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ABSTRACT

Infants start developing rudimentary language skills and can start understanding simple words well
before their first birthday [Bergelson and Swingley, 2012]. This development has also been shown
primarily using Event Related Potential (ERP) techniques to find evidence of word comprehension in
the infant brain [Parise and Csibra, 2012, Friedrich and Friederici, 2010]. While these works validate
the presence of semantic representations of words (word meaning) in infants, they do not tell us
about the mental processes involved in the manifestation of these semantic representations or the
content of the representations. To this end, we use a decoding approach where we employ machine
learning techniques on Electroencephalography (EEG) data to predict the semantic representations
of words found in the brain activity of infants. We perform multiple analyses to explore word
semantic representations in two groups of infants (9-month-old and 12-month-old). Our analyses
show significantly above chance decodability of overall word semantics, word animacy, and word
phonetics. As we analyze brain activity, we observe that participants in both age groups show signs
of word comprehension immediately after word onset, marked by our model’s significantly above
chance word prediction accuracy. We also observed strong neural representations of word phonetics
in the brain data for both age groups, some likely correlated to word decoding accuracy and others
not. Lastly, we discover that the neural representations of word semantics are similar in both infant
age groups. Our results on word semantics, phonetics, and animacy decodability, give us insights into
the evolution of neural representation of word meaning in infants.

Keywords EEG · Semantics · Brain imaging · Infant Decoding

1 Introduction

Recent work has demonstrated that infants begin to learn words by six months of age [Bergelson and Swingley,
2012, Tincoff and Jusczyk, 2012]). This astonishing ability of young infants has raised many questions about early
cognitive development including how deep infants’ early word understanding is. Each word in a language has a meaning
associated with it. This meaning is usually referred to as semantics and represents the conceptual idea attached to each
word (e.g., cat is an animal, apple is a fruit and is edible). These semantics can be modelled computationally using
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mathematical models, which are obtained from statistical modeling of large corpora of text. The trained semantic models
of text express various characteristics of words such as gender, plurality, etc. [Mikolov et al., 2013a]. These semantic
models have been beneficial for studying language processing in the brain by empowering us to better understand the
pattern of neural analysis that the brain is performing while processing words. Such an analysis can be performed using
a decoding approach where a machine learning model is used to predict the stimuli from recorded brain activity.

Previous studies conducted on brain-imaging data recorded from adults have shown success in decoding word semantics
[Papadimitriou et al., 2018, Fyshe et al., 2019, Honari-Jahromi et al., 2021]; we extend this idea to brain-imaging data
recorded from infants. Specifically, we analyze the change in neural response patterns as the infants hear single words.
Infants in two age groups (9-month-old and 12-month-old) listened to single words spoken by a native English speaker
while their EEG data was recorded. We then trained a machine learning model to decode the semantic representations
of the words from the brain activity.

Our analyses on brain-imaging data collected from infants provide evidence that,

• EEG data recorded from 9-month-old and 12-month-old infants can be used with a machine learning approach
to reveal semantic information.

• Nine- and twelve-month-old infants show high decoding accuracy of words immediately after word onset.
• Individual word stimuli properties such as phonetics can be decoded from infants of both age groups.
• The neural responses of 9-month-old and 12-month-old infants show similar representations of word semantics.

2 Background

Compared to the plethora of semantic decoding research conducted with neuroimaging data collected from adults,
there is a scarcity of research where machine learning techniques have been applied to decode semantics from infant
neuroimaging data. Semantic research in young infants has traditionally been carried out using behavioral tasks,
involving looking time paradigms [Bergelson and Swingley, 2012], or, for neuroimaging data, Event Related Potentials
(ERP), a characteristic of EEG data [Friederici, 2005]. The ERP component used in prior infant research is the N400, a
high amplitude negativity that emerges in adults at around 400ms (and later in infants) to a mismatch between a spoken
or written word and its referent [Kutas and Federmeier, 2000]. This component, which has been widely used in adult
studies, has been shown to emerge reliably by one year of age in infants [Friedrich and Friederici, 2010], see [Junge
et al., 2021] for a systematic review of N400 work with infants). For example, study conducted in 2012 by [Parise and
Csibra, 2012] used the N400 with 9-month-old infants to show that the participants can detect a mismatch between an
object and a word label that preceded the object. Infants aged 9-month-old were presented with live audio stimulus
from their mother in one experimental condition and from an experiment in another condition. Then a congruent or an
incongruent object relative to the preceding audio stimulus was shown on a screen placed in front of infants. The results
indicated that infants best represent the object features associated with familiar words in the mother-speech condition
indicating that the infants understood their mother’s speech. Still, all of these studies limit researchers to probe infants’
understanding of a small number of words at a time.

Increasingly, machine learning is being applied to the rich neural activity data obtained from various brain-imaging
techniques to reveal the featural composition of words in the adult lexicon. Several studies have demonstrated the
potential of machine learning to study adult word comprehension. A cognitive state classification conducted by Mitchell
in 2004 [Mitchell et al., 2004] showed that machine learning methods can be employed for decoding semantic categories
of written stimuli from whole brain fMRI (functional magnetic resonance imaging) data collected from adults. In this
study, university students participated in various tasks while their fMRI data was collected. Then a comparative analysis
was performed using different machine learning algorithms (Gaussian Naïve Bayes, Support Vector Machines and
k-Nearest Neighbors) on the fMRI data to classify cognitive states. This indicated that machine learning models can be
successfully applied to brain-imaging data .

