of causality for each haplotype block. If 

annotation is not provided, the model assumes every haplotype block has the same prior probability for 

causality. If biological annotations are provided, the causal probability of each haplotype block will be 

inferred by fitting it into the following Probit model: 

Φ%#	[𝑃(𝛾$ = 1)] = 𝐀( 	𝜃, 

where Φ%#is the inverse of cumulative distribution function of a standard normal distribution, 𝐀 is the 

matrix containing the annotation features, and 𝜃 is the vector of effect size corresponding to each 

biological annotation. The inference of 𝜃 follows the data augmentation method from 56.  
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Simulation analyses 

 Simulation datasets were generated to compare different block partition and haplotype clustering 

algorithms implemented in the HapFM framework and to benchmark the mapping performance of 

HapFM against conventional GWAS methods.  

In genotype simulation, populations with 500 individuals were simulated to contain 100 large 

independent blocks in the genome. In each large independent block, the number and the size of sub-

blocks, s, was sampled from the Uniform (1, 10) distribution and Uniform (10, 100) distribution, 

respectively. The number of haplotype clusters, hc, in each sub-block was randomly sampled from a 

Uniform (2, 4) distribution. Haplotype diversity, d, is a parameter to simulated different diversity of the 

simulated population. The total number of unique haplotypes, h, was calculated as ℎ) × 𝑑.	Random 

mutations were then introduced to haplotype clusters to generate unique haplotypes. The unique 

haplotype matrix 𝑍*×, encompassed the SNP features of all the haplotypes in the block. The haplotype 

frequencies, 𝑓*, were calculated by solving the linear equation:   

𝑓, = 𝑍𝑓* 

whereby the 𝑓,	is a vector of the minor allele frequencies in the block randomly sampled from a Uniform 

(0.05, 0.95) distribution. The haplotypes were then sampled from a Multinomial (2, 𝑓*) to generate the 

genotype of the block for each individual.  

 The phenotype of the population was simulated using the following equation: 

𝑦	 = 	𝑪𝛼	 + 	𝑿𝜂	 + 	𝜖, 

whereby the coefficients 𝛼 were sampled from a Uniform (-1, 1) distribution, and the entries in the 

covariate matrix C were sampled from a Uniform (-5, 5) distribution. 𝑿 represents the simulated SNP 

genotype matrix. 𝜂 represents the SNP effect sizes which was simulated in a hierarchical manner: casual 

blocks and casual SNPs in the block. At the block level, the probability, 𝜋- , of a block containing true 

causal SNPs was simulated at 0.005 and 0.05. and the block effect size 𝜂-! were simulated ranging from 
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0.5 to 3. Under each true causal block, four types of architectures of true causal SNPs (𝜆$ = 1) were 

simulated (Figure 1a): 

(1) Architecture No.1: one large effect causal SNP; 

(2) Architecture No.2: Five or six small effect causal SNPs randomly assigned to haplotypes;  

(3) Architecture No.3: two moderate effect causal SNPs assigned to different haplotypes;  

(4) Architecture No.4: mixture of large and small effect causal SNPs randomly assigned to 

haplotypes; 

For each architecture, SNP-level effect size, 𝜂$ , was assigned to each individual causal SNP based on the 

equation 𝛽-! =	∑ 𝛽$	𝚰(𝜆$ = 1)/0&"	∈	-! , where 𝚰 is the indicator function. The effect sizes of non-causal 

SNPs were randomly sampled from the Normal (0, 0.0001) distribution.  

 

Processing of real datasets 

 In real data analyses, five existing datasets were used to demonstrate the performance of HapFM 

on various types of genetic architectures and LD structures, and benchmark it with other GWAS method.  

These datasets were an Arabidopsis flowering time dataset (FT10) 57, tomato metabolite 58, rice yield 59, 

maize height 60 and a cassava HCN content 61. The Arabidopsis flowering time GWAS dataset included 

genotype information from two previously published datasets: Arabidopsis Regmap 62 and 1001 

Arabidopsis genome 63. In the 1001 Arabidopsis genotype dataset, non-biallelic SNPs and SNPs with 

missing percentage greater than 20% were filtered out giving a total of 8,231,757 remaining SNPs. In the 

Regmap genotype dataset, SNPs that are not in LD (R2 < 0.1) with nearby 20 SNPs we filtered out 

leaving 202,339 remaining SNPs, 170,977 of which were also included in the filtered 1001 Arabidopsis 

genotype dataset.  The overlapping SNPs were used as the reference panel for imputation using Beagle 

4.1 64 to impute missing data and phased genotypes by following a 2-step imputation procedure 44. After 

imputation and phasing, SNPs with a minor allele frequency (MAF) < 0.05 and those that were not in LD 

with nearby 20 SNPs were removed resulting in a 1,013,248 final SNPs dataset. Next, genome-wide LD 
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pruning was performed on the filtered genotypes using PLINK with parameter set as --indep-pairwise 

1000 100 0.1 65. Finally, principal component analysis (PCA) was performed on LD-pruned SNPs and the 

first five PCs were used as covariates to adjust for population structure.  