Other studies that required participants to perform a language related task, also showed that the lexical (word level)
semantic information is encoded in the brain. A study conducted in 2014 by Fyshe et. al. built vector space models of
words by incorporating semantic information found in the brain [Fyshe et al., 2014]. Eighteen participants took part in
the study and their MEG and fMRI data were recorded while they viewed sixty concrete nouns. To represent these sixty
nouns, vector space models that encode semantic information were built. A simple L2 regularized linear regression
model was used to predict these word vectors from brain-imaging data. It was observed that when brain-imaging data
and text were leveraged to build the word vectors, the regression model outperformed in predicting the word vectors
compared to predicting them when the word vectors were built using only text. The finding that the word vectors built
by leveraging brain-imaging data in addition to text were better at representing word semantics than text alone shows
that the brain-imaging data had semantics encoded in it.
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Another study conducted by Sudre in 2012 used MEG data where machine learning was used to decode perceptual and
semantic features of 60 concrete nouns [Sudre et al., 2012] using a classification approach. By decoding perceptual and
semantic features, an MEG based classifier was able to determine two different concrete nouns not seen during training.
The temporal analyses conducted provided insights into the difference between the time course of MEG magnitude and
the decodable semantic information; it showed that perceptual information can be decoded before semantic information.
This study showed that applying machine learning to timeseries data can help us discover dynamic patterns that vary
with time.

Machine Learning has also been used with MEG data to decode phrase stimuli semantics from brain-imaging data. For
example, [Fyshe et al., 2019] showed that a simple linear model (ridge regression) was able to track the neural decoding
of adjective and noun phrase semantics from MEG data. A total of thirty adjective-noun phrases were present in the
stimuli set, out of which twenty-eight were used for training and two for model performance evaluation. The decoding
model also predicted the semantics of the adjective-noun phrases, indicating that neural responses contain information
pertaining to the stimuli much later after stimuli offset. All in all, machine learning methods are a powerful approach
for semantic decoding research and also for studies involving temporal analyses of brain-imaging data.

As we have seen with brain-imaging data recorded from adults, machine learning can also be applied to brain-imaging
data collected from infants. In fact, classical and modern machine learning techniques have been used to investigate
EEG data in developmental studies. For example, Gibbon used Support Vector Machine (SVM) and Convolutional
Neural Network (CNN) to show that rhythmic stimuli can be accurately classified from EEG data collected from
infants of 8-months old [Gibbon et al., 2021]. Another study used SVM on EEG data obtained from 6-month-old
infants to accurately classify their risk of developing language related disorders [Zare et al., 2016]. These findings
demonstrate that machine learning can be used on brain-imaging data collected from infants in downstream tasks and
using computational models can also provide us with valuable insights into the dataset over traditional methods such as
Event Related Potential (ERP).

Other techniques such as the Multivariate Pattern Analysis (MVPA) technique have also been used to decode the infant
mind. Studies such as [Emberson et al., 2017] used functional near-infrared spectroscopy (fNIRS) brain-imaging data
(a technique that measures changes in cortical blood oxygenation) in a task that classifies a set of stimuli into audio
or visual categories. Using fNIRS and fMRI techniques is ideal when topographical neural information is vital, but it
comes at the cost of temporal resolution. Our study uses EEG for a language related task as it is ideal for observing
changes in neural responses over time. Specifically, we collect EEG data while infants are listening to words with
various semantic and phonetic characteristics, and then use machine learning to identify what properties of the words
the infants are able to detect, represent, and understand.

3 Materials and Methods

3.1 Participants

A total of 46 infants participated in our study. Of this initial sample, 21 nine-month-old (10 female, 11 male) infants
were included in the final analysis. Seven additional 9-month-olds were tested but excluded from the final sample due
fussiness (n=5), poor electroencephalogram (EEG) impedance (n=1), and excessive body movements (n=1). Fourteen
12-month-old (7 female, 7 male) infants were included in the final sample. An additional four 12-month-old infants
were tested but were excluded due to language criteria (n=1) and fussiness (n=3). All infants were native English
learners, had no cognitive impairments and were born full-term.

3.2 Stimuli

The stimuli presented to the participants consisted of two parts, an audio stimulus and a visual stimulus. The audio
stimuli represented single words, which were spoken into a microphone by a native English female speaker (the
experimenter). The visual stimuli represented images shown on a screen placed in front of the participants.

The word stimuli set consisted of sixteen total words equally divided into animate and inanimate words. The stimuli
words were selected using the reported average age of acquisition from the MacArthur–Bates Communicative Devel-
opment Inventory (CDI) [Fenson, 1993], and previous experimental studies [Bergelson and Swingley, 2012, Tincoff
and Jusczyk, 1999, 2012, Bergelson and Swingley, 2015, 2018]. Table 1 shows the list of sixteen words grouped by
animacy. It is useful to note that each spoken word lasts a different duration, but requires less than one second to speak.

For each audio stimuli, an image followed. Sixteen images matching the auditory stimuli were presented to the
participants. Each image was publicly available on Google Images and had black backgrounds. The images represented
the real-life object equivalent of the corresponding word label and not toys. For example, the image for dog showed a
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(a) Dog as an animate image in the stimuli set. (b) Cup as an inanimate image in the stimuli set.

Figure 1: An example of an animate and inanimate image presented to the participants after the word stimuli.

Figure 2: Timing diagram showing stimulus presentation design. The word stimulus was in audio format and the image
was shown on a screen. Before each trial a dynamic video was shown with a rotating asterisk that changed colors. After
word onset, the rotating asterisk was shown for at least 1100ms. Next, an image appeared on the screen lasting 1200ms.
After the image offset, a blank screen followed that lasted 1000ms..

real-life dog and not a toy dog. Figure 1 shows an example of an animate and an inanimate image presented to the
infants.

Stimuli Words
Animate Inanimate
baby banana
bear bottle
bird cookie
bunny cracker
cat cup
dog juice
duck milk
mom spoon

Table 1: Stimuli words used in the study.

Before each trial, the computer displayed a dynamic video as an attention getter on the screen. The dynamic attention
getter video displayed a small rotating asterisk that changed colors. This video was used to ensure the participants’
attention based on the criteria that they were either looking at the rotating asterisk or the experimenter. The experimenter
spoke the word marking the word stimuli onset, following which the rotating asterisk was shown for 1100ms. Next, the
image was presented on the screen that lasted for 1200ms. Finally, a blank screen was shown for 1000ms (see figure 2
for details). On average, the time between image offset and the next word stimulus varied from 2100ms to 2500ms
because participants’ attention was required, and the reaction time of the speaker was accounted for to the next word
stimulus provided by a computer software. A timing diagram is shown in figure 2.

For each trial, the Eprime software [Schneider et al., 2002] provided a stimulus word through the speaker’s headphones,
such that the infants and the parents could not hear the word. Then, as the speaker said the word, the microphone in
front of the speaker registered the word stimulus and would signal the Eprime software to present an image after, at
least 1100ms after the word onset. For the computer to register the onset of the spoken word stimulus, a threshold level
of 65dB was used.
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An image was shown for 1200ms on the screen in front of the participant after each word stimulus. For half of the trials,
the image matched the word label (for example, an image of dog was shown for the preceding word label dog). For the
other half of the trials, the image did not match the preceding word label (for example, an image of a cup was shown for
the preceding word label banana). Half of the mismatched images matched the preceding word for its animacy category,
and the remaining half mismatched the animacy category of the word. This resulted in four cases of word-image pairs.
These were:

1. Animates congruent.

2. Animates incongruent.

3. Inanimates congruent.

4. Inanimates incongruent.

In the congruent case, the image matches the animacy group of the word (e.g., animate word baby and an image of
the animate object cat), and in the incongruent case, the animacy does not match the preceding word stimulus (e.g.,
inanimate word cup and an image of the animate object dog). The images were presented in a semi-random order such
that there could not be more than two presentations of the same word type (animate or inanimate) in a sequence.

3.3 Data Collection and Preprocessing

Throughout the study, infant brain imaging data were collected using Electroencephalography (EEG) at a western
Canadian university. EEG is a brain-imaging technique that involves placing electrodes on the scalp to record the
electrical activity of the brain. It is a non-invasive and affordable method that provides excellent temporal resolution.
EEG is ideal for our study as we wanted high temporal precision to analyze the changes in brain activity over time.
We used a Geodesic 64 channel EEG cap which had a data capturing frequency of 1000 hertz. Channels 61-64 were
removed during pre-processing since these channels corresponded to cheek channels which were not present on all caps.
The experimental procedure was carried out using Eprime software with Chronos hardware [Schneider et al., 2002] and
data was captured using 5.4.2 EGI Netstation software.

During the study, infants were seated on their parent’s lap in front of a computer monitor. Standing next to the screen
was a native female English speaker who produced the stimulus words during the study. At the start of each trial, a
fixation asterisk would appear in the centre of the screen. The fixation asterisks rotated and changed colors while
staying fixed in the middle of the screen. In this initial part of the trial, the speaker waited for the infant’s attention,
defined by the infant looking at either the screen or speaker. This period of time was on average 1000 to 20000ms.
While the speaker waited for the infant’s attention, the stimulus word was played through headphones such that the
infants and the parents could not hear it. Once the infant was attending and relatively still, the speaker said the word
and a microphone in front of the speaker registered the word stimulus and and signalled the Eprime software to present
an image after a 1100ms delay. For the computer to register the onset of the audio stimulus, a threshold level of 65dB
was used. The image would remain on the screen for 1200ms after which a blank screen was presented for 1000ms.

For our analyses, we processed the EEG data by removing trials where the baby was not paying attention or was not
looking at the screen or the speaker before each trial. We also removed any trials that contained movement artifacts
which were found by visual inspection of the EEG signal and video feed of the infant’s face. In the end, we had a total
of 1026 samples of EEG data for the 9-month-old babies and a total of 683 samples of EEG data for the 12-month-old
babies. The data was sampled at a rate of 1000Hz and was not downsampled. Data was filtered with a high pass filter of
.1Hz and a low pass filter of 50Hz. The data was re-referenced using a vertex channel and then epochs were extracted
from -200 to 1000ms around the onset of each word utterance. The data was also baseline corrected using the 200ms
prior to word onset.