 The tomato fruit metabolic GWAS dataset was downloaded from published data 58. The genotype 

data of the 441 tomato accessions were processed according to Wu et al. published workflow 44. A total of 

3,281,705 SNPs were kept after filtering out SNPs with MAF < 0.05 and SNPs that were not in LD (r2 < 

0.1) with nearby 20 SNPs. Genome-wide LD pruning was then performed using PLINK with parameter 

set as --indep-pairwise 1000 100 0.1 and remained 7,747 LD-pruned SNPs. The first two PCs were used 

as covariates to adjust for population structure. The concentration of SlFM0969 metabolite, Apigenin 7-

O-glucoside, was used for the phenotype in the analysis.  

 The genotype and yield phenotype datasets of 295 rice individuals were downloaded from Rice 

Variation Map ( http://ricevarmap.ncpgr.cn/ ) 66. Beagle 4.1 was used to impute missing data and to phase 

genotypes. A total of 1,017,380 SNPs were used for GWAS analysis after removing SNPs with MAF < 

0.05 and SNPs that were not in LD (r2 < 0.1) with nearby 20 SNPs. Genome-wide LD pruning was then 

performed on the filtered rice genotypes using PLINK with parameter set as --indep-pairwise 1000 100 

0.1 and remained 12367 LD-pruned SNPs. PCA was performed on LD-pruned SNPs and the first two 

PCs were used as covariates to adjust for population structure. 

 The genotype information and HCN content of 1239 cassava accessions were obtained from a 

published dataset 61. A total of 16596 SNPs were kept for GWAS analysis after filtering out SNPs with 

MAF < 0.05 and SNPs that were not in LD (r2 < 0.1) with nearby 20 SNPs. Genome-wide LD pruning 

was then performed using PLINK with parameter set as --indep-pairwise 1000 100 0.1 and remained 826 

LD-pruned SNPs. PCA was performed on LD-pruned SNPs and the first 10 PCs were used as covariates 

to adjust for population structure. 

 The maize HapMapV3.2.1 genotypes and 263 plant height phenotypes were downloaded from 

Panzea ( https://www.panzea.org/ ). Beagle 4.1 was used to impute missing data and to phase genotypes. 

A total of 23,093,292 SNPs were used for GWAS analysis after removing SNPs with MAF < 0.05 and 
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SNPs that were not in LD (r2 < 0.1) with nearby 20 SNPs. Genome-wide LD pruning was then performed 

on the filtered rice genotypes using PLINK with parameter set as --indep-pairwise 1000 100 0.1 and 

remained 148,961 LD-pruned SNPs. PCA was performed on LD-pruned SNPs and the first three PCs 

were used as covariates to adjust for population structure. 

 

Benchmark different GWAS methods on simulated and real datasets 

 In both simulation and real data analyses, HapFM was compared with three GWAS methods: 

traditional LMM-based univariate association mapping GEMMA v0.98.1 67, Bayesian Sparse LMM 

BSLMM v0.98.1 68, and SNP-set based association method SMMAT v1.3.1 13. The kinship matrix, if 

needed, was calculated by GEMMA with parameter -gk 1. To fit a univariate linear mixed model in 

GEMMA, corresponding covariates were used with default settings for the other parameters. To fit the 

BSLMM model, the -bslmm 1 option was used with default settings for the other parameters. No 

covariate was included in the BSLMM model. To fit the SMMAT model, SNP sets based on the 

haplotype blocks identified by HapFM used including the corresponding covariates and default settings 

all parameters.  

 In both simulation and real data analyses, the mapping power and mapping interval of different 

GWAS methods was compared with FDR set at < 0.05. HapFM and GMMAT identify significant 

haplotype blocks whereas BSLMM and GEMMA identify significant SNPs. Therefore, the FDR values 

for BSLMM and GEMMA results need to be adjusted to achieve a fair comparison. To do this, the most 

significant SNP in each HapFM block partition was selected as the representative SNP and the adjusted 

FDR values were calculated using the formular 69:  

|/|3
4

, 

whereby |𝑆| represents the number of representative SNPs, 𝑞 represents the desired FDR level, and M 

represents the total number of SNPs. The mapping intervals of significant loci (FDR < 0.05) of each 

GWAS method were then calculated. The mapping intervals of HapFM and GMMAT were the length of 
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their corresponding blocks. The mapping interval of GEMMA and PLINK were calculated by clumping 

SNPs based on their pairwise LD using PLINK with the parameter set as --clump-r2 0.2. In addition, the 

mapping accuracy in the simulated study was calculated as the percentage of true positive blocks (FDR < 

0.05) from each GWAS method. The blocks contained significant SNPs identified by GEMMA and 

BSLMM were used to calculate the accuracy of GEMMA and BSLMM, respectively. 
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