3.4 Word vectors

To obtain a vector representation of word semantics, we used word vectors obtained from the Word2Vec model
[Mikolov et al., 2013b] pretrained on the Google News Dataset (an internal Google dataset containing news articles and
comprising about a hundred billion tokens2). These word vectors represent the semantic properties of the stimuli. Each
word vector has 300-dimensions. For our study, we used the vectors acquired from the skip-gram algorithm, a neural
network trained to predict the context for a given word. We chose vectors from Word2Vec because the existing studies
show that word vector representations of stimuli can be decoded from brain-imaging data in adults [Ruan et al., 2016,
Kivisaari et al., 2019, Sudre et al., 2012, Murphy et al., 2011, Foster et al., 2021, Honari-Jahromi et al., 2021].

2https://code.google.com/archive/p/word2vec/
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3.5 Data Subsets and Averaging

The EEG dataset collected is represented by X ∈ RN×p, where N is the number of samples and p = sensors× time,
is the number of features. A machine learning model learns a function h that transforms the input EEG data X into
a different m dimensional space Y . This m dimensional space consists of the 300-dimensional word vectors that
represent the semantics of the word stimuli Y ∈ RN×m.

Our data has a total of p = 60× 1000 = 60000 features for 60 sensors and 1000 time points for each sensor. We divided
our data into equal length chunks of 100ms windows and used a sliding step of 10ms. Therefore, for each window,
we train a ridge regression model which takes in a data matrix of size N × t where t = 60× 100 = 6000 is the total
number of features (60000 total data points for 1 second of data chunked into 100ms windows). So our original data
matrix XN×p is now XN×t (t < p) on which the model is trained to predict the 300-dimensional word vectors. The
data matrix XN×t is then divided into training and testing subsets Xtrain and Xtest. The word vector representations
Y is similarly divided into Ytrain and Ytest. The training subset Xtrain along with Ytrain is then used to train multiple
ridge regression models to learn the mapping from the brain imaging data (Xtrain) to the word vectors (Ytrain). For our
test set Xtest, we average all the trials for a stimulus word within an age group resulting in 16 total samples (one sample
of each stimulus word) to increase the single-to-noise ratio. For example, if the test set contains five EEG samples for
the word ’baby’, we average these five samples to obtain one sample. This process is carried out for each word in the
stimuli set, giving us 16 EEG samples for Xtest.

3.6 Prediction Model

Our primary analyses use a simple machine learning algorithm. Specifically we use the Ridge Regression model from
scikit-learn [Pedregosa et al., 2011], which was trained on the EEG data to predict the word vectors.

To train the model, we learn a mapping h from X to Y . h takes the brain-imaging data X and predicts word vectors Ŷ .

h(X) = Ŷ (1)
or

h(X) = X × ŵ = Ŷ (2)
To learn the mapping h, we estimate the weights ŵ by minimizing the loss function:

ŵ = argmin
w
||Xw− Y ||22 + λwT w (3)

The term λwT w is called the ridge or the L2 regularizer and the hyperparameter λ controls the regularization strength.

We used monte-carlo nested cross-validation procedure with negative mean squared error to optimize the hyperparameter
λ for the ridge regression model (see eq. 3). During each sampling iteration of the monte carlo procedure, we randomly
sampled 80% of the dataset which constituted as Xtrain and the rest 20% constituted as the test set. For the inner
loop of the nested cross validation procedure, we used a k-fold split of the training set(Xtrain) with k=5 resulting in
20% of Xtrain being used as the validation set for the hyperparameter tuning. We utilize sklearn’s GridSearchCV3

to accomplish hyperparameter optimization. For the EEG data from the 9-month-old infants, this resulted in 821
samples for Xtrain and 205 samples for Xtest for each sampling iteration. About 164 samples from Xtrain were
used for selecting the hyperparameter inside each cross-validation fold. For the EEG collected from the 12-month-old
infants, there were 547 samples for Xtrain and 136 samples for Xtest. About 109 samples from Xtrain were used for
hyperparameter tuning. We set the number of sampling iterations for the monte-carlo procedure to 50.

3.7 2 versus 2 Test

To evaluate the performance of the model, we used the 2 vs 2 test procedure. The test procedure works as follows.
We first consider two instances from the predictions (ŷi, ŷj) and two instances from the ground truth vectors (yi, yj).
We then use a distance metric to calculate the distance between the two pairs of vectors. We use the cosine distance
criterion d(u, v) where u and v are the word vectors. The chance accuracy of the 2 vs 2 test is 50% because there are
two possible assignments of the predicted vectors to the ground truth vectors.

The 2 vs 2 test passes if:
d(yi, ŷi) + d(yj , ŷj) < d(yi, ŷj) + d(yj , ŷi) (4)

The 2 vs 2 test is depicted in figure 3.

Since our test set contains the average of all the trials for a stimulus word, the total number of instances in our test set is
16. And the total number of pairs evaluated by the 2 vs 2 test are

(
16
2

)
= 120.

3https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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ŷi

ŷjyj

yi

True Labels Predicted Labels

Stimulus  i

Stimulus  j

Figure 3: 2 vs 2 test showing pairwise comparisons of true and predicted labels. The test passes if the sum of the cosine
distance between matching word vector pairs (represented by solid green lines) is less than the sum of the distance
between the non-matching word vector pairs (represented by red dashed lines).

3.8 Testing for Above Chance Accuracy

To determine the analysis windows with above chance accuracy, we compared our results to random chance accuracy
using the permutation test [Ojala and Garriga, 2010]. The permutation test is performed by randomizing the assignment
of stimuli word vectors to their corresponding EEG data so that each word vector for a word stimulus is randomly
matched to any sample of the EEG data. This mimics a situation where no association exists between the input EEG
data X and the output word vectors Y . We ran our decoding framework on the dataset for 100 permutation iterations.
As expected, since there is no relation between the input EEG data and the output word vectors, the accuracy when
running the prediction framework on this shuffled dataset is chance (50% for 2 vs 2 test). We then fit a gaussian kernel
density function to the obtained 2 vs 2 accuracies from the permuted dataset to generate a null distribution. Finally,
we compared the non-permuted accuracies to the accuracies obtained from the permutation test to establish statistical
significance.

Once the null distribution is obtained, a p-value is calculated for the original non-permuted accuracy. To correct the
p-values for multiple comparisons over time (α < 0.01), we use the Benjamini-Hochberg-Yekutieli False Discovery
Rate (FDR) correction method with no dependency assumption [?].

3.9 Testing for Difference Between Conditions

After we trained our machine learning model to decode word semantics from EEG data, we used a different significance
testing method called the non-parametric cluster permutation test [Maris and Oostenveld, 2007] to compare the
significant difference in accuracy values between different experimental conditions. The two conditions in our analyses
are the two age groups (9-month-old and 12-month-old infants). The test is conducted as follows. First, we obtain the 2
vs 2 accuracies for each condition, resulting in fifty accuracy values for each sampling iteration (see 3.6). Next, we
calculate a test statistic between the accuracy values for the two conditions, which gives us the observed test statistic.
We then permute these accuracies by putting them into a single set, from which two random subsets of accuracies are
drawn; this is called a random partition. We repeat this process 10000 times. We calculate the test statistic between the
two subsets for each random partition and compare it to the observed test statistic, resulting in a p-value. Finally, we
report the largest cluster of time points containing at least 3 or more consecutive windows with a significant difference
in accuracy values (p < 0.01).

4 Results

4.1 Analysis 1: Decoding Animacy Category from EEG

In the first analysis, we sought to explore whether infants’ neural representations include complex properties such as
animacy. To this end, we used our pre-processed EEG data to predict whether a word labelled an animate object or an
inanimate object. If infants have learned an object’s animacy and have mapped that property to the object’s label, then
we would expect successful decoding using the infant EEG signal.

In Analysis 4.1, we found that the prediction framework was able to decode the word’s animacy from 9-month-old’s
EEG data but not from 12-month-old’s EEG data. For 9-month-old infants, accuracy was significantly above chance at
multiple time points over the course of the trial. This provides evidence that 9-month-old infants’ representations of
word labels includes information about the animacy of the corresponding objects. This is consistent with prior research
showing that infants’ ability to distinguish animate from inanimate objects emerges very early in infancy [Rakison and
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Poulin-Dubois, 2001] and guides their reasoning about actions, defining features, mental states, and more (see [Opfer
and Gelman, 2011] for a review).

Interestingly, we did not find any success in the ability to predict word animacy using only the 12-month-olds’ EEG
data. This could have been due to a lack of data from the 12-month-old infants to allow for successful model training
in combination with a weak signal of animacy in the neuroimaging data. It is also noteworthy, that even in the
9-month-olds, we found that the accuracy of predictions fluctuated across the trial which may further suggest a weak
signal of animacy.
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Figure 4: Accuracy for decoding word animacy category from the stimuli word. Green curve - 9-month-old infants;
Purple curve - 12-month-old infants. Each point on the graph represents an accuracy value for the model trained on a
100ms window (100ms to the left of the accuracy point) with a 10ms sliding step. Green dots show significantly above
chance accuracy points for 9-month-olds (p< 0.01, FDR corrected for multiple comparisons over time). No significantly
above chance accuracy points were obtained for 12-month-infants. The shaded (pink) area shows significant difference
in accuracies between the two age groups using non-parametric statistic test Maris and Oostenveld [2007].

4.2 Analysis 2: Representations of Word Semantics

In the second analyses, our goal was to find evidence of word comprehension in the infant neural signal. Here, we
obtained the word vector representations for each word in our stimuli set from the pretrained Word2Vec model and ran
the prediction framework to predict each dimension of the word vector from the EEG data. If the word meaning is
encoded in the brain, we expect to obtain a successful prediction and significantly above chance accuracy.

In Analysis 4.2, we found that the prediction framework was able to decode the stimuli word vectors from the EEG data
collected from 9-month-old and 12-month-old infants. This provides evidence about the presence of word semantic
information in infant neural data. In addition to previous studies [Parise and Csibra, 2012, Friedrich and Friederici,
2010] which showed that babies can detect semantic mismatch of the stimuli, this analysis shows that infants can
understand the meaning of the stimuli word as well. Since our analyses is carried out over 100 milliseconds chunks of
EEG data with 10 millisecond sliding step, it allowed us to explore individual sections of the EEG data that encode
word semantics and observe the results over time.

Interestingly, for 9-month-old infants, all accuracy values from the onset of the word till 950ms after word onset were
found to be above chance and reliable (green dots in figure 5). For 12-months-old infants, we also observed multiple
accuracy values after word onset but only until around 700 milliseconds, after which the accuracy dropped.
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Figure 5: 2 vs 2 accuracy for predicting pretrained Word2Vec word vectors from EEG data collected from 9-month-old
and 12-month-old infants. Each point on the graph represents an accuracy value for the model trained on a 100ms
window (100ms to the left of the accuracy point) with a 10ms sliding step. The green dots above the x-axis represent
the points where the accuracy is reliable for 9-month-old infants, and the purple dots represent reliable above chance
accuracy for 12-month-old infants (p < 0.01, FDR corrected for multiple comparisons over time)

After conducting Analysis 4.2, we understood that the evoked neural responses in babies from both age groups were
correlated with the stimuli words and the results also provides evidence that a machine learning approach is suitable for
associating infant word semantics comprehension with the neural data. But we were unsure about whether the high
decoding accuracy can be attributed to the semantics only or were there any confounding variables or features in the
EEG data that helped the model decode the stimuli. Since babies of such age groups are very sensitive to phonetic
differences in known words [Jusczyk and Aslin, 1995, Parise and Csibra, 2012], in the next analysis we removed the
phonetic components of the word stimuli from their word vector representations.

4.3 Analysis 3: Presence of Phonetic representations of Word Stimuli

In Analysis 4.2, we decoded the overall word semantic representations from the EEG data. However, what constitutes
this semantic understanding is unclear. In this analysis, we try to investigate one aspect of semantic understanding of
words: word phonetics.

We know that early infants build up phonological memory structures and use them to recognize known words [Jusczyk
and Aslin, 1995], and infants from birth are very sensitive to phonetic differences in speech sounds [Werker and Tees,
1992]. Extending this idea, we investigated the contribution of word phonetics to semantic understanding by predicting
a vector representation of word phonemes from the infants’ neural responses.

We carry out this analysis as follows. Each word in our stimuli set comprises multiple letters (ranging between three
to six letters), and each letter is represented as a phoneme. We map each letter of the word stimuli to its respective
phoneme, where each phoneme was represented in its IPA notation4. Whenever possible, the Canadian Pronunciation
was used, and the General American (GA) pronunciation otherwise, defined in Dictionary.com5 and Wikitionary6. Then,

4https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
5https://www.dictionary.com/
6https://www.wiktionary.org/
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we map each phoneme to a 36-dimensional vector obtained from [Mielke, 2012]. We concatenated each phoneme
vector into one long vector P and zero-padded all the concatenated vectors to make them of equal size, resulting in
a 216-dimensional long vector. Finally, we predict these 216-dimensional vectors from the EEG data using a ridge
regression model. The process of creating these concatenated phoneme vectors is shown in 6.

The presence of phonetic components in the neural responses will be indicated by significantly above chance accuracy.
Figure 7 shows the results where we predict the phoneme vectors from the neural responses.

"CUP"

"k" "ə" "p" Get IPA phonemes

Phoneme
Vector Set

-0.61 -0.9 -0.5 -0.33 0.43 -0.12 -0.71 -1.02 -0.55 Get phoneme vectors 

-0.33 0.43 -0.12-0.61 -0.9 -0.5 -0.71 -1.02 -0.55 0 0 0

Concatenate

Concatenated Phoneme Vector 

Figure 6: Phoneme vector creation process for a sample word ’cup’ from the stimuli set. The stimulus word is broken
down into its individual IPA phoneme. For each IPA phoneme, a vector is retrieved from [Mielke, 2012]. Finally, a long
vector is created by concatenating individual vectors. Zero-padding is used to obtain equal length vectors. We show
3-dimensional phoneme vectors for simplicity. Actual vectors are 36 dimensional long.

It is interesting to see that for 9-month-old infants (orange curve in figure 7a), we were able to decode phonetic
information from EEG data with significant above chance accuracy. This indicates that phonetic information is encoded
in the neural responses of 9-month-old infants. We observed significantly above chance accuracy immediately after word
onset, which lasted till 1000ms. On the other hand, when we observe the accuracy for the 12-month-old infants (black
curve in figure 7a), we notice an initial rise in decoding accuracy around word onset, which lasts till around 380ms and
quickly dropping after that. This suggests that even though the 12-month-old infants encode phonetic information, it
is transient and not as long lasting as the phonetic representations for the 9-month-old infants. The pink shaded area
shows regions with significant differences between decoding accuracy for phoneme vectors for 9-month-old infants and
12-month-old infants. Starting around 400ms, the neural representations differ greatly, resulting in a divergence of the
accuracy curves.

We also compare the results between the current phoneme decoding analysis and the semantic decoding analysis
described in Analysis 4.2, in figure 7b for 9-month-old infants and in figure 7c for 12-month-old infants.

In figure 7b, we see that for 9-month-old infants, the accuracy curve for the phoneme decoding analysis (orange) traces
close to the accuracy curve for the semantic decoding analysis (green). On the flip side, when we compare the phoneme
decoding analysis and semantic decoding analysis for 12-month-old infants, we see that in figure 7c, the curve for
phoneme decoding analysis (black) and semantic decoding analysis (purple) trace each other closely till around 400ms
after which the phoneme decoding accuracy drops sharply but semantic decoding accuracy persists till about 750ms.
This effect is depicted by the pink shaded area showing a significant difference in accuracy from around 370ms to
1000ms.
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In this analysis, we tried to understand the contribution of word phonemes to neural responses. We observed that
infants in both age groups have phonetic representations of words, but the neural responses in the two age groups differ
significantly. The next section will investigate how similar the neural responses are across the two age groups for our
stimuli set.

4.4 Analysis 4: Shared Representations of Word Semantics between age groups

Analysis 4.4 tries to investigate if the evoked neural responses observed for a stimulus word contain similar information
between 9-month-old infants and 12-month-old infants. Like previous experiments, the analysis is for all time windows
of the EEG data. Similar to experiments 4.1 and 4.2, a ridge regression model is trained on the EEG data from one
group to learn the mapping between the EEG data and word vectors, but during the test time, we predict the word vector
representations from the EEG data obtained from the other age group.

The accuracy in word decoding in the previous experiments showed generally similar patterns between the 9-month-old
and 12-month-old infants. To more directly measure whether there are commonalities in 9- and 12-month-old’s
representations we ran two analyses wherein we trained on one age group to predict the data of the other age group.
Specifically, we wanted to know if the information present in the neural data from one age group can predict the word
vectors from the neural data obtained from the other age group.

As seen in Figure 8, training on 9-month-old data was able to significantly predict the word vectors using a 2 vs
2 analysis of the 12-month-old infants in a window between 130ms to 610ms. Similarly, when we trained using
12-month-old data we were able to predict the word vectors of 9-month-old infants immediately after onset until 800ms
after word onset. However, when we trained on 12-month-old infants to predict word vectors from EEG data obtained
from 9-month-old infants, accuracy was not above chance for the entire period from word onset to 800ms and accuracy
fell below chance around 200ms and 480ms; this is shown in figure 8.

Our result that both age groups were able to predict the word vectors of the other age group during large segments of the
test trials, suggests that there are shared aspects in the semantic representations of these word vectors across age groups.
This supports the idea that although there may be developmental changes across age groups, there is nonetheless an
overwhelming similarity between them as well. Training on the older infants’ EEG data was able to make predictions
of the young infants’ word vectors early in the test trial and over many windows in the test trial. The pattern was very
different when we trained on younger infants to predict the older group. This difference could be due to noisier data in
the younger infants possibly stemming from less developed word representations as compared to 12-month-old infants.
Prior work has found changes in early word comprehension between 9 and 12 months of age (Bergelson and Swingley,
2017). It is possible then, that our work further speaks to the idea that older infants had significantly more advanced
representations than the younger infants; however, more work is needed to explore this idea.

4.5 Analysis 5: Decoding fine-tuned word vectors from EEG

In Analysis 4.2, we ran our prediction framework to predict the word vectors obtained from the pretrained Word2Vec
model. Since the pretrained Word2Vec model is trained on the Google News Corpus, the word vectors will likely be
more oriented to have semantic representations to that of adults. One might also ponder upon improving these word
vectors to better represent the semantic representation of words in infants. This thought stems from the idea that word
vectors characteristic of infants’ representation of word semantics may lead to better infant neural data predictions than
pretrained word vectors. To this end, we fine-tuned the pretrained Word2Vec model on two datasets, the children’s book
test dataset introduced in [Hill et al., 2016] and the Childes corpus dataset [MacWhinney, 2000]. For the fine-tuning
process, we used one thousand iterations of gradient descent with default start and end learning rates7. Finally, we
proceeded to decode these fine-tuned word vector representations from the EEG data for which the results are shown in
9.

In figure 9a we see that fine-tuned word vectors can be decoded with significantly above chance accuracy from the
EEG data recorded from both groups of infants. However, we see a clear difference when comparing the results with
the decoding accuracy of pretrained word vectors. In figure 9b, we notice that the decoding accuracy for pretrained
word vectors (green) is high in the later stages of the time course compared to the decoding accuracy for the fine-tuned
word vectors (orange). The pink shaded area shows the region where the accuracy values are significantly different.
Similarly, for 12-month-old infants, we see that in figure 9c the decoding accuracy for pretrained word vectors (purple)
is generally higher than the accuracy of fine-tuned word vectors (blue). Since using fine-tuned vectors did not perform
superior to their pretrained counterpart, we used pretrained word vectors for our analyses.

7https://radimrehurek.com/gensim/models/word2vec.html#gensim.models.word2vec.Word2Vec.train
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Figure 7: Decoding accuracy for predicting phonetic components of word stimuli. 7a shows the decoding accuracy
for predicting phonemes from EEG data recorded from 9-month-old and 12-month-old infants. Figure 7b shows the
comparison of accuracy for predicting phonemes (orange) and Word2Vec semantic vectors (green) from EEG data
recorded from 9-month-old infants. Figure 7c shows the comparison of accuracy for predicting phonemes (black) and
Word2Vec semantic vectors (purple) from EEG data recorded from 12-month-old infants. Shaded areas show significant
differences in accuracies, and dots above the x-axis show points of significantly above chance accuracy (p-value <
0.01).
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Figure 8: 2 vs 2 accuracy for predicting pretrained Word2Vec word vectors from EEG across age groups. Each point on
the graph represents an accuracy value for the model trained on a 100ms window (100ms on the left of the accuracy
point) with a 10ms sliding step. The green dots denote above chance accuracy for the model trained on 9-month-old and
tested on 12-month-old infants, and purple dots denote above chance accuracy for the model trained on 12-month-old
infants and tested on 9-month-old infants (p < 0.01, FDR corrected for multiple comparisons over time). The shaded
area shows where the accuracy curve is significantly different for the two conditions.

5 Discussion

This is the first work to report successful decoding of words from neural activity from infants before or around their first
birthday. Prior work examining semantic representations in infants, 12-months-old and younger, commonly approached
this topic by either using looking-while-listening paradigms (e.g., [Bergelson and Swingley, 2012]) or relying on ERP
analyses (e.g., [Friedrich and Friederici, 2005]). These methods relied on examining infants’ ability to match a label to
a picture by comparing trials with correctly matched label-image pairs and mismatched pairings. Although the prior
work establishes that infants have an early understanding of words, it cannot tell us about the semantic understanding of
these early learned words only whether infants detected a mismatch on some dimension. Specifically, the prior work
with young infants is limited in that it can tell us whether infants attribute categorical meaning to an object word but
cannot tell us much more about the semantics of early infant words. Our work presented here begins to address this
question of early semantic comprehension through a novel method by showing that the infant neural signal triggered in
response to auditory words can be modeled using adult semantic word vectors.

It is significant that infants’ representations of words in the first year of life are complex and similar enough to the adult
semantic representation for an adult based model (i.e., Word2Vec) to fit infant neuroimaging data. In Analysis 4.1,
we predicted word animacy from the EEG data, which provides evidence that infants as young as 9-month-old can
distinguish words based on their animacy category. In Analysis 4.2, we used 300-dimensional word vectors constructed
from adult writing samples to model infant neuroimaging data after infants heard a word. We were able to decode the
words infants were hearing from EEG data from both 9-month-old and 12-month-old infants. Our models achieved
significantly accuracy almost immediately after word onset and it maintained this accuracy for over 700ms. There is
some possibility that the decoding success early in trials for the 9-month-old infants appears to be somewhat correlated
to the phonemes of the words. As shown in figure 7, when we decoded phoneme information from the EEG data, we
obtained significantly above chance accuracy appeared approximately almost immediately after word onset in infants of
both age groups. While the decoding accuracy for the 9-month-old infants closely traced the word vector decoding
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Figure 9: 9a shows the decoding accuracy for predicting fine-tuned word vectors from EEG data. 9b shows the
accuracy comparison for predicting fine-tuned word vectors (orange) and pretrained word vectors (green) from EEG
data collected from 9-month-old infants. 9c shows the accuracy comparison for predicting fine-tuned word vectors
(blue) and pretrained word vectors (purple) from EEG data collected from 12-month-old infants. Shaded areas show
significant differences in accuracies, and dots above the x-axis show points of significantly above chance accuracy
(p-value < 0.01, FDR corrected for multiple comparisons over time).
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accuracy, it is also interesting to observe that the phoneme decoding accuracy for 12-month old dropped quickly at
around 400ms but the overall word semantic decoding accuracy lasted until around 750ms, indicating that the latter half
of the semantic decoding trial is unlikely to be correlated to word phonetics only.

The general pattern of accuracy achieved neuroimaging data to predict word vectors was similar across age groups. We
conducted an analysis to directly compare these age groups, wherein we found that the data from either age group was
able to predict the word vectors of the other (Analysis 4.4). This result suggests that the representations between the
age groups may be very similar to one another. Although the predictions made using the 12-month-old data appeared to
be longer lasting they were not stable across the whole trial so it is difficult to conclude if the older infants had a more
mature representation. Additionally, the peak accuracy values obtained while training on either age group were similar,
further supporting that neither age group were better in predicting semantic word vectors.

In the first set of experiments, we focused on trying to predict adult word vectors; however, our accuracy values obtained
may have been lower because of a mismatch in the representations of child semantic knowledge and adult semantic
knowledge. Yet, when we fine-tuned our adult word vectors using child-directed databases, the accuracy values in
both age groups suffered. This was a surprising result and may be a result of the child-directed speech data being
quite small to conduct a modelling experiment. It is also possible that by using speech directed at older children rather
than exclusively infants, we introduced unnecessary noise by now having word vectors that unintentionally further
mismatched the infant experience. Further studies would be needed to disentangle this result.

6 Conclusion

In this study, we explored whether words could be decoded from young infants’ neuroimaging data and the temporal
nature of infants’ early word representations. In both 9-month-old and 12-month-old infants, we were able to decode
words from their EEG data early after word onset. Moreover, we discovered that both age groups appeared to have
similarities in their representations. It is particularly impressive that infant EEG data was able to decode adult word
vectors, suggesting that infants’ early representations may be more similar to adults’ than previously thought. Finally,
this work opens up a new area of research by demonstrating for the first time that words can be decoded from the infant
brain signal prior to or around infants’ first birthday.
